
The Annals of Statistics
2016, Vol. 44, No. 5, 1896–1930
DOI: 10.1214/15-AOS1369
© Institute of Mathematical Statistics, 2016

STATISTICAL AND COMPUTATIONAL TRADE-OFFS IN
ESTIMATION OF SPARSE PRINCIPAL COMPONENTS
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In recent years, sparse principal component analysis has emerged as an
extremely popular dimension reduction technique for high-dimensional data.
The theoretical challenge, in the simplest case, is to estimate the leading
eigenvector of a population covariance matrix under the assumption that this
eigenvector is sparse. An impressive range of estimators have been proposed;
some of these are fast to compute, while others are known to achieve the mini-
max optimal rate over certain Gaussian or sub-Gaussian classes. In this paper,
we show that, under a widely-believed assumption from computational com-
plexity theory, there is a fundamental trade-off between statistical and com-
putational performance in this problem. More precisely, working with new,
larger classes satisfying a restricted covariance concentration condition, we
show that there is an effective sample size regime in which no randomised
polynomial time algorithm can achieve the minimax optimal rate. We also
study the theoretical performance of a (polynomial time) variant of the well-
known semidefinite relaxation estimator, revealing a subtle interplay between
statistical and computational efficiency.

1. Introduction. Principal Component Analysis (PCA), which involves pro-
jecting a sample of multivariate data onto the space spanned by the leading eigen-
vectors of the sample covariance matrix, is one of the oldest and most widely-used
dimension reduction devices in statistics. It has proved to be particularly effective
when the dimension of the data is relatively small by comparison with the sam-
ple size. However, the work of Johnstone and Lu (2009) and Paul (2007) shows
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that PCA breaks down in the high-dimensional settings that are frequently encoun-
tered in many diverse modern application areas. For instance, consider the spiked
covariance model where X1, . . . ,Xn are independent Np(0,�) random vectors,
with � = Ip + θv1v

�
1 for some θ > 0 and an arbitrary unit vector v1 ∈ R

p . In this
case, v1 is the leading eigenvector (principal component) of �, and the classical
PCA estimate would be v̂1, a unit-length leading eigenvector of the sample covari-
ance matrix �̂ := n−1 ∑n

i=1 XiX
�
i . In the high-dimensional setting where p = pn

is such that p/n → c ∈ (0,1), Paul (2007) showed that

∣∣v̂�
1 v1

∣∣ a.s.→
⎧⎪⎨
⎪⎩

√
1 − c/θ2

1 + c/θ
, if θ >

√
c,

0, if θ ≤ √
c.

In other words, v̂1 is inconsistent as an estimator of v1 in this asymptotic regime.
This phenomenon is related to the so-called “BBP” transition in random matrix
theory [Baik, Ben Arous and Péché (2005)].

Sparse principal component analysis was designed to remedy this inconsistency
and to give additional interpretability to the projected data. In the simplest case, it
is assumed that the leading eigenvector v1 of the population covariance matrix �

belongs to the k-sparse unit Euclidean sphere in R
p , given by

B0(k) :=
{
u = (u1, . . . , up)� ∈ R

p :
p∑

j=1

1{uj �=0} ≤ k,‖u‖2 = 1

}
.(1)

A remarkable number of recent papers have proposed estimators of v1 in this set-
ting, including Jolliffe, Trendafilov and Uddin (2003), Zou, Hastie and Tibshirani
(2006), d’Aspremont et al. (2007), Johnstone and Lu (2009), Witten, Tibshirani
and Hastie (2009), Journée et al. (2010), Birnbaum et al. (2013), Cai, Ma and Wu
(2013), Ma (2013), Shen, Shen and Marron (2013) and Vu and Lei (2013).

Sparse PCA methods have gained high popularity in many diverse applied fields
where high-dimensional datasets are routinely handled. These include computer
vision for online visual tracking [Wang, Lu and Yang (2013)] and pattern recog-
nition [Naikal, Yang and Sastry (2011)], signal processing for image compression
[Majumdar (2009)] and electrocardiography feature extraction [Johnstone and Lu
(2009)], and biomedical research for gene expression analysis [Chan and Hall
(2010), Chun and Sündüz (2009), Parkhomenko, Tritchler and Beyene (2009),
Zou, Hastie and Tibshirani (2006)], RNA-seq classification [Tan, Petersen and
Witten (2014)] and metabolomics studies [Allen and Maletić-Savatić (2011)]. In
these applications, sparse PCA is employed to identify a small number of inter-
pretable directions that represent the data succinctly, typically as the first stage of
a more involved procedure such as classification, clustering or regression.

The success of the ultimate inferential methods in the types of application de-
scribed above depends critically on how well the particular sparse PCA technique
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involved identifies the relevant meaningful directions in the underlying population.
It therefore becomes important to understand the ways in which our ability to es-
timate these directions from data depends on the characteristics of the problem,
including the sample size, dimensionality, sparsity level and signal-to-noise ratio.
Such results form a key component of any theoretical analysis of an inference
problem in which sparse PCA is employed as a first step.

In terms of the theoretical properties of existing methods for sparse PCA, Ma
(2013) was able to show that his estimator attains the minimax rate of convergence
over a certain Gaussian class of distributions, provided that k is treated as a fixed
constant. Both Cai, Ma and Wu (2013) and Vu and Lei (2013) also study minimax
properties, but treat k as a parameter of the problem that may vary with the sample
size n. In particular, for a certain class Pp(n, k) of sub-Gaussian distributions and
in a particular asymptotic regime, Vu and Lei (2013) show4 that

inf
v̂

sup
P∈Pp(n,k)

EP

{
1 − (

v�
1 v̂

)2} 
 k logp

n
,

where the infimum is taken over all estimators v̂; see also Birnbaum et al. (2013).
Moreover, they show that the minimax rate is attained by a leading k-sparse eigen-
vector of �̂, given by

v̂k
max ∈ argmax

u∈B0(k)

u��̂u.(2)

The papers cited above would appear to settle the question of sparse principal
component estimation (at least in a sub-Gaussian setting) from the perspective of
statistical theory. However, there remains an unsettling feature, namely that nei-
ther the estimator of Cai, Ma and Wu (2013), nor that of Vu and Lei (2013), is
computable in polynomial time.5 For instance, computing the estimator (2) is an
NP-hard problem, and the naive algorithm that searches through all

(p
k

)
of the k×k

principal submatrices of �̂ quickly becomes infeasible for even moderately large
p and k.

Given that sparse PCA methods are typically applied to massive high-dimen-
sional datasets, it is crucial to understand the rates that can be achieved using only
computationally efficient procedures. Specifically, in this paper, we address the
question of whether it is possible to find an estimator of v1 that is computable in
(randomised) polynomial time, and that attains the minimax optimal rate of con-
vergence when the sparsity of v1 is allowed to vary with the sample size. Some
progress in a related direction was made by Berthet and Rigollet (2013a, 2013b),

4Here and below, an 
 bn means 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| < ∞.
5Since formal definitions of such notions from computational complexity theory may be unfamiliar

to many statisticians, and to keep the paper as self-contained as possible, we provide a brief intro-
duction to this topic in Section 2 of the online supplementary material [Wang, Berthet and Samworth
(2015)].
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who considered the problem of testing the null hypothesis H0 : � = Ip against the
alternative H1 : v��v ≥ 1+θ for some v ∈ B0(k) and θ > 0. Of interest here is the
minimal level θ = θn,p,k that ensures small asymptotic testing error. Under a hy-
pothesis on the computational intractability of a certain well-known problem from
theoretical computer science (the “Planted Clique” detection problem), Berthet
and Rigollet showed that for certain classes of distributions, there is a gap between
the minimal θ -level permitting successful detection with a randomised polynomial
time test, and the corresponding θ -level when arbitrary tests are allowed.

The particular classes of distributions considered in Berthet and Rigollet
(2013a, 2013b) were highly tailored to the testing problem, and do not provide
sufficient structure to study principal component estimation. The thesis of this pa-
per, however, is that from the point of view of both theory and applications, it is the
estimation of sparse principal components, rather than testing for the existence of a
distinguished direction, that is the more natural and fundamental (as well as more
challenging) problem. Indeed, we observe subtle phase transition phenomena that
are absent from the hypothesis testing problem; see Section 4.4 for further details.
It is worth noting that different results for statistical and computational trade-offs
for estimation and testing were also observed in the context of k-SAT formulas in
Feldman, Perkins and Vempala (2015) and Berthet (2015), respectively.

Our first contribution, in Section 2, is to introduce a new Restricted Covari-
ance Concentration (RCC) condition that underpins the classes of distributions
Pp(n, k, θ) over which we perform the statistical and computational analyses
[see (4) for a precise definition]. The RCC condition is satisfied by sub-Gaussian
distributions, and moreover has the advantage of being more robust to certain mix-
ture contaminations that turn out to be of key importance in the statistical analysis
under the computational constraint. We show that subject to mild restrictions on
the parameter values,

inf
v̂

sup
P∈Pp(n,k,θ)

EP L(v̂, v1) 

√

k logp

nθ2 ,

where L(u, v) := {1 − (u�v)2}1/2, and where no restrictions are placed on the
class of estimators v̂. By contrast, in Section 3, we show that a variant v̂SDP

of the semidefinite relaxation estimator of d’Aspremont et al. (2007) and Bach,
Ahipaşaoǧlu and d’Aspremont (2010), which is computable in polynomial time,
satisfies

sup
P∈Pp(n,k,θ)

EP L
(
v̂SDP, v1

) ≤ (16
√

2 + 2)

√
k2 logp

nθ2 .

Our main result, in Section 4, is that, under a much weaker planted clique hypothe-
sis than that in Berthet and Rigollet (2013a, 2013b), for any α ∈ (0,1), there exists
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a moderate effective sample size asymptotic regime in which every sequence (v̂(n))

of randomised polynomial time estimators satisfies√
nθ2

k1+α logp
sup

P∈Pp(n,k,θ)

EP L
(
v̂(n), v1

) → ∞.

This result shows that there is a fundamental trade-off between statistical and com-
putational efficiency in the estimation of sparse principal components, and that
there is in general no consistent sequence of randomised polynomial time estima-
tors in this regime. Interestingly, in a high effective sample size regime, where even
randomised polynomial time estimators can be consistent, we are able to show in
Theorem 7 that under additional distributional assumptions, a modified (but still
polynomial time) version of v̂SDP attains the minimax optimal rate. Thus, the trade-
off disappears for a sufficiently high effective sample size, at least over a subset of
the parameter space.

Statistical and computational trade-offs have also recently been studied in the
context of convex relaxation algorithms [Chandrasekaran and Jordan (2013)], sub-
matrix signal detection [Chen and Xu (2014), Ma and Wu (2015)], sparse linear
regression [Zhang, Wainwright and Jordan (2014)], community detection [Hajek,
Wu and Xu (2014)] and sparse canonical correlation analysis [Gao, Ma and Zhou
(2014)]. Given the importance of computationally feasible algorithms with good
statistical performance in today’s era of big data, it seems clear that understanding
the extent of this phenomenon in different settings will represent a key challenge
for theoreticians in the coming years.

Proofs of our main results are given in the Appendix, while several ancil-
lary results are deferred to the online supplementary material [Wang, Berthet
and Samworth (2015)]. We end this section by introducing some notation
used throughout the paper. For a vector u = (u1, . . . , uM)� ∈ R

M , a matrix
A = (Aij ) ∈ R

M×N and for q ∈ [1,∞), we write ‖u‖q := (
∑M

i=1 |ui |q)1/q and
‖A‖q := (

∑M
i=1

∑N
j=1 |Aij |q)1/q for their (entrywise) �q -norms. We also write

‖u‖0 := ∑M
i=1 1{ui �=0}, supp(u) := {i : ui �= 0}, ‖A‖0 := ∑M

i=1
∑N

j=1 1{Aij �=0} and
supp(A) := {(i, j) : Aij �= 0}. For S ⊆ {1, . . . ,M} and T ⊆ {1, . . . ,N}, we write
uS := (ui : i ∈ S)� and write MS,T for the |S| × |T | submatrix of M obtained by
extracting the rows and columns with indices in S and T , respectively. For positive
sequences (an) and (bn), we write an � bn to mean an/bn → 0.

2. Restricted covariance concentration and minimax rate of estimation.
Let p ≥ 2 and let P denote the class of probability distributions P on R

p with∫
Rp x dP (x) = 0 and such that the entries of �(P ) := ∫

Rp xx� dP (x) are finite.
For P ∈ P , write λ1(P ), . . . , λp(P ) for the eigenvalues of �(P ), arranged in de-
creasing order. When λ1(P ) − λ2(P ) > 0, the first principal component v1(P ),
that is, a unit-length eigenvector of � corresponding to the eigenvalue λ1(P ),
is well defined up to sign. In some places below, and where it is clear from the
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context, we suppress the dependence of these quantities on P , or write the eigen-
values and eigenvectors as λ1(�), . . . , λp(�) and v1(�), . . . , vp(�), respectively.
Let X1, . . . ,Xn be independent and identically distributed random vectors with
distribution P , and form the n × p matrix X := (X1, . . . ,Xn)

�. An estimator of
v1 is a measurable function from R

n×p to R
p , and we write Vn,p for the class of

all such estimators.
Given unit vectors u, v ∈ R

p , let �(u,v) := cos−1(|u�v|) denote the acute an-
gle between u and v, and define the loss function

L(u, v) := sin�(u,v) = {
1 − (

u�v
)2}1/2 = 1√

2

∥∥uu� − vv�∥∥
2.

Note that L(·, ·) is invariant to sign changes of either of its arguments. The di-
rectional variance of P along a unit vector u ∈ R

p is defined to be V (u) :=
E{(u�X1)

2} = u��u. Its empirical counterpart is V̂ (u) := n−1 ∑n
i=1(u

�Xi)
2 =

u��̂u, where �̂ := n−1 ∑n
i=1 XiX

�
i denotes the sample covariance matrix.

Recall the definition of the k-sparse unit ball B0(k) from (1). Given � ∈
{1, . . . , p} and C ∈ (0,∞), we say P satisfies a Restricted Covariance Con-
centration (RCC) condition with parameters p,n, � and C, and write P ∈
RCCp(n, �,C), if

P

{
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ C max

(√
� log(p/δ)

n
,
� log(p/δ)

n

)}
≤ δ(3)

for all δ > 0. It is also convenient to define

RCCp(�,C) :=
∞⋂

n=1

RCCp(n, �,C) and RCCp(C) :=
p⋂

�=1

RCCp(�,C).

The RCC conditions amount to uniform Bernstein-type concentration properties
of the directional variance around its expectation along all sparse directions. This
condition turns out to be particularly convenient in the study of convergence rates
in sparse PCA, and moreover, as we show in Proposition 1 below, sub-Gaussian
distributions satisfy an RCC condition for all sample sizes n and all sparsity lev-
els �. Recall that a mean-zero distribution Q on R

p is sub-Gaussian with parame-
ter6 σ 2 ∈ (0,∞), written

Q ∈ sub-Gaussianp

(
σ 2)

,

if whenever Y ∼ Q, we have E(eu�Y ) ≤ eσ 2‖u‖2/2 for all u ∈R
p .

6Note that some authors say that distributions satisfying this condition are sub-Gaussian with pa-

rameter σ , rather than σ 2.
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PROPOSITION 1. (i) For every σ > 0, we have

sub-Gaussianp

(
σ 2) ⊆ RCCp

(
16σ 2

(
1 + 9

logp

))
.

(ii) In the special case where P = Np(0,�), we have P ∈ RCCp(8λ1(P )(1 +
9

logp
)).

Our convergence rate results for sparse principal component estimation will be
proved over the following classes of distributions. For θ > 0, let

Pp(n, k, θ) := {
P ∈ RCCp(n,2,1) ∩ RCCp(n,2k,1) :

(4)
v1(P ) ∈ B0(k), λ1(P ) − λ2(P ) ≥ θ

}
.

Observe that RCC classes have the scaling property that if the distribution of a
random vector Y belongs to RCCp(n, �,C) and if r > 0, then the distribution of
rY belongs to RCCp(n, �, r2C). It is therefore convenient to fix C = 1 in both
RCC classes in (4), so that θ becomes a measure of the signal-to-noise level.

For a symmetric A ∈ R
p×p , define v̂k

max(A) := sargmaxu∈B0(k) u
�Au to be the

k-sparse maximum eigenvector of A, where sargmax denotes the smallest element
of the argmax in the lexicographic ordering. [This choice ensures that v̂k

max(A) is a
measurable function of A.] Theorem 2 below gives a finite-sample minimax upper
bound for estimating v1(P ) over Pp(n, k, θ). For similar bounds over Gaussian
or sub-Gaussian classes, see Cai, Ma and Wu (2013) and Vu and Lei (2013), who
consider the more general problem of principal subspace estimation. As well as
working with a larger class of distributions, our different proof techniques facilitate
an explicit constant.

THEOREM 2. For 2k logp ≤ n, the k-sparse empirical maximum eigenvector,
v̂k

max(�̂), satisfies

sup
P∈Pp(n,k,θ)

EP L
(
v̂k

max(�̂), v1(P )
) ≤ 2

√
2
(

1 + 1

logp

)√
k logp

nθ2 ≤ 7

√
k logp

nθ2 .

A matching minimax lower bound of the same order in all parameters k,p,n

and θ is given below. The proof techniques are adapted from Vu and Lei (2013).

THEOREM 3. Suppose that 7 ≤ k ≤ p1/2 and 0 < θ ≤ 1
16(1+9/ logp)

. Then

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EP L
(
v̂, v1(P )

) ≥ min
{

1

1660

√
k logp

nθ2 ,
5

18
√

3

}
.

We remark that the conditions in the statement of Theorem 3 can be strength-
ened or weakened, with a corresponding weakening or strengthening of the con-
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stants in the bound. For instance, a bound of the same order in k,p,n and θ could
be obtained assuming only that k ≤ p1−δ for some δ > 0. The upper bound on θ is
also not particularly restrictive. For example, if P = Np(0, σ 2Ip + θe1e

�
1 ), where

e1 is the first standard basis vector in R
p , then it can be shown that the condition

P ∈ Pp(n, k, θ) requires that θ ≤ 1 − σ 2.

3. Computationally efficient estimation. As was mentioned in the Introduc-
tion, the trouble with the estimator v̂k

max(�̂) of Section 2, as well as the estimator
of Cai, Ma and Wu (2013), is that there are no known polynomial time algorithms
for their computation. In this section, we therefore study the (polynomial time)
semidefinite relaxation estimator v̂SDP defined by Algorithm 1 below. This esti-
mator is a variant of one proposed by d’Aspremont et al. (2007), whose support
recovery properties were studied for a particular class of Gaussian distributions
and a known sparsity level by Amini and Wainwright (2009).

To motivate the main step (Step 2) of Algorithm 1, it is convenient to let M
denote the class of p × p nonnegative definite real, symmetric matrices, and
let M1 := {M ∈ M : tr(M) = 1}. Let M1,1(k

2) := {M ∈ M1 : rank(M) = 1,

‖M‖0 = k2} and observe that

max
u∈B0(k)

u��̂u = max
u∈B0(k)

tr
(
�̂uu�) = max

M∈M1,1(k
2)

tr(�̂M).

In the final expression, the rank and sparsity constraints are nonconvex. We there-
fore adopt the standard semidefinite relaxation approach of dropping the rank con-
straint and replacing the sparsity (�0) constraint with an �1 penalty to obtain the
convex optimisation problem

max
M∈M1

{
tr(�̂M) − λ‖M‖1

}
.(5)

We now discuss the complexity of computing v̂SDP in detail. One possible
way of implementing Step 2 is to use a generic interior-point method. However,

Algorithm 1: Pseudo-code for computing the semidefinite relaxation estima-
tor v̂SDP

Input: X = (X1, . . . ,Xn)
� ∈R

n×p , λ > 0, ε > 0
begin

Step 1: Set �̂ ← n−1X�X.
Step 2: For f (M) := tr(�̂M) − λ‖M‖1, let M̂ε be an ε-maximiser of f

in M1. In other words, M̂ε satisfies f (M̂ε) ≥ maxM∈M1 f (M) − ε.
Step 3: Let v̂SDP := v̂SDP

λ,ε ∈ argmaxu:‖u‖2=1 u�M̂εu.
end
Output: v̂SDP
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Algorithm 2: A possible implementation of Step 2 of Algorithm 1

Input: �̂ ∈ M, λ > 0, ε > 0.
begin

Set M0 ← Ip/p, U0 ← 0 ∈ R
p×p and N ← �λ2p2+1√

2ε
�.

for t ← 1 to N do
U ′

t ← �U (Ut−1 − 1√
2
Mt−1),M

′
t ← �M1(Mt−1 + 1√

2
�̂ + 1√

2
Ut−1).

Ut ← �U (Ut−1 − 1√
2
M ′

t ),Mt ← �M1(Mt−1 + 1√
2
�̂ + 1√

2
U ′

t ).

end
Set M̂ε ← 1

N

∑N
t=1 M ′

t .
end
Output: M̂ε

as shown in Nesterov (2005), Nemirovski (2004) and Bach, Ahipaşaoǧlu and
d’Aspremont (2010), certain first-order algorithms [i.e., methods requiring O(1/ε)

steps to find a feasible point achieving an ε-approximation of the optimal objective
function value] can significantly outperform such generic interior-point solvers.
The key idea in both Nesterov (2005) and Nemirovski (2004) is that the optimisa-
tion problem in Step 2 can be rewritten in a saddlepoint formulation:

max
M∈M1

tr(�̂M) − λ‖M‖1 = max
M∈M1

min
U∈U tr

(
(�̂ + U)M

)
,

where U := {U ∈ R
p×p : U� = U,‖U‖∞ ≤ λ}. The fact that tr((�̂ + U)M) is

linear in both M and U makes the problem amenable to proximal methods. In
Algorithm 2 above, we state a possible implementation of Step 2 of Algorithm 1,
derived from the “basic implementation” in Nemirovski (2004). In the algorithm,
the ‖ · ‖2-norm projection �U (A) of a symmetric matrix A = (Aij ) ∈ R

p×p onto
U is given by (

�U (A)
)
ij := sign(Aij )min

(|Aij |, λ)
.

For the projection �M1(A), first decompose A =: PDP� for some orthogonal P

and diagonal D = diag(d), where d = (d1, . . . , dp)� ∈ R
p . Now let �W(d) be the

projection image of d on the unit (p − 1)-simplex W := {(w1, . . . ,wp) : wj ≥ 0,∑p
j=1 wj = 1}. Finally, transform back to obtain �M1(A) := P diag(�W(d))P �.

The fact that Algorithm 2 outputs an ε-maximiser of the optimisation problem
in Step 2 of Algorithm 1 follows from Nemirovski [(2004), Theorem 3.2], which
implies in our particular case that after N iterations,

max
M∈M1

min
U∈U tr

(
(�̂ + U)M

) − min
U∈U tr

(
(�̂ + U)M̂ε) ≤ λ2p2 + 1√

2N
.
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In Algorithm 1, Step 1 takes O(np2) floating point operations; Step 3 takes
O(p3) operations in the worst case, though other methods such as the Lanczos
method [Golub and Van Loan (1996), Lanczos (1950)] require only O(p2) oper-
ations under certain conditions. Our particular implementation (Algorithm 2) for

Step 2 requires O(
λ2p2+1

ε
) iterations in the worst case, though this number may

often be considerably reduced by terminating the for loop if the primal-dual gap

λ1(Ût + �̂) − {
tr(M̂t �̂) − λ‖M̂t‖1

}
falls below ε, where Ût := t−1 ∑t

s=1 U ′
s and M̂t := t−1 ∑t

s=1 M ′
s . The most costly

step within the for loop is the eigen-decomposition used to compute the projec-

tion �M1 , which takes O(p3) operations. Taking λ := 4
√

logp
n

and ε := logp
4n

as in Theorem 5 below, we find an overall complexity for the algorithm of

O(max(p5,
np3

logp
)) operations in the worst case.

We now turn to the theoretical properties of the estimator v̂SDP computed using
Algorithm 1. Lemma 4 below is stated in a general, deterministic fashion, but will
be used in Theorem 5 below to bound the loss incurred by the estimator on the
event that the sample and population covariance matrices are close in �∞-norm.
See also Vu et al. [(2013), Theorem 3.1] for a closely related result in the context
of a projection matrix estimation problem. Recall that M denotes the class of
p × p nonnegative definite real, symmetric matrices.

LEMMA 4. Let � ∈ M be such that θ := λ1(�) − λ2(�) > 0. Let X ∈ R
n×p

and �̂ := n−1X�X. For arbitrary λ > 0 and ε > 0, if ‖�̂ − �‖∞ ≤ λ, then the
semidefinite relaxation estimator v̂SDP in Algorithm 1 with inputs X, λ, ε satisfies

L
(
v̂SDP, v1(�)

) ≤ 4
√

2λk

θ
+ 2

√
ε

θ
.

Theorem 5 below describes the statistical properties of the estimator v̂SDP over
Pp(n, k, θ) classes. It reveals in particular that we incur a loss of statistical effi-
ciency of a factor of

√
k compared with the minimax upper bound in Theorem 2 in

Section 2 above. As well as applying Lemma 4 on the event {‖�̂ −�‖∞ ≤ λ}, the
proof relies on Lemma 5 in the online supplementary material [Wang, Berthet and
Samworth (2015)], which relates the event {‖�̂ − �‖∞ > λ} to the RCCp(n,2,1)

condition. Indeed, this explains why we incorporated this condition into the defi-
nition of the Pp(n, k, θ) classes.

THEOREM 5. For an arbitrary P ∈ Pp(n, k, θ) and X1, . . . ,Xn
i.i.d.∼ P , we

write v̂SDP(X) for the output of Algorithm 1 with input X := (X1, . . . ,Xn)
�, λ :=

4
√

logp
n

and ε := logp
4n

. If 4 logp ≤ n ≤ k2p2θ−2 logp and θ ∈ (0, k], then

sup
P∈Pp(n,k,θ)

EP L
(
v̂SDP(X), v1(P )

) ≤ min
{
(16

√
2 + 2)

√
k2 logp

nθ2 ,1
}
.(6)
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We remark that v̂SDP has the attractive property of being fully adaptive in the
sense that it can be computed without knowledge of the sparsity level k. On the
other hand, v̂SDP is not necessarily k-sparse. If a specific sparsity level is desired
in a particular application, Algorithm 1 can be modified to obtain a (nonadaptive)
k-sparse estimator having similar estimation risk. Specifically, we can find

v̂SDP
0 ∈ argmin

u∈B0(k)

L
(
v̂SDP, u

)
.

Since L(v̂SDP, u)2 = 1 − (u�v̂SDP)2, we can compute v̂SDP
0 by setting all but the

top k coordinates of v̂SDP in absolute value to zero and renormalising the vector. In
particular, v̂SDP

0 is computable in polynomial time. We deduce that under the same
conditions as in Theorem 5, for any P ∈ Pp(n, k, θ),

EL
(
v̂SDP

0 , v1
)

≤ E
[{

L
(
v̂SDP

0 , v̂SDP) + L
(
v̂SDP, v1

)}
1{‖�̂−�‖∞≤λ}

] + P
(‖�̂ − �‖∞ > λ

)
≤ 2E

{
L

(
v̂SDP

0 , v1
)
1{‖�̂−�‖∞≤λ}

} + P
(‖�̂ − �‖∞ > λ

)

≤ (32
√

2 + 3)

√
k2 logp

nθ2 ,

where the final inequality follows from the proof of Theorem 5.

4. Computational lower bounds in sparse principal component estimation.
Theorems 5 and 2 reveal a gap between the provable performance of our semidef-
inite relaxation estimator v̂SDP and the minimax optimal rate. It is natural to ask
whether there exists a computationally efficient algorithm that achieves the statis-
tically optimal rate of convergence. In fact, as we will see in Theorem 6 below,
the effective sample size region over which v̂SDP is consistent is essentially tight
among the class of all randomised polynomial time algorithms.7 Indeed, any ran-
domised polynomial time algorithm with a faster rate of convergence could other-
wise be adapted to solve instances of the planted clique problem that are believed to
be hard; see Section 4.1 below for formal definitions and discussion. In this sense,
the extra factor of

√
k is an intrinsic price in statistical efficiency that we have to

pay for computational efficiency, and the estimator v̂SDP studied in Section 3 has
essentially the best possible rate of convergence among computable estimators.

7In this section, terms from computational complexity theory defined Section 2 of the online sup-
plementary material [Wang, Berthet and Samworth (2015)] are written in italics at their first occur-
rence.
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4.1. The planted clique problem. A graph G := (V (G),E(G)) is an ordered
pair in which V (G) is a countable set, and E(G) is a subset of {{x, y} : x, y ∈
V (G), x �= y}. For x, y ∈ V (G), we say x and y are adjacent, and write x ∼ y, if
{x, y} ∈ E(G). A clique C is a subset of V (G) such that {x, y} ∈ E(G) for all dis-
tinct x, y ∈ C. The problem of finding a clique of maximum size in a given graph
G is known to be NP-complete [Karp (1972)]. It is therefore natural to consider
randomly generated input graphs with a clique “planted” in, where the signal is
much less confounded by the noise. Such problems were first suggested by Jerrum
(1992) and Kučera (1995) as a potentially easier variant of the classical clique
problem.

Let Gm denote the collection of all graphs with m vertices. Define Gm to be the
distribution on Gm associated with the standard Erdős–Rényi random graph. In
other words, under Gm, each pair of vertices is adjacent independently with proba-
bility 1/2. For any κ ∈ {1, . . . ,m}, let Gm,κ be a distribution on Gm constructed by
first picking κ distinct vertices uniformly at random and connecting all edges (the
“planted clique”), then joining each remaining pair of distinct vertices by an edge
independently with probability 1/2. The planted clique problem has input graphs
randomly sampled from the distribution Gm,κ . Due to the random nature of the
problem, the goal of the planted clique problem is to find (possibly randomised)
algorithms that can locate a maximum clique Km with high probability.

It is well known that, for a standard Erdős–Rényi graph, |Km|
2 log2 m

a.s.→ 1 [e.g.,
Grimmett and McDiarmid (1975)]. In fact, if κ = κm is such that

lim inf
m→∞

κ

2 log2 m
> 1,

it can be shown that the planted clique is asymptotically almost surely also the
unique maximum clique in the input graph. As observed in Kučera (1995), there
exists C > 0 such that, if κ > C

√
m logm, then asymptotically almost surely, ver-

tices in the planted clique have larger degrees than all other vertices, in which case
they can be located in O(m2) operations. Alon, Krivelevich and Sudakov (1998)
improved the above result by exhibiting a spectral method that, given any c > 0,
identifies planted cliques of size κ ≥ c

√
m asymptotically almost surely.

Although several other polynomial time algorithms have subsequently been
discovered for the κ ≥ c

√
m case [e.g., Ames and Vavasis (2011), Feige and

Krauthgamer (2000), Feige and Ron (2010)], there is no known randomised poly-
nomial time algorithm that can detect below this threshold. Jerrum (1992) hinted
at the hardness of this problem by showing that a specific Markov chain approach
fails to work when κ = O(m1/2−δ) for some δ > 0. Feige and Krauthgamer (2003)
showed that Lovàcz–Schrijiver semidefinite programming relaxation methods also
fail in this regime. Feldman et al. (2013) recently presented further evidence of the
hardness of this problem by showing that a broad class of algorithms, which they
refer to as “statistical algorithms”, cannot solve the planted clique problem with
κ = O(m1/2−δ) in randomised polynomial time, for any δ > 0. It is now widely
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accepted in theoretical computer science that the planted clique problem is hard,
in the sense that the following assumption holds with τ = 0:

(A1)(τ ) For any sequence κ = κm such that κ ≤ mβ for some 0 < β < 1/2 −
τ , there is no randomised polynomial time algorithm that can correctly
identify the planted clique with probability tending to 1 as m → ∞.

We state the assumption in terms of a general parameter τ ∈ [0,1/2), because it
will turn out below that even if only (A1)(τ ) holds for some τ ∈ (0,1/6), there
are still regimes of (n,p, k, θ) in which no randomised polynomial time algorithm
can attain the minimax optimal rate.

Researchers have used the hardness of the planted clique problem as an assump-
tion to prove various impossibility results in other problems. Examples include
cryptographic applications [Applebaum, Barak and Wigderson (2010), Juels and
Peinado (2000)], testing k-wise independence [Alon et al. (2007)] and approxi-
mating Nash equilibria [Hazan and Krauthgamer (2011)]. Recent works by Berthet
and Rigollet (2013a, 2013b) and Ma and Wu (2015) used a stronger hypothesis on
the hardness of detecting the presence of a planted clique to establish computa-
tional lower bounds in sparse principal component detection and sparse submatrix
detection problems, respectively. Our assumption (A1)(0) assumes only the com-
putational intractability of identifying the entire planted clique, so in particular, is
implied by hypothesis APC of Berthet and Rigollet (2013b) and Hypothesis 1 of
Ma and Wu (2015).

4.2. Computational lower bounds. In this section, we use a reduction argu-
ment to show that, under assumption (A1)(τ ), it is impossible to achieve the sta-
tistically optimal rate of sparse principal component estimation using randomised
polynomial time algorithms. For ρ ∈ N, and for x ∈ R, we let [x]ρ denote x in its
binary representation, rounded to ρ significant figures. Let [R]ρ := {[x]ρ : x ∈
R}. We say (v̂(n)) is a sequence of randomised polynomial time estimators of
v1 ∈ R

pn if v̂(n) is a measurable function from R
n×pn to R

pn and if, for every
ρ ∈ N, there exists a randomised polynomial time algorithm Mpr such that for
any x ∈ ([R]ρ)n×pn we have [v̂(n)(x)]ρ = [Mpr(x)]ρ . The sequence of semidefinite
programming estimators (v̂SDP) defined in Section 3 is an example of a sequence
of randomised polynomial time estimators of v1(P ).

THEOREM 6. Fix τ ∈ [0,1/6), assume (A1)(τ ), and let α ∈ (0, 1−6τ
1−2τ

). For
any n ∈ N, let (p, k, θ) = (pn, kn, θn) be parameters indexed by n such that
k = O(p1/2−τ−δ) for some δ ∈ (0,1/2 − τ), n = o(p logp) and θ ≤ k2/(1000p).
Suppose further that

k1+α logp

nθ2 → 0
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as n → ∞. Let X be an n × p matrix with independent rows, each having distri-
bution P . Then every sequence (v̂(n)) of randomised polynomial time estimators
of v1(P ) satisfies√

nθ2

k1+α logp
sup

P∈Pp(n,k,θ)

EP L
(
v̂(n)(X), v1(P )

) → ∞

as n → ∞.

We note that the choices of parameters in the theorem imply that

lim inf
n→∞

k2 logp

nθ2 ≥ lim inf
n→∞

p

k2 = ∞.(7)

As remarked in Section 4.1 above, the main interest in this theorem comes from
the case τ = 0. Here, our result reveals not only that no randomised polynomial
time algorithm can attain the minimax optimal rate, but also that in the effective
sample size regime described by (7), and provided the other side conditions of The-
orem 6 hold, there is in general no consistent sequence of randomised polynomial
time estimators. This is in contrast to Theorem 2, where we saw that consistent
estimation with a computationally inefficient procedure is possible in the asymp-
totic regime (7). A further consequence of Theorem 6 is that, since any sequence
(p, k, θ) = (pn, kn, θn) satisfying the conditions of Theorem 6 also satisfies the
conditions of Theorem 5 for large n, the conclusion of Theorem 5 cannot be im-
proved in terms of the exponent of k (at least, not uniformly over the parameter
range given there). As mentioned in the Introduction, for a sufficiently large effec-
tive sample size, where even randomised polynomial time estimators can be con-
sistent, the statistical and computational trade-off revealed by Theorems 2 and 6
may disappear. See Section 4.4 below for further details, and Gao, Ma and Zhou
(2014) for recent extensions of these results to different classes of distributions.

Even though assumption (A1)(0) is widely believed, we also present results
under the weaker family of conditions (A1)(τ ) for τ ∈ (0,1/6) to show that a
statistical and computational trade-off still remains for certain parameter regimes
even in these settings. The reason for assuming τ < 1/6 is to guarantee that there
is a regime of parameters (n,p, k, θ) satisfying the conditions of the theorem.
Indeed, if τ ∈ [0,1/6) and α ∈ (0, 1−6τ

1−2τ
), we can set p = n, k = n1/2−τ−δ for

some δ ∈ (0, 1
2 − τ − 1

3−α
), θ = k2/(1000n), and in that case,

k1+α logp

nθ2 = 106n logn

k3−α
→ 0,

as required.
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4.3. Sketch of the proof of Theorem 6. The proof of Theorem 6 relies on a
randomised polynomial time reduction from the planted clique problem to the
sparse principal component estimation problem. The reduction is adapted from
the “bottom-left transformation” of Berthet and Rigollet (2013b), and requires a
rather different and delicate analysis.

In greater detail, suppose for a contradiction that we were given a ran-
domised polynomial time algorithm v̂ for the sparse PCA problem with a rate

supP∈Pp(n,k,θ)EP L(v̂, v1) ≤
√

k1+α logp

nθ2 for some α < 1. Set m ≈ p logp and κ ≈
k logp, so we are in the regime where (A1)(τ ) holds. Given any graph G ∼ Gm,κ

with planted clique K ⊆ V (G), we draw n + p vertices u1, . . . , un,w1, . . . ,wp

uniformly at random without replacement from V (G). On average there are about
κ/ logκ clique vertices in {w1, . . . ,wp}, and our initial aim is to identify a large
fraction of these vertices. To do this, we form an n × p matrix A := (1ui∼wj

)i,j ,
which is an off-diagonal block of the adjacency matrix of G. We then replace
each 0 in A with −1 and flip the signs of each row independently with proba-
bility 1/2 to obtain a new matrix X. Each component of the ith row of X has a
marginal Rademacher distribution, but if ui is a clique vertex, then the compo-
nents {j : wj ∈ K} are perfectly correlated. Writing γ ′ := (1{wj∈K})j=1,...,p , the
leading eigenvector of E{X�X/n|γ ′} is proportional to γ ′, which suggests that a
spectral method might be able to find {w1, . . . ,wp}∩K with high probability. Un-
fortunately, the joint distribution of the rows of X is difficult to deal with directly,
but since n and p are small relative to m, we can approximate γ ′ by a random
vector γ having independent Bern(κ/m) components. We can then approximate
X by a matrix Y, whose rows are independent conditional on γ and have the same
marginal distribution conditional on γ = g as the rows of X conditional on γ ′ = g.

It turns out that the distribution of an appropriately scaled version of an arbi-
trary row of Y, conditional on γ = g, belongs to Pp(n, k, θ) for g belonging to
a set of high probability. We could therefore apply our hypothetical randomised
polynomial time sparse PCA algorithm to the scaled version of the matrix Y to
find a good estimate of γ , and since γ is close to γ ′, this accomplishes our initial
goal. With high probability, the remaining vertices in the planted clique are those
having high connectivity to the identified clique vertices in {w1, . . . ,wp}, which
contradicts the hypothesis (A1)(τ ).

4.4. Computationally efficient optimal estimation on subparameter spaces in
the high effective sample size regime. Theorems 2, 3, 5 and 6 enable us to sum-
marise, in Table 1 below, our knowledge of the best possible rate of estimation in
different asymptotic regimes, both for arbitrary statistical procedures and for those
that are computable in randomised polynomial time. (For ease of exposition, we
omit here the additional, relatively mild, side constraints required for the above
theorems to hold.) The fact that Theorem 6 is primarily concerned with the setting

in which k2 logp

nθ2 → ∞ raises the question of whether computationally efficient
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TABLE 1
Rate of convergence of best estimator in different asymptotic regimes

n � k logp

θ2
k logp

θ2 � n � k2 logp

θ2 n � k2 logp

θ2

All estimators 
 1 

√

k logp

nθ2 

√

k logp

nθ2

Polynomial time estimators 
 1 
 1 �
√

k2 logp

nθ2

procedures could attain a faster rate of convergence in the high effective sample

size regime where n � k2 logp

θ2 .
The purpose of this section is to extend the ideas of Amini and Wainwright

(2009) to show that, indeed, a variant of the estimator v̂SDP introduced in Sec-
tion 3 attains the minimax optimal rate of convergence in this asymptotic regime,
at least over a subclass of the distributions in Pp(n, k, θ). Ma (2013) and Yuan and
Zhang (2013) show similar results for an iterative thresholding algorithm for other
subclasses of Pp(n, k, θ) under an extra upper bound condition on λ2(P )/λ1(P );
see also Wang, Lu and Liu (2014) and Deshpande and Montanari (2014).

Let T denote the set of nonnegative definite matrices � ∈ R
p×p of the form

� = θv1v
�
1 +

(
Ik 0

0 �p−k

)
,

where v1 ∈R
p is a unit vector such that S := supp(v1) has cardinality k and where

�p−k ∈ R
(p−k)×(p−k) is nonnegative definite and satisfies λ1(�p−k) ≤ 1. [Here,

and in the proof of Theorem 7 below, the block matrix notation refers to the (S, S),
(S, Sc), (Sc, S) and (Sc, Sc) blocks.] We now define a subclass of distributions

P̃p(n, k, θ) :=
{
P ∈ Pp(n, k, θ) : �(P ) ∈ T ,min

j∈S
|v1,j | ≥ 16

√
k logp

nθ2

}
.

We remark that P̃p(n, k, θ) is nonempty only if

√
k2 logp

nθ2 ≤ 1
16 , since

1 = ‖v1,S‖2 ≥ k1/2 min
j∈S

|v1,j | ≥ 16

√
k2 logp

nθ2 .

This is one reason that the theorem below only holds in the high effective sample
size regime. Our variant of v̂SDP is described in Algorithm 3 below. We remark
that v̂MSDP, like v̂SDP, is computable in polynomial time.

THEOREM 7. Assume that X1, . . . ,Xn
i.i.d.∼ P for some P ∈ P̃p(n, k, θ).
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Algorithm 3: Pseudo-code for computing the modified semidefinite relaxation
estimator v̂MSDP

Input: X = (X1, . . . ,Xn)
� ∈ R

n×p , λ > 0, ε > 0, τ > 0.
begin

Step 1: Set �̂ ← n−1X�X.
Step 2: For f (M) := tr(�̂M) − λ‖M‖1, let M̂ε be an ε-maximiser of f

in M1.
Step 3: Let Ŝ ← {j ∈ {1, . . . , p} : M̂ε

jj ≥ τ } and v̂MSDP ∈R
p by

v̂MSDP
Ŝc

← 0 and v̂MSDP
Ŝ

∈ argmax
u∈R|Ŝ| u

��̂
ŜŜ

u.

end
Output: v̂MSDP

(a) Let λ := 4
√

logp
n

. The function f in Step 2 of Algorithm 3 has a maximiser

M̂ ∈ M1,1(k
2) satisfying sgn(M̂) = sgn(v1v

�
1 ).

(b) Assume that logp ≤ n, θ2 ≤ Bk1/2 for some B ≥ 1 and p ≥ θ(n/k)1/2.
We write v̂MSDP for the output of Algorithm 3 with input parameters X :=
(X1, . . . ,Xn)

� ∈ R
n×p , λ := 4

√
logp

n
, ε := (

logp
Bn

)5/2 and τ := (
logp
Bn

)2. Then

sup
P∈P̃p(n,k,θ)

EP

{
L

(
v̂MSDP, v1

)} ≤ 6

√
k logp

nθ2 .

Theorem 7 generalises Theorem 2 of Amini and Wainwright (2009) in two
ways: first, we relax a Gaussianity assumption to an RCC condition; second, the
leading eigenvector of the population covariance matrix is not required to have
nonzero entries equal to ±k−1/2.

5. Numerical experiments. In this section, we present the results of nu-
merical experiments to illustrate the results of Theorems 5, 6 and 7. We gen-
erate v1 ∈ R

p by setting v1,j := k−1/2 for j = 1, . . . , k, and v1,j := 0 for j =
k + 1, . . . , p. We then draw X1, . . . ,Xn

i.i.d.∼ Np(0,�), where � := Ip + θv1v
�
1

and θ = 1. We apply Algorithm 1 to the data matrix X := (X1, . . . ,Xn)
� and

report the average loss of the estimator v̂SDP over Nrep := 100 repetitions. For
p ∈ {50,100,150,200} and k = �p1/2�, we repeat the experiment for several
choices of n to explore the three parameter regimes described in Table 1. Since

the boundaries of these regimes are n 
 k logp

θ2 and n 
 k2 logp

θ2 , we plot the average
loss of the experiments against effective samples sizes

νlin := nθ2

k logp
and νquad := nθ2

k2 logp
.
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FIG. 1. Average loss of the estimator v̂SDP over Nrep = 100 repetitions against effective sample
sizes νquad (top left) and νlin (top right). The tail behaviour under both scalings is examined under
logarithmic scales in the bottom left and bottom right panels.

The results are shown in Figure 1. The top left panel of Figure 1 shows a sharp
phase transition for the average loss, as predicted by Theorems 5 and 6. The right
panels of Figure 1 suggest that in the high effective sample size regime, v̂SDP

converges at rate
√

k logp

nθ2 in this setting. This is the same rate as was proved for the

modified semidefinite relaxation estimator v̂MSDP in Theorem 7.
It is worth noting that it is relatively time-consuming to carry out the simula-

tions for the settings in the right-hand tails of the plots in Figure 1. These extreme
settings were chosen, however, to illustrate that the linear scaling is the correct one
in this tail. For example, when νquad = 200 and p = 200, we require n = 207,694,
and the pre-processing of the data matrix to obtain the sample covariance matrix
is the time-limiting step. In general, in our experience, the semi-definite program-
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ming algorithm is certainly not as fast as simpler methods such as diagonal thresh-
olding, but is not prohibitively slow.

APPENDIX A: PROOFS FROM SECTION 2

PROOF OF PROPOSITION 1. (i) Let P ∈ sub-Gaussianp(σ 2), and assume that

X1, . . . ,Xn
i.i.d.∼ P . Then, for any u ∈ B0(�) and t ≥ 0, we have

P
(
u�X1 ≥ t

) ≤ e−t2/σ 2
E

(
etu�X1/σ

2) ≤ e−t2/(2σ 2).

Similarly, P(−u�X1 ≥ t) ≤ e−t2/(2σ 2). Write μu := E{(u�X1)
2}; since

1 + 1
2μut

2 + o
(
t2) = E

(
etu�X1

) ≤ et2σ 2/2 = 1 + 1
2σ 2t2 + o

(
t2)

,

as t → 0, we deduce that μu ≤ σ 2. Now, for any integer m ≥ 2,

E
(∣∣(u�X1

)2 − μu

∣∣m)
≤

∫ ∞
0

P
{(

u�X1
)2 − μu ≥ t1/m}

dt + μm
u

≤ 2
∫ ∞

0
e−(t1/m+μu)/(2σ 2) dt + μm

u

= m!(2σ 2)m{
2e−μu/(2σ 2) + 1

m!
(

μu

2σ 2

)m}

≤ 2m!(2σ 2)m
,

where the final inequality follows because the function x �→ 2e−x + xm/m! is
decreasing on [0,1/2]. This calculation allows us to apply Bernstein’s inequality
[e.g., van de Geer (2000), Lemma 5.7, taking K = 2σ 2,R = 4σ 2 in her notation],
to deduce that for any s ≥ 0,

P
(∣∣V̂ (u) − V (u)

∣∣ ≥ s
) ≤ 2 exp

(
− ns2

4σ 2s + 32σ 4

)
.

It follows by Lemma 2 in Section 1 in the supplementary material [Wang, Berthet
and Samworth (2015)], taking ε = 1/4 in that result, that if η > 0 is such that
� log(p/η) ≤ n, then for C := 8σ 2, we have

P

(
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ 2C

√
� log(p/η)

n

)

≤ 2π�1/2
(

p

�

)(
128√
255

)�−1

exp
(
− C2� log(p/η)

4Cσ 2
√

(� log(p/η))/n + 32σ 4

)

≤ 2π�1/2
(

e

�

)�( 128√
255

)�−1

η� ≤ e9η.
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Similarly, if � log(p/η) > n, then

P

(
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ 2C

� log(p/η)

n

)

≤ 2π�1/2
(

p

�

)(
128√
255

)�−1

exp
(
− C2�2 log2(p/η)

4Cσ 2� log(p/η) + 32σ 4n

)
≤ e9η.

Setting δ := e9η, we find (noting that we only need to consider the case δ ∈ (0,1])
that

P

{
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ 16σ 2

(
1 + 9

logp

)
max

(√
� log(p/δ)

n
,
� log(p/δ)

n

)}

≤ P

{
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ 16σ 2 max

(√
� log(e9p/δ)

n
,
� log(e9p/δ)

n

)}

≤ δ.

(ii) By Lemma 1 of Laurent and Massart (2000), if Y1, . . . , Yn are independent
χ2

1 random variables, then for all a > 0,

P

(
1

n

∣∣∣∣∣
n∑

i=1

Yi − n

∣∣∣∣∣ ≥ a

)
≤ 2e−(n/2)(1+a−√

1+2a) ≤ 2e−nmin(a/4,a2/16).

Setting η := e−nmin(a/4,a2/16), we deduce that

P

{
1

n

∣∣∣∣∣
n∑

i=1

Yi − n

∣∣∣∣∣ ≥ 4 max
(√

log(1/η)

n
,

log(1/η)

n

)}
≤ 2η.

Hence, using Lemma 2 again, and by a similar calculation to part (i),

P

{
sup

u∈B0(�)

∣∣V̂ (u) − V (u)
∣∣ ≥ 8λ1(P )max

(√
log(1/η)

n
,

log(1/η)

n

)}
≤ e9p�η.

The result follows on setting δ := e9p�η. �

PROOF OF THEOREM 2. Fix an arbitrary P ∈ Pp(n, k, θ). For notational sim-
plicity, we write v := v1(P ) and v̂ := v̂k

max(�̂) in this proof. We now exploit the
curvature lemma of Vu et al. [(2013), Lemma 3.1], which is closely related to the
Davis–Kahan sin θ theorem [Davis and Kahan (1970), Yu, Wang and Samworth
(2015)]. This lemma gives that

∥∥v̂v̂� − vv�∥∥2
2 ≤ 2

θ
tr

(
�

(
vv� − v̂v̂�)) ≤ 2

θ
tr

(
(� − �̂)

(
vv� − v̂v̂�))

.
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When v̂v̂� �= vv�, we have that vv�−v̂v̂�
‖vv�−v̂v̂�‖2

has rank 2, trace 0 and has nonzero
entries in at most 2k rows and 2k columns. It follows that its nonzero eigenvalues
are ±1/

√
2, so it can be written as (xx�−yy�)/

√
2 for some x, y ∈ B0(2k). Thus,

EL(v̂, v) = E
1√
2

∥∥v̂v̂� − vv�∥∥
2 ≤ 1

θ
E tr

(
(� − �̂)

(
xx� − yy�))

≤ 2

θ
E sup

u∈B0(2k)

∣∣V̂ (u) − V (u)
∣∣ ≤ 2

√
2
(

1 + 1

logp

)√
k logp

nθ2 ,

where we have used Proposition 1 in Section 1 in the online supplementary mate-
rial [Wang, Berthet and Samworth (2015)] to obtain the final inequality. �

PROOF OF THEOREM 3. Set σ 2 := 1
8(1+9/ logp)

− θ . We have by Proposi-

tion 1(ii) that Np(0, σ 2Ip + θv1v
�
1 ) ∈ Pp(n, k, θ) for any unit vector v1 ∈ B0(k).

Define k0 := k−1 and p0 := p−1. Applying the variant of the Gilbert–Varshamov
lemma given as Lemma 3 in Section 1 in the online supplementary material [Wang,
Berthet and Samworth (2015)] with α := 1/2 and β := 1/4, we can construct a set
N0 of k0-sparse vectors in {0,1}p0 with cardinality at least (p0/k0)

k0/8, such that
the Hamming distance between every pair of distinct points in N0 is at least k0.
For ε ∈ (0,1] to be chosen later, define a set of k-sparse vectors in R

p by

N :=
{( √

1 − ε2

k
−1/2
0 εu0

)
: u0 ∈N0

}
.

Observe that if u, v are distinct elements of N , then

L(u, v) = {
1 − (

u�v
)2}1/2 ≥ {

1 − (
1 − ε2/2

)2}1/2 ≥
√

3ε

2
,

and similarly L(u, v) ≤ ε. For u ∈ N , let Pu denote the multivariate normal
distribution Np(0, σ 2Ip + θuu�). For any estimator v̂ ∈ Vn,p , we define ψ̂v̂ :=
sargminu∈N L(v̂, u), where sargmin denotes the smallest element of the argmin
in the lexicographic ordering. Note that {ψ̂v̂ �= u} ⊆ {L(v̂, u) ≥ √

3ε/4}. We now
apply the generalised version of Fano’s lemma given as Lemma 4 in Section 1 in
the online supplementary material [Wang, Berthet and Samworth (2015)]. Writing
D(P‖Q) for the Kullback–Leibler divergence between two probability measures
defined on the same space (a formal definition is given just prior to Lemma 4), we
have

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EP L
(
v̂, v1(P )

)

≥ inf
v̂∈Vn,p

max
u∈N EPuL(v̂, u) ≥

√
3ε

4
inf

v̂∈Vn,p

max
u∈N P ⊗n

u (ψ̂v̂ �= u)(8)

≥
√

3ε

4

(
1 − maxu,v∈N ,u�=v D(P ⊗n

v ‖P ⊗n
u ) + log 2

(k0/8) log(p0/k0)

)
.
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We can compute, for distinct points u, v ∈ N ,

D
(
P ⊗n

v ‖P ⊗n
u

) = nD(Pv‖Pu) = n

2
tr

((
σ 2Ip + θuu�)−1(

σ 2Ip + θvv�) − Ip

)
= n

2
tr

((
σ 2Ip + θuu�)−1

θ
(
vv� − uu�))

(9)

= nθ

2
tr

((
1

σ 2 Ip − θ

σ 2(σ 2 + θ)
uu�

)(
vv� − uu�))

= nθ2

2σ 2(σ 2 + θ)
L2(u, v) ≤ nθ2ε2

2σ 2(σ 2 + θ)
.

Let ε := min{√a/(3b),1}, where

a := 1 − 8 log 2

k0 log(p0/k0)
and b := 4nθ2

σ 2(σ 2 + θ)k0 log(p0/k0)
.

Then from (8) and (9), we find that

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EP L
(
v̂, v1(P )

) ≥ min
{

1

1660

√
k logp

nθ2 ,
5

18
√

3

}
,

as required. �

APPENDIX B: PROOFS FROM SECTION 3

PROOF OF LEMMA 4. For convenience, we write v := v1(�), v̂ for v̂SDP and
M̂ for M̂ε in this proof. We first study vv� − M̂ , where M̂ ∈ M1 is computed in
Step 2 of Algorithm 1. By the curvature lemma of Vu et al. [(2013), Lemma 3.1],

∥∥vv� − M̂
∥∥2

2 ≤ 2

θ
tr

(
�

(
vv� − M̂

))
.

Moreover, since vv� ∈ M1, we have the basic inequality

tr(�̂M̂) − λ‖M̂‖1 ≥ tr
(
�̂vv�) − λ

∥∥vv�∥∥
1 − ε.

Let S denote the set of indices corresponding to the nonzero components of v, and
recall that |S| ≤ k. Since by hypothesis ‖�̂ − �‖∞ ≤ λ, we have

∥∥vv� − M̂
∥∥2

2 ≤ 2

θ

{
tr

(
�̂

(
vv� − M̂

)) + tr
(
(� − �̂)

(
vv� − M̂

))}

≤ 2

θ

(
λ
∥∥vv�∥∥

1 − λ‖M̂‖1 + ε + ‖�̂ − �‖∞
∥∥vv� − M̂

∥∥
1

)

≤ 2λ

θ

(∥∥vSv�
S

∥∥
1 − ‖M̂S,S‖1 + ∥∥vSv�

S − M̂S,S

∥∥
1

) + 2ε

θ

≤ 4λ

θ

∥∥vSv�
S − M̂S,S

∥∥
1 + 2ε

θ
≤ 4λk

θ

∥∥vv� − M̂
∥∥

2 + 2ε

θ
.
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We deduce that

∥∥vv� − M̂
∥∥

2 ≤ 4λk

θ
+

√
2ε

θ
.

On the other hand,∥∥vv� − M̂
∥∥2

2 = tr
((

vv� − M̂
)2) = 1 − 2v�M̂v + tr

(
M̂2)

≥ 1 − 2v̂�M̂v̂ + tr
(
M̂2) = ∥∥v̂v̂� − M̂

∥∥2
2.

We conclude that

L(v̂, v) = 1√
2

∥∥v̂v̂� − vv�∥∥
2 ≤ 1√

2

(∥∥v̂v̂� − M̂
∥∥

2 + ∥∥vv� − M̂
∥∥

2

)

≤ √
2
∥∥vv� − M̂

∥∥
2 ≤ 4

√
2λk

θ
+ 2

√
ε

θ
,

as required. �

PROOF OF THEOREM 5. Fix P ∈Pp(n, k, θ). By Lemma 4, and by Lemma 5
in Section 1 of the online supplementary material [Wang, Berthet and Samworth
(2015)],

EL
(
v̂SDP, v1(P )

) = E
{
L

(
v̂SDP, v1(P )

)
1{‖�̂−�‖∞≤λ}

}
+E

{
L

(
v̂SDP, v1(P )

)
1{‖�̂−�‖∞>λ}

}
(10)

≤ 4
√

2λk

θ
+ 2

√
ε

θ
+ P

(
sup

u∈B0(2)

∣∣V̂ (u) − V (u)
∣∣ > 2

√
logp

n

)
.

Since P ∈ RCCp(n,2,1), we have for each δ > 0 that

P

{
sup

u∈B0(2)

∣∣V̂ (u) − V (u)
∣∣ > max

(√
2 log(p/δ)

n
,

2 log(p/δ)

n

)}
≤ δ.

Set δ :=
√

k2 logp

nθ2 . Since 4 logp ≤ n, which in particular implies n ≥ 3, we have

2 log(p/δ)

n
≤ 1

2
+ 1

n
log

(
nθ2

k2 logp

)
≤ 1

2
+ logn

n
− 1

n
log log 2 ≤ 1.

Moreover, since n ≤ k2p2θ−2 logp,

2 log(p/δ) = 2 logp + log
(

nθ2

k2 logp

)
≤ 4 logp.

We deduce that

P

(
sup

u∈B0(2)

∣∣V̂ (u) − V (u)
∣∣ > 2

√
logp

n

)
≤

√
k2 logp

nθ2 .(11)

The desired risk bound follows from (10), the fact that θ ≤ k, and (11). �
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APPENDIX C: PROOFS FROM SECTION 4

PROOF OF THEOREM 6. Suppose, for a contradiction, that there exist an infi-
nite subset N of N, K0 ∈ [0,∞) and a sequence (v̂(n)) of randomised polynomial
time estimators of v1(P ) satisfying

sup
P∈Pp(n,k,θ)

EP L
(
v̂(n)(X), v1(P )

) ≤ K0

√
k1+α logp

nθ2

for all n ∈ N . Let L := �logpn�, let m = mn := �10Lpn/9� and let κ = κn :=
Lkn. We claim that Algorithm 4 below is a randomised polynomial time algo-
rithm that correctly identifies the planted clique problem on mn vertices and a
planted clique of size κn with probability tending to 1 as n → ∞. Since κn =
O(m

1/2−τ−δ
n logmn), this contradicts assumption (A1)(τ ). We prove the claim be-

low.
Let G ∼ Gm,κ , and let K ⊆ V (G) denote the planted clique. Note that the ma-

trix A defined in Step 1 of Algorithm 4 is the off-diagonal block of the adjacency
matrix of G associated with the bipartite graph induced by the two parts {ui : i =
1, . . . , n} and {wj : j = 1, . . . , p}. Let ε′ = (ε′

1, . . . , ε
′
n)

� and γ ′ = (γ ′
1, . . . , γ

′
p)�,

where ε′
i := 1{ui∈K}, γ ′

j := 1{wj∈K}, and set S′ := {j : γ ′
j = 1}.

Algorithm 4: Pseudo-code for a planted clique algorithm based on a hypo-
thetical randomised polynomial time sparse principal component estimation
algorithm

Input: m ∈ N, κ ∈ {1, . . . ,m}, G ∈ Gm, L ∈ N

begin
Step 1: Let n ← �9m/(10L)�, p ← pn, k ← �κ/L�. Draw u1, . . . , un,
w1, . . . ,wp uniformly at random without replacement from V (G). Form
A = (Aij ) ← (1{ui∼wj }) ∈ R

n×p and X ← diag(ξ1, . . . , ξn)(2A − 1n×p),
where ξ1, . . . , ξn are independent Rademacher random variables
(independent of u1, . . . , un,w1, . . . ,wp), and where every entry of
1n×p ∈ R

n×p is 1.
Step 2: Use the randomised estimator v̂(n) to compute
v̂ = v̂(n)(X/

√
750).

Step 3: Let Ŝ = Ŝ(v̂) be the lexicographically smallest k-subset of
{1, . . . , p} such that (v̂j : j ∈ Ŝ) contains the k largest coordinates of v̂ in
absolute value.
Step 4: For u ∈ V (G) and W ⊆ V (G), let nb(u,W) := 1{u∈W } +∑

w∈W 1{u∼w}. Set K̂ := {u ∈ V (G) : nb(u, {wj : j ∈ Ŝ}) ≥ 3k/4}.
end
Output: K̂
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It is convenient at this point to introduce the notion of a graph vector dis-
tribution. We say Y has a p-variate graph vector distribution with parameters
g = (g1, . . . , gp)� ∈ {0,1}p and π0 ∈ [0,1], and write Y ∼ GVg

p(π0), if we can
write

Y = ξ
{
(1 − ε)R + ε(g + R̃)

}
,

where ξ , ε and R are independent, where ξ is a Rademacher random vari-
able, where ε ∼ Bern(π0), where R = (R1, . . . ,Rp)� ∈ R

p has independent
Rademacher components, and where R̃ = (R̃1, . . . , R̃p)� with R̃j := (1 − gj )Rj .

Let (ε,γ )� = (ε1, . . . , εn, γ1, . . . , γp)� be n + p independent Bern(κ/m) ran-
dom variables. For i = 1, . . . , n, let Yi := ξi{(1 − εi)Ri + εi(γ + R̃i)} so that, con-
ditional on γ , the random vectors Y1, . . . , Yn are independent, each distributed as
GVγ

p(κ/m). As shorthand, we denote this conditional distribution as Qγ , and write
S := {j : γj = 1}. Note that by Lemma 6 in Section 1 of the online supplementary

material [Wang, Berthet and Samworth (2015)], Qγ ∈ ⋂�20p/(9k)�
�=1 RCCp(�,750).

Let Y := (Y1, . . . , Yn)
�. Recall that if P and Q are probability measures on a

measurable space (X ,B), the total variation distance between P and Q is defined
by

dTV(P,Q) := sup
B∈B

∣∣P(B) − Q(B)
∣∣.

Writing L(Z) for the distribution (or law) of a generic random element Z, and us-
ing elementary properties of the total variation distance given in Lemma 9 in Sec-
tion 1 in the online supplementary material [Wang, Berthet and Samworth (2015)],
we have

dTV
(
L(X),L(Y )

) ≤ dTV
(
L

(
ε′,γ ′, (Rij ), (ξi)

)
,L

(
ε,γ , (Rij ), (ξi)

))
= dTV

(
L

(
ε′,γ ′),L(ε,γ )

)
(12)

≤ 2(n + p)

m
≤ 9(n + p)

5p logp
.

Here, the penultimate inequality follows from Diaconis and Freedman [(1980),
Theorem 4]. In view of (12), we initially analyse Steps 2, 3 and 4 in Algorithm 4
with X replaced by Y . Observe that E(Yi |γ ) = 0 and, writing � := diag(γ ) ∈
R

p×p , we have

�γ := Cov(Yi |γ ) = E
{
(1 − εi)RiR

�
i + εi(γ + R̃i)(γ + R̃i)

�|γ }
= Ip + κ

m

(
γ γ � − �

)
.

Writing Nγ := ∑p
j=1 γj , it follows that the largest eigenvalue of �γ is 1+ κ

m
(Nγ −

1), with corresponding eigenvector γ /N
1/2
γ ∈ B0(Nγ ). The other eigenvalues
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are 1, with multiplicity p − Nγ , and 1 − κ
m

, with multiplicity Nγ − 1. Hence,
λ1(�γ ) − λ2(�γ ) = κ

m
(Nγ − 1). Define

�0 :=
{
g ∈ {0,1}p :

∣∣∣∣Ng − pκ

m

∣∣∣∣ ≤ k

20

}
,

where Ng := ∑p
j=1 gj . We note that by Bernstein’s inequality [e.g., Shorack and

Wellner (1986), page 855] that

P(γ ∈ �0) ≥ 1 − 2e−k/800.(13)

If g ∈ �0, the conditional distribution of Y1/
√

750 given γ = g belongs to
Pp(n, k, θ) for θ ≤ κ

750m
(Ng − 1) and all large n ∈ N . By hypothesis, it follows

that for g ∈ �0,

E
{
L

(
v̂(n)(Y/

√
750), v1(Qγ )

)|γ = g
} ≤ K0

√
k1+α logp

nθ2

for all large n ∈ N . Then by Lemma 7 in Section 1 in the online supplementary
material [Wang, Berthet and Samworth (2015)], for Ŝ(·) defined in Step 3 of Al-
gorithm 4, for g ∈ �0, and large n ∈ N ,

E
{∣∣S \ Ŝ

(
v̂(n)(Y/

√
750)

)∣∣|γ = g
} ≤ 2NgE

{
L

(
v̂(n)(Y/

√
750), v1(Qγ )

)2|γ = g
}

≤ 2NgK0

√
k1+α logp

nθ2 .

We deduce by Markov’s inequality that for g ∈ �0, and large n ∈ N ,

P
{∣∣S ∩ Ŝ

(
v̂(n)(Y/

√
750)

)∣∣ ≤ 16Nγ /17|γ = g
} ≤ 34K0

√
k1+α logp

nθ2 .(14)

Let

�0,n := {γ ∈ �0} ∩ {∣∣S ∩ Ŝ
(
v̂(n)(Y/

√
750)

)∣∣ > 16Nγ /17
}
,

�′
0,n := {

γ ′ ∈ �0
} ∩ {∣∣S ∩ Ŝ

(
v̂(n)(X/

√
750)

)∣∣ > 16Nγ ′/17
} =: �′

1,n ∩ �′
2,n,

say, where Nγ ′ := ∑p
j=1 γ ′

j . When n ∈ N is sufficiently large, we have on the
event �′

0,n that ∣∣{j ∈ Ŝ
(
v̂(n)(X/

√
750)

) : wj ∈ K
}∣∣ > 3k/4.(15)

Now set

�′
3,n :=

{
nb

(
u,

{
wj : j ∈ S′}) ≤ k

2
for all u ∈ V (G) \ K

}
.

Recall the definition of K̂ from Step 4 of Algorithm 4. We claim that for suffi-
ciently large n ∈ N ,

�′
0,n ∩ �′

3,n ⊆ {K̂ = K}.
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To see this, note that for n ∈ N sufficiently large, on �′
0,n we have K ⊆ K̂ by (15).

For the reverse inclusion, note that if u ∈ V (G) \ K , then on �′
0,n ∩ �′

3,n, we have
for sufficiently large n ∈ N that

nb
(
u,

{
wj : j ∈ Ŝ

(
v̂(n)(X/

√
750)

)})
≤ ∣∣{wj : j ∈ Ŝ} \ K

∣∣ + nb
(
u, {wj : j ∈ Ŝ} ∩ K

)
≤ ∣∣{wj : j ∈ Ŝ} \ K

∣∣ + nb
(
u,

{
wj : j ∈ S′}) <

k

4
+ k

2
= 3k

4
.

This establishes our claim. We conclude that for sufficiently large n ∈ N ,

P(K̂ �= K) ≤ P
((

�′
0,n ∩ �′

3,n

)c) ≤ P
((

�′
0,n

)c) + P
(
�′

1,n ∩ (
�′

3,n

)c)
.(16)

Now by Lemma 9 in Section 1 in the online supplementary material [Wang, Berthet
and Samworth (2015)], we have∣∣P(

�′
0,n

) − P(�0,n)
∣∣ ≤ dTV

(
L

(
X,γ ′),L(Y,γ )

) ≤ 9(n + p)

5p logp
.(17)

Moreover, by a union bound and Hoeffding’s inequality, for large n ∈ N ,

P
(
�′

1,n ∩ (
�′

3,n

)c) ≤ ∑
g∈�0

P
((

�′
3,n

)c|γ = g
)
P(γ = g) ≤ me−k/800.(18)

We conclude by (16), (17), (13), (14) and (18) that for large n ∈ N ,

P(K̂ �= K) ≤ 9(n + p)

5p logp
+ 2e−k/800 + 34K0

√
k1+α logp

nθ2 + me−k/800 → 0

as n → ∞. This contradicts assumption (A1)(τ ) and, therefore, completes the
proof. �

PROOF OF THEOREM 7. Setting δ := p−1 in (3), there exist events �1 and �2,
each with probability at least 1 − p−1, such that on �1 and �2, we, respectively,
have

sup
u∈B0(2k)

∣∣V̂ (u) − V (u)
∣∣ ≤ 2

√
k logp

n
and

(19)

sup
u∈B0(2)

∣∣V̂ (u) − V (u)
∣∣ ≤ 2

√
logp

n
.

Let �0 := �1 ∩ �2. We work on �0 henceforth. The main ingredient for proving
both parts of the theorem is the following weak-duality inequality:

max
M∈M1

tr(�̂M) − λ‖M‖1 = max
M∈M1

min
U∈U tr

(
(�̂ − U)M

)
≤ min

U∈U max
M∈M1

tr
(
(�̂ − U)M

)
(20)

= min
U∈U λ1(�̂ − U).
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It is convenient to denote γ :=
√

k2 logp

nθ2 , and note that

γ ≤
√

k

16
min
j∈S

|v1,j | ≤ 1

16
‖v1,S‖2 = 1

16
.

PROOF OF (a). From (20), it suffices to exhibit a primal-dual pair (M̂, Û) ∈
M1 × U , such that:

(C1) M̂ = v̂v̂� with sgn(v̂) = sgn(v1).
(C2) tr(�̂M̂) − λ‖M̂‖1 = λ1(�̂ − Û ).

We construct the primal-dual pair as follows. Define

Û :=
(

λ sgn(v1,S) sgn(v1,S)� �̂SSc − �SSc

�̂ScS − �ScS �̂ScSc − �ScSc

)
.

By (19) and Lemma 5, we have that ‖�̂ − �‖∞ ≤ 4
√

logp
n

≤ λ, so U ∈ U . Let

w = (w1, . . . ,wk) be a unit-length leading eigenvector of �SS − ÛSS such that
w�v1,S ≥ 0. Then define v̂ componentwise by

v̂S ∈ argmax
u∈Rk,‖u‖2=1

u�w≥0

u�(�̂SS − ÛSS)u, v̂Sc = 0,

and set M̂ := v̂v̂�. Note that our choices above ensure that M̂ ∈ M1. To verify
(C1), we now show that sgn(v̂S) = sgn(w) = sgn(v1,S). By a variant of the Davis–
Kahan theorem [Yu, Wang and Samworth (2015), Theorem 2],

‖w − v̂S‖∞ ≤ ‖w − v̂S‖2 ≤ √
2L(v̂S,w) ≤ 2

√
2‖�̂SS − �SS‖op

θ
(21)

≤ 2
√

2

θ
sup

u∈B0(2k)

∣∣V̂ (u) − V (u)
∣∣ ≤ 4

√
2γ k−1/2,

where the final inequality uses (19). But w is also a leading eigenvector of

1

θ
(�SS − ÛSS − Ik) = v1,Sv�

1,S − 4γ ss�,

where s := sgn(v1,S)

‖ sgn(v1,S)‖ . Write s = αv1,S +βv⊥ for some α,β ∈ R with α2 +β2 = 1,

and a unit vector v⊥ ∈ R
k orthogonal to v1,S . Then

v1,Sv�
1,S − 4γ ss� = ( v1,S v⊥ )

(
1 − 4γα2 −4γαβ

−4γαβ −4γβ2

)(
v�

1,S

v�⊥

)

= ( v1,S v⊥ )

(
a1 b1

a2 b2

)(
d1 0

0 d2

)(
a1 a2

b1 b2

)(
v�

1,S

v�⊥

)
,
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where d1 ≥ d2 and ( a1 a2 )�, ( b1 b2 )� are eigenvalues and corresponding
unit-length eigenvectors of the middle matrix on the right-hand side of the first
line. Direct computation yields that d1 ≥ 1/2 > 0 ≥ d2 and(

a1

a2

)
∝

(
1 − 4γα2 + 4γβ2 +

√
16γβ2 + (1 − 4γ )2

−8γαβ

)
.

Consequently, w is a scalar multiple of

a1v1,S + a2v⊥ = {
1 + 4γ +

√
16γβ2 + (1 − 4γ )2

}
v1,S − 8γαs.(22)

Since{
1 + 4γ +

√
16γβ2 + (1 − 4γ )2

}
min
j∈S

|v1,j | ≥ 2 min
j∈S

|v1,j | ≥ 32γ k−1/2

> 8γα‖s‖∞,

we have sgn(w) = sgn(v1,S). Hence, by (22),

min
j=1,...,k

|wj | ≥ {1 + 4γ +
√

16γβ2 + (1 − 4γ )2}minj∈S |v1,j | − 8γα‖s‖∞
‖a1v1,S + a2v⊥‖2

≥ (32 − 8α)γ k−1/2

1 + 4γ +
√

16γβ2 + (1 − 4γ )2
(23)

≥ 12γ k−1/2

1 + 4γ
≥ 48

5
γ k−1/2.

By (21) and (23), we have minj |wj | > ‖w − v̂S‖∞. So sgn(v̂S) = sgn(w) =
sgn(v1,S) as desired.

It remains to check condition (C2). Since sgn(v̂S) = sgn(v1,S), we have

tr(�̂M̂) − λ‖M̂‖1 = tr
(
�̂SSv̂S v̂�

S

) − tr
(
ÛSSv̂S v̂�

S

)
= v̂�

S (�̂SS − ÛSS)v̂S = λ1(�̂SS − ÛSS).

Moreover,

�̂ − Û =
(

�̂SS − ÛSS 0

0 �p−k

)
.

As λ1(�p−k) ≤ 1 by assumption, it suffices to show that λ1(�̂SS − ÛSS) ≥ 1. By
Weyl’s inequality [see, e.g., Horn and Johnson (2012), Theorem 4.3.1]

λ1(�̂SS − ÛSS) ≥ λ1(�SS − ÛSS) − ‖�̂SS − �SS‖op

≥ 1 + θλ1
(
v1,Sv�

1,S − 4γ ss�) − 2

√
k logp

n
(24)

≥ 1 + 3θ

8
> 1,

as required.
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PROOF OF (b). We claim first that Ŝ = S. Let φ∗ := f (M̂) be the optimal
value of the semidefinite programme (5). From (24), we have φ∗ ≥ 1 + 3θ/8. The
proof strategy here is to use dual matrices Û defined in part (a) and Û ′ to be defined
below to respectively bound tr(M̂ε

ScSc) from above and bound M̂ε
rr from below for

each r ∈ S. We then check that for the choice of ε we have in the theorem, the
diagonal entries of M̂ε are above the threshold logp/(6n) precisely when they
belong to the (S, S)-block of the matrix.

From (20), and using the fact that tr(AB) ≤ tr(A)λ1(B) for all symmetric ma-
trices A and B , we have

tr
(
�̂M̂ε) − λ

∥∥M̂ε
∥∥

1 ≤ tr
(
(�̂ − Û )M̂ε)

= tr
(
(�̂SS − ÛSS)M̂ε

SS

) + tr
(
�ScScM̂ε

ScSc

)
≤ tr

(
M̂ε

SS

)
φ∗ + tr

(
M̂ε

ScSc

)
λ1(�p−k)

= φ∗ − tr
(
M̂ε

ScSc

)(
φ∗ − 1

) ≤ φ∗ − 3θ tr
(
M̂ε

ScSc

)
/8.

On the other hand, tr(�̂M̂ε) − λ‖M̂ε‖1 ≥ φ∗ − ε. It follows that

tr
(
M̂ε

ScSc

) ≤ 8ε

3θ
≤ 1

6

(
logp

Bn

)2

< τ.(25)

Next, fix an arbitrary r ∈ S and define S0 := S \ {r}. Define Û ′ by

Û ′
ij :=

{
λ sgn(M̂ij ), if i, j ∈ S0,

�̂ij − �ij , otherwise.

We note that on �0, we have Û ′ ∈ U . Again by (20),

tr
(
�̂M̂ε) − λ

∥∥M̂ε
∥∥

1 ≤ tr
((

�̂ − Û ′)M̂ε)
= tr

(
(�̂S0S0 − ÛS0S0)M̂

ε
S0S0

) + ∑
(i,j)∈S×S

i=r or j=r

�ij M̂
ε
ji

+ tr
(
�ScScM̂ε

ScSc

)
(26)

≤ tr
(
M̂ε

S0S0

)
λ1(�̂S0S0 − ÛS0S0) + ∑

(i,j)∈S×S

i=r or j=r

�ij M̂
ε
ji

+ tr
(
M̂ε

ScSc

)
λ1(�p−k).

We bound the three terms of (26) separately. By Lemma 8 in Section 1 in the online
supplementary material [Wang, Berthet and Samworth (2015)],

λ1(�̂S0S0 − ÛS0S0)

≤ λ1(�̂SS − ÛSS) − {
λ1(�̂SS − ÛSS) − λ2(�̂SS − ÛSS)

}
min
j∈S

v̂2
j .
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From (21) and (23),

min
j

|v̂j | ≥ min
j

|wj | − ‖w − v̂S‖∞ ≥ 3.9γ k−1/2.

Also, by Weyl’s inequality,

λ1(�̂SS − ÛSS) − λ2(�̂SS − ÛSS)

≥ λ1(�SS − ÛSS) − λ2(�SS − ÛSS) − 2‖�̂SS − �SS‖op

≥ θ
{
λ1

(
v1,Sv�

1,S − 4γ ss�) − λ2
(
v1,Sv�

1,S − 4γ ss�)} − 4

√
k logp

n

≥ θ
(
1/2 − 4γ k−1/2) ≥ θ/4.

It follows that

λ1(�̂S0S0 − ÛS0S0) ≤ φ∗ − 3.8γ 2k−1θ.(27)

For the second term in (26), observe that∑
(i,j)∈S×S

i=r or j=r

�ij M̂
ε
ij ≤ (

1 + θv2
1,r

)
M̂ε

rr + 2
∑

i∈S,i �=r

θv1,iv1,rM̂
ε
i,r

≤ M̂ε
rr + 2θ |v1,r | · ‖v1‖1

√
M̂ε

rr(28)

≤ M̂ε
rr + 2θ

√
k

√
M̂ε

rr ,

where the penultimate inequality uses the fact that M̂ε
ir ≤

√
M̂ε

iiM̂
ε
rr ≤

√
M̂ε

rr for a

nonnegative definite matrix M̂ε . Substituting (27) and (28) into (26),

tr
(
�̂M̂ε) − λ

∥∥M̂ε
∥∥

1

≤ tr
(
M̂ε

S0S0

)(
φ∗ − 3.8γ 2θ

k

)
+ M̂ε

rr + 2θ

√
kM̂ε

rr + tr
(
M̂ε

ScSc

)

≤ φ∗ − 3.8γ 2k−1θ tr
(
M̂ε

S0S0

) + 2θ

√
kM̂ε

rr

≤ φ∗ − 3.8γ 2k−1θ
{
1 − tr

(
M̂ε

ScSc

)} + 2θ
(√

k + 1.9γ 2)√
M̂ε

rr .

By definition, tr(�̂M̂ε) − λ‖M̂ε‖1 ≥ φ∗ − ε, so together with (25), we have
√

M̂ε
rr ≥ 3.8γ 2k−1θ(1 − (8ε)/(3θ)) − ε

2θ(
√

k + 1.9γ 2)

≥ 1.9γ 2k−1(1 − (8ε)/(3θ))

(
√

k + 1.9/256)
− ε

2θ
(29)
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≥ 1.8γ 2k−3/2
(

1 − 8ε

3θ

)
− ε

2θ

≥ 1.8k1/2 logp

nθ2

{
1 − 1

6

(
logp

Bn

)2}
− 1

32

(
logp

Bn

)2

≥ 1.4 logp

Bn
> τ 1/2.

From (25) and (29), we conclude that Ŝ = S, as claimed.
To conclude, by Yu, Wang and Samworth [(2015), Theorem 2], on �0,

L
(
v̂MSDP, v1

) = L
(
v̂MSDP
S , v1,S

) ≤ 2‖�̂SS − �SS‖op

λ1(�SS) − λ2(�SS)
≤ 4

√
k logp

nθ2 ,

where we used (19) and Lemma 5 in the online supplementary material [Wang,
Berthet and Samworth (2015)] in the final bound.

For the final part of the theorem, when p ≥ θ
√

n/k,

sup
P∈P̃p(n,k,θ)

EP

{
L

(
v̂MSDP, v1

)} ≤ 4

√
k logp

nθ2 + P
(
�c

0
)

≤ 4

√
k logp

nθ2 + 2p−1 ≤ 6

√
k logp

nθ2 ,

as desired. �
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SUPPLEMENTARY MATERIAL

Supplementary material to “Statistical and computational trade-offs in es-
timation of sparse principal components” (DOI: 10.1214/15-AOS1369SUPP;
.pdf). Ancillary results and a brief introduction to computational complexity the-
ory.
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By Tengyao Wang∗ Quentin Berthet∗,† Richard J. Samworth∗
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1. Ancillary results. We collect here various results used in the proofs
in Appendices A, B and C in the main document Wang, Berthet and Sam-
worth (2016).

Proposition 1. Let P ∈ RCCp(n, `, C) and suppose that ` log p ≤ n.
Then

E sup
u∈B0(`)

|V̂ (u)− V (u)| ≤
(

1 +
1

log p

)
C

√
` log p

n
.

Proof. By setting δ = p1−t in the RCC condition, we find that

P
(

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ C max

{√
t` log p

n
,
t` log p

n

})
≤ min(1, p1−t)

for all t ≥ 0. It follows that

E sup
u∈B0(`)

|V̂ (u)− V (u)| =
∫ ∞
0

P
(

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ s
)
ds

≤ C
√
` log p

n
+ C

√
` log p

n

∫ n
` log p

1

1

2
p1−tt−1/2 dt+ C

` log p

n

∫ ∞
n

` log p

p1−t dt

≤ C
√
` log p

n

{
1 +

∫ ∞
1

p1−t dt

}
=

(
1 +

1

log p

)
C

√
` log p

n
,

as required.

Lemma 2. Let ε ∈ (0, 1/2), let ` ∈ {1, . . . , p} and let A ∈ Rp×p be a
symmetric matrix. Then there exists Nε ⊆ B0(`) with cardinality at most(
p
`

)
π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 such that

sup
u∈B0(`)

|u>Au| ≤ (1− 2ε)−1 max
u∈Nε

|u>Au|.

1
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2 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Proof. Let I` :=
{
I ⊆ {1, . . . , p} : |I| = `

}
, and for I ∈ I`, let BI :=

{u ∈ B0(`) : uIc = 0}. Thus

B0(`) =
⋃
I∈I`

BI .

For each I ∈ I`, by Lemma 10 of Kim and Samworth (2014), there exists
NI,ε ⊆ BI such that |NI,ε| ≤ π`1/2(1 − ε2/16)−(`−1)/2(2/ε)`−1 and such
that for any x ∈ BI , there exists x′ ∈ NI,ε with ‖x − x′‖ ≤ ε. Let uI ∈
argmaxu∈BI |u

>Au| and find vI ∈ NI,ε such that ‖uI − vI‖ ≤ ε. Then

|u>I AuI | ≤ |v>I AvI |+ |(uI − vI)>AvI |+ |u>I A(uI − vI)|
≤ max

u∈NI,ε
|u>Au|+ 2ε|u>I AuI |.

Writing Nε := ∪I∈I`NI,ε, we note that Nε has cardinality no larger than(
p
`

)
π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 and that

sup
u∈B0(`)

|u>Au| = max
I∈I`

sup
u∈BI

|u>Au| ≤ (1− 2ε)−1 max
I∈I`

max
u∈NI,ε

|u>Au|

= (1− 2ε)−1 max
u∈Nε

|u>Au|,

as required.

Lemma 3 (Variant of the Gilbert–Varshamov Lemma). Let α, β ∈ (0, 1)
and k, p ∈ N be such that k ≤ αβp. Writing S :=

{
x = (x1, . . . , xp)

> ∈
{0, 1}p :

∑p
j=1 xj = k

}
, there exists a subset S0 of S such that for all

distinct x = (x1, . . . , xp)
>, y = (y1, . . . , yp)

> ∈ S0, we have
∑p

j=1 1{xj 6=yj} ≥
2(1− α)k and such that

log |S0| ≥ ρk log(p/k),

where ρ := α
− log(αβ)(− log β + β − 1).

Proof. See Massart (2007, Lemma 4.10).

Let P and Q be two probability measures on a measurable space (X ,B).
Recall that if P is absolutely continuous with respect toQ, then the Kullback–
Leibler divergence between P andQ isD(P‖Q) :=

∫
X log(dP/dQ) dP , where

dP/dQ denotes the Radon–Nikodym derivative of P with respect to Q. If P
is not absolutely continuous with respect to Q, we set D(P‖Q) :=∞.
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COMPUTATIONAL BOUNDS IN SPARSE PCA 3

Lemma 4 (Generalised Fano’s Lemma). Let P1, . . . , PM be probability
distributions on a measurable space (X ,B), and assume that D(Pi‖Pj) ≤ β

for all i 6= j. Then any measurable function ψ̂ : X → {1, . . . ,M} satisfies

max
1≤i≤M

Pi(ψ̂ 6= i) ≥ 1− β + log 2

logM
.

Proof. See Yu (1997, Lemma 3).

Lemma 5. Suppose that P ∈ P and that X1, . . . , Xn
iid∼ P . Let Σ :=∫

Rp xx
> dP (x) and Σ̂ := n−1

∑n
i=1XiX

>
i . If V (u) := E{(u>X1)

2} and

V̂ (u) := n−1
∑n

i=1(u
>Xi)

2 for u ∈ B0(2), then

‖Σ̂− Σ‖∞ ≤ 2 sup
u∈B0(2)

∣∣V̂ (u)− V (u)
∣∣.

Proof. Let er denote the rth standard basis vector in Rp and write
Xi = (Xi,1, . . . , Xi,p)

>. Then

‖Σ̂− Σ‖∞ = max
r,s∈{1,...,p}

∣∣∣ 1
n

n∑
i=1

(Xi,rXi,s)− E(X1,rX1,s)
∣∣∣

≤ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er +

1

2
es

)>
Xi

}2
− E

[{(1

2
er +

1

2
es

)>
X1

}2]∣∣∣∣
+ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er −

1

2
es

)>
Xi

}2
− E

[{(1

2
er −

1

2
es

)>
X1

}2]∣∣∣∣
≤ 2 sup

u∈B0(2)

∣∣V̂ (u)− V (u)
∣∣,

as required.

Recall the definition of the Graph Vector distribution GVg
p(π0) from the

proof of Theorem 6 in the main document Wang, Berthet and Samworth
(2016).

Lemma 6. Let g = (g1, . . . , gp)
> ∈ {0, 1}p, and let Y1, . . . , Yn be inde-

pendent random vectors, each distributed as GVg
p(π0) for some π0 ∈ (0, 1/2].

For any u ∈ B0(`), let V (u) := E{(u>Y1)2} and V̂ (u) := n−1
∑n

i=1(u
>Yi)

2.
Then for every 1 ≤ ` ≤ 2/π0, every n ∈ N and every δ > 0,

P
[

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ.

In other words, GVg
p(π0) ∈ RCCp(`, 750) for all π0 ∈ (0, 1/2] and ` ≤ 2/π0.
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4 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Proof. We can write

Yi = ξi
{

(1− εi)Ri + εi(g + R̃i)
}
,

where ξi, εi and Ri are independent, where ξi is a Rademacher random
variable, where εi ∼ Bern(π0), where Ri = (ri1, . . . , rip)

> has independent
Rademacher coordinates, and where R̃i = (r̃i1, . . . , r̃ip)

> with r̃ij := (1 −
gj)rij . Thus, for any u ∈ B0(`), we have

(u>Yi)
2 = (1− εi)(u>Ri)2 + εi(u

>g)2 + εi(u
>R̃i)

2 + 2εi(u
>R̃i)(u

>g).

Hence, writing S := {j : gj = 1},

|V̂ (u)− V (u)| ≤
∣∣∣∣ 1n

n∑
i=1

(1− εi)(u>Ri)2 − (1− π0)
∣∣∣∣+

(u>g)2

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

εi(u
>R̃i)

2 − π0‖uSc‖22
∣∣∣∣+

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣+
1 + (u>g)2 + ‖uSc‖22

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣+

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣.(1)

We now control the four terms on the right-hand side of (1) separately. For
the first term, note that the distribution of Ri is subgaussian with parameter
1. Writing Nε :=

∑n
i=1 εi, it follows by the same argument as in the proof of

Proposition 1(i) in Wang, Berthet and Samworth (2016) that for any s > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣ ≥ 2s

)
= E

{
P
(

sup
u∈B0(`)

∣∣∣∣ 1

n−Nε

∑
i:εi=0

{
(u>Ri)

2 − 1
}∣∣∣∣ ≥ 2ns

n−Nε

∣∣∣∣ Nε

)}

≤ e9p`E
[
exp

{
−

n( ns
n−Nε

)2

4( ns
n−Nε

) + 32

}]
≤ e9p` exp

(
− ns2

4s+ 32

)
.

We deduce that for any δ > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

(1−εi)
{

(u>Ri)
2−1

}∣∣∣∣ ≥ 16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ.(2)

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016



COMPUTATIONAL BOUNDS IN SPARSE PCA 5

For the second term on the right-hand side of (1), note first that for any
u ∈ B0(`), we have by Cauchy–Schwarz that

(u>g)2 ≤ ‖uS‖0‖uS‖22 ≤ ‖uS‖0 ≤ `.

We deduce using Bernstein’s inequality for Binomial random variables (e.g.
Shorack and Wellner, 1986, p. 855) that for any s > 0,

P
{

sup
u∈B0(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥ s}

≤ P
{

1

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥ s

3`

}
≤ 2 exp

(
− ns2

18`2π0 + 2s`

)
≤ 2 max

{
exp

(
− ns2

(19 +
√

37)`2π0

)
, exp

(
− ns

(1 +
√

37)`

)}
.

By assumption, `π0 ≤ 2. Hence, for any δ > 0,

P
{

sup
u∈B0(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥

(1 +
√

37) max

(√
` log(1/δ)

n
,
` log(1/δ)

n

)}
≤ 2δ.(3)

The third term on the right-hand side of (1) can be handled in a very similar
way to the first. We find that for every δ > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣ ≥
16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ.(4)

For the final term, by definition of R̃i, we have for any u ∈ B0(`) that∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≤ 2`1/2

n

∣∣∣∣ ∑
j:gj=0

uj
∑
i:εi=1

rij

∣∣∣∣ ≤ 2`

n
max
j:gj=0

∣∣∣∣ ∑
i:εi=1

rij

∣∣∣∣.
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6 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Hence by Hoeffding’s inequality, for any s > 0,

P
{

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s} ≤ E
{
P
(

max
1≤j≤p

∣∣∣ ∑
i:εi=1

rij

∣∣∣ ≥ ns

2`

∣∣∣∣ Nε

)}

≤ 2pE
{

exp

(
− n2s2

8`2Nε

)}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ P(Nε > t)

}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ exp

(
−t log

t

nπ0
+ t− nπ0

)}
,

where the final line follows by Bennett’s inequality (e.g. Shorack and Wellner,
1986, p. 440). Choosing t = max

(
e2nπ0,

ns
23/2`

)
, we find

P
{

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s}
≤ 2pmax

{
exp

(
− ns2

8e2`2π0

)
+ exp

(
− ns

23/2`

)
, 2 exp

(
− ns

23/2`

)}
≤ 4pmax

{
exp

(
− ns2

16e2`

)
, exp

(
− ns

23/2`

)}
.

We deduce that for any δ > 0,
(5)

P
[

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ 4emax

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ 4δ.

We conclude from (1), (2), (3), (4) and (5) that for any δ > 0,

P
[

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ,

as required.

Lemma 7. Let v = (v1, . . . , vp)
> ∈ B0(k) and let v̂ = (v̂1, . . . , v̂p)

> ∈ Rp
be such that ‖v̂‖2 = 1. Let S := {j ∈ {1, . . . , p} : vj 6= 0}. Then for any

Ŝ ∈ argmax1≤j1<...<jk≤p
∑k

r=1 |v̂jr |, we have

L(v̂, v)2 ≥ 1

2

∑
j∈S\Ŝ

v2j .
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COMPUTATIONAL BOUNDS IN SPARSE PCA 7

Proof. By the Cauchy–Schwarz inequality, and then by definition of Ŝ,

1− L(v̂, v)2 =

( ∑
j∈S\Ŝ

v̂jvj +
∑
j∈S∩Ŝ

v̂jvj

)2

≤
(

2
∑
j∈S\Ŝ

v̂2j +
∑
j∈S∩Ŝ

v̂2j

)(
1

2

∑
j∈S\Ŝ

v2j +
∑
j∈S∩Ŝ

v2j

)

≤
( ∑
j∈Ŝ\S

v̂2j +
∑
j∈S\Ŝ

v̂2j +
∑
j∈S∩Ŝ

v̂2j

)(
1− 1

2

∑
j∈S\Ŝ

v2j

)
≤ 1− 1

2

∑
j∈S\Ŝ

v2j ,

as required.

Lemma 8. Let A ∈ Rd×d be a symmetric matrix. Let A(r) be the principal
submatrix of A obtained by deleting the rth row and rth column of A. If A
has a unique (up to sign) leading eigenvector v, then

λ2(A) ≤ λ1(A(r)) ≤ λ1(A)− v21,r(λ1(A)− λ2(A))

Proof. The first inequality in the lemma is implied by Cauchy’s Inter-
lacing Theorem (see, e.g. Horn and Johnson (2012, Theorem 4.3.17)). It
remains to show the second inequality. Let λ1 > λ2 ≥ · · · ≥ λd be eigenval-
ues of A (counting multiplicities), and v1, . . . , vd be unit-length eigenvectors
of A such that Avi = λivi and v>i vj = 0 for all i 6= j. We have

λ1(A
(r)) = max

‖u‖2=1
ur=0

u>Au = max
‖u‖2=1
ur=0

u>
( d∑
i=1

λiviv
>
i

)
u

≤ max
‖u‖2=1
ur=0

{
(λ1 − λ2)u>v1v>1 u+ λ2u

>
( d∑
i=1

viv
>
i

)
u
}

≤ max
‖u‖2=1
ur=0

(λ1 − λ2)|u>v1|2 + λ2

≤ (λ1 − λ2)(1− v21,r) + λ2

= λ1 − v21,r(λ1 − λ2),

where we used Cauchy–Schwarz inequality in the penultimate line.

Recall the definition of the total variation distance dTV given in the proof
of Theorem 6 in the main document Wang, Berthet and Samworth (2016).

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016



8 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Lemma 9. Let X and Y be random elements taking values in a measur-
able space (F,F), and let (G,G) be another measurable space.

(a) If φ : F → G is measurable, then

dTV

(
L(φ(X)),L(φ(Y ))

)
≤ dTV

(
L(X),L(Y )

)
.

(b) Let Z be a random element taking values in (G,G), and suppose that Z
is independent of (X,Y ). Then

dTV

(
L(X,Z),L(Y, Z)

)
= dTV

(
L(X),L(Y )

)
.

Proof. (a) For any A ∈ G, we have

|P{φ(X) ∈ A} − P{φ(Y ) ∈ A}| = |P{X ∈ φ−1(A)} − P{Y ∈ φ−1(A)}|
≤ dTV

(
L(X),L(Y )

)
.

Since A ∈ G was arbitrary, the result follows.
(b) Define φ : F × G → F by φ(w, z) := w. Then φ is measurable, and

using the result of part (a),

dTV

(
L(X),L(Y )

)
= dTV

(
L(φ(X,Z)),L(φ(Y,Z))

)
≤ dTV

(
L(X,Z),L(Y, Z)

)
.

For the other inequality, let A denote the set of subsets A of F ⊗ G with
the property that given ε > 0, there exist sets B1,F , . . . , Bn,F ∈ F and
disjoint sets B1,G, . . . , Bn,G ∈ G such that, writing B := ∪ni=1(Bi,F × Bi,G),
we have P

(
(X,Z) ∈ A4B

)
< ε and P

(
(Y,Z) ∈ A4B

)
< ε. Here, the

binary operator 4 denotes the symmetric difference of two sets, so that
A4B := (A ∩ Bc) ∪ (Ac ∩ B). Note that F × G ⊆ A. Now suppose A ∈ A
so that, given ε > 0, we can find sets B1,F , . . . , Bn,F ∈ F and disjoint sets
B1,G, . . . , Bn,G ∈ G with the properties above. Observe that we can write

Bc =
⋃

I⊆{1,...,n}

(⋂
i∈I

Bc
i,F ×

⋂
i∈I

Bi,G ∩
⋂
i∈Ic

Bc
i,G

)
.

For each I ⊆ {1, . . . , n}, the sets ∩i∈IBc
i,F belong to F , and

{
∩i∈IBi,G ∩

∩i∈IcBc
i,G : I ⊆ {1, . . . , n}

}
is a family of disjoint sets in G. Moreover,

P
(
(X,Z) ∈ Ac4Bc

)
= P

(
(X,Z) ∈ A4B

)
< ε,

and similarly P
(
(Y,Z) ∈ Ac4Bc

)
< ε. We deduce that Ac ∈ A. Finally, if

(An) is a disjoint sequence in A, then let A := ∪∞n=1An, and given ε > 0, find
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m ∈ N such that P
(
(X,Z) ∈ A\∪mi=1Ai

)
< ε/2 and P

(
(Y,Z) ∈ A\∪mi=1Ai

)
<

ε/2. Now, for each i = 1, . . . ,m, find sets Bi1,F , . . . , Bini,F ∈ F and disjoint
sets Bi1,G, . . . , Bini,G ∈ G such that, writing Bi := ∪nij=1(Bij,F × Bij,G), we

have P
(
(X,Z) ∈ Ai4Bi

)
< ε/(2m) and P

(
(Y,Z) ∈ Ai4Bi

)
< ε/(2m). It is

convenient to relabel the sets {(Bij,F , Bij,G) : i = 1, . . . ,m, j = 1, . . . , ni} as
{(C1,F , C1,G), . . . , (CN,F , CN,G)}, where N :=

∑m
i=1 ni. This means that we

can write

m⋃
i=1

Bi =
N⋃
k=1

(Ck,F×Ck,G) =
⋃

K⊆{1,...,N},K 6=∅

(⋃
k∈K

Ck,F×
⋂
k∈K

Ck,G∩
⋂
k∈Kc

Cck,G

)
.

Now, for each non-empty subset K of {1, . . . , N}, the set ∪k∈KCk,F belongs
to F , and

{
∩k∈KCk,G ∩ ∩k∈KcCck,G : K ⊆ {1, . . . , N},K 6= ∅

}
is a family of

disjoint sets in G. Moreover,

P
(
(X,Z) ∈ A4∪mi=1 Bi

)
≤

m∑
i=1

P
(
(X,Z) ∈ Ai4Bi

)
+
ε

2
< ε,

and similarly, P
(
(Y,Z) ∈ A4∪mi=1 Bi

)
< ε. We deduce that A ∈ A, so A is

a σ-algebra containing F × G, so A contains F ⊗ G.
Now suppose that A ∈ F ⊗G. By the argument above, given ε > 0, there

exist sets B1,F , . . . , Bn,F ∈ F and disjoint sets B1,G, . . . , Bn,G ∈ G such that
P
(
(X,Z) ∈ A4∪mi=1 (Bi,F × Bi,G)

)
< ε/2 and P

(
(Y, Z) ∈ A4∪mi=1 (Bi,F ×

Bi,G)
)
< ε/2. It follows that∣∣P((X,Z) ∈ A

)
−P
(
(Y, Z) ∈ A

)∣∣
≤

m∑
i=1

∣∣P(X ∈ Bi,F , Z ∈ Bi,G)− P
(
Y ∈ Bi,F , Z ∈ Bi,G

)∣∣+ ε

=
m∑
i=1

P(Z ∈ Bi,G)
∣∣P(X ∈ Bi,F )−P(Y ∈ Bi,F )

∣∣+ε ≤ dTV

(
L(X),L(Y )

)
+ ε.

Since A ∈ A and ε > 0 were arbitrary, we conclude that

dTV

(
L(X,Z),L(Y, Z)

)
≤ dTV

(
L(X),L(Y )

)
,

as required.

2. A brief introduction to computational complexity theory.
The following is intended to give a short introduction to notions in com-
putational complexity theory referred to in Wang, Berthet and Samworth
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(2016). A good reference for further information is Arora and Barak (2009),
from which much of the following is inspired.

A computational problem is the task of generating a desired output based
on a given input. Formally, defining {0, 1}∗ := ∪∞k=1{0, 1}k to be the set of
all finite strings of zeros and ones, we can view a computational problem as
a function F : {0, 1}∗ → P

(
{0, 1}∗

)
, where P(A) denotes the power set of a

set A. The interpretation is that F (s) describes the set of acceptable output
strings (solutions) for a particular input string s.

Loosely speaking, an algorithm is a collection of instructions for per-
forming a task. Despite the widespread use of algorithms in mathematics
throughout history, it was not until 1936 that Alonzo Church and Alan
Turing formalised the notion by defining notational systems called the λ-
calculus and Turing machines respectively (Church, 1936; Turing, 1936).
Here we define an algorithm to be a Turing machine:

Definition 1. A Turing machine M is a pair (Q, δ), where

• Q is a finite set of states, among which are two distinguished states
qstart and qhalt.
• δ is a ‘transition’ function from Q×{0, 1, } to Q×{0, 1, }× {L,R}.

A Turing Machine can be thought of as having a reading head that can
access a tape consisting of a countably infinite number of squares, labelled
0, 1, 2, . . .. When the Turing machine is given an input s ∈ {0, 1}∗, the tape
is initialised with the components of s in its first |s| tape squares (where | · |
denotes the length of a string in {0, 1}∗) and with ‘blank symbols’ in its
remaining squares. The Turing machine starts in the state qstart ∈ Q with
its head on the 0th square and operates according to its transition function
δ. When the machine is in state q ∈ Q with its head over the ith tape square
that contains the symbol a ∈ {0, 1, }, and if δ(q, a) = (q′, a′,L), the machine
overwrites a with a′, updates its state to q′, and moves to square i−1 (or to
square i+ 1 if the third component of the transition function is R instead of
L). The Turing machine stops if it reaches state qhalt ∈ Q and outputs the
vector of symbols on the tape before the first blank symbol. If the Turing
machine M terminates (in finitely many steps) with input s, we write M(s)
for its output.

We say an algorithm (Turing machine) M solves a computational problem
F if M terminates for every input s ∈ {0, 1}∗, and M(s) ∈ F (s). A compu-
tational problem is solvable if there exists a Turing machine that solves it. It
turns out that other notions of an algorithm (including Church’s λ-calculus
and modern computer programming languages) are equivalent in the sense
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that the set of solvable problems is the same.
A polynomial time algorithm is a Turing machine M for which there exist

a, b > 0 such that for all input strings s ∈ {0, 1}∗, M terminates after at most
a|s|b transitions. We say a problem F is polynomial time solvable, written
F ∈ P, if there exists a polynomial time algorithm that solves it1.

A nondeterministic Turing machine has the same definition as that for a
Turing machine except that the transition function δ becomes a set-valued
function δ : Q×{0, 1, } → P

(
Q×{0, 1, }×{L,R}

)
. The idea is that, while

in state q with its head over symbol a, a nondeterministic Turing machine
replicates |δ(q, a)| copies of itself (and its tape) in the current configuration,
each exploring a different possible future configuration in the set δ(q, a).
Each replicate branches to further replicates in the next step. The process
continues until one of its replicates reaches the state qhalt. At that point, the
Turing machine replicate that has halted outputs its tape content and all
replicates stop computation. A nondeterministic polynomial time algorithm
is a nondeterministic Turing machine Mnd for which there exist a, b > 0
such that for all input strings s ∈ {0, 1}∗, Mnd terminates after at most
a|s|b steps. (We count all replicates of Mnd making one parallel transition
as one step.) We say a computational problem F is nondeterministically
polynomial time solvable, written F ∈ NP, if there exists a nondeterministic
polynomial time algorithm that solves it2.

Clearly P ⊆ NP, but it is not currently known if these classes are equal.
It is widely believed that P 6= NP, and many computational lower bounds
for particular computational problems have been proved conditional under
this assumption. Working under this hypothesis, a common strategy is to
relate the algorithmic complexity of one computational problem to another.
We say a computational problem F is polynomial time reducible to another
problem G, written as F ≤P G, if there exist polynomial time algorithms
Min and Mout such that Mout ◦G ◦Min(s) ⊆ F (s). In other words, F ≤P G
if we can convert an input of F to an input of G through Min, and translate
every solution of G back to a solution for F through Mout.

Definition 2. A computational problem G is NP-hard if F ≤P G for
all F ∈ NP. It is NP-complete if it is in NP and is NP-hard.

Karp (1972) showed that a large number of natural computational prob-

1In fact, some authors write FP (short for ‘Functional Polynomial Time’) for the class we
have denoted as P here. The notation P is then reserved for the subset of computational
problems consisting of so-called decision problems F , where F (s) ∈

{
{0}, {1}

}
for all

s ∈ {0, 1}∗.
2Again, some authors write FNP for the class we have denoted as NP here.
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lems are NP-complete, including the Clique problem mentioned in Section 4.
The Turing machines and nondeterministic Turing machines introduced
above are both non-random. In some situations (e.g. statistical problems),
it is useful to consider random procedures:

Definition 3. A probabilistic Turing machine Mpr is a triple (Q, δ,X),
where

• Q is a finite set of states, among which are two distinguished states
qstart and qhalt.
• δ is a transition function from Q× {0, 1, } × {0, 1} to Q× {0, 1, } ×
{L,R}.
• X = (X1, X2, . . .) is an infinite sequence of independent Bern(1/2)

random variables.

In its tth step, if a probabilistic Turing machine Mpr is in state q with its
reading head over symbol a, and δ(q, a,Xt) = (q′, a′, L), then Mpr overwrites
a with a′, updates its state to q′ and moves its reading head to the left (or to
the right if δ(q, a,Xt) = (q′, a′, R)). A randomised polynomial time algorithm
is a probabilistic Turing machine Mpr for which there exist a, b > 0 such
that for any s ∈ {0, 1}∗, Mpr terminates in at most a|s|b steps. We say a
computational problem F is solvable in randomised polynomial time, written
as F ∈ BPP, if, given ε > 0, there exists a randomised polynomial time
algorithm Mpr,ε such that P

(
Mpr,ε(s) ∈ F (s)

)
≥ 1− ε.

In the above discussion, the classes P, NP, BPP are all defined through
worst-case performance of an algorithm, since we require the time bound
to hold for every input string s. However, in many statistical applications,
the input string s is drawn from some distribution D on {0, 1}∗, and it
is the average performance of the algorithm, rather than the worst case
scenario, that is of more interest. We say such a random problem is solvable
in randomised polynomial time if, given ε > 0, there exists a randomised
polynomial time algorithm Mpr,ε such that, when s ∼ D, independent of X,
we have P

(
Mpr(s) ∈ F (s)

)
≥ 1− ε. Note that the probability here is taken

over both the randomness in s and the randomness in X. Similar to the non-
random cases, we can talk about randomised polynomial time reduction. If
MF is a randomised polynomial time algorithm for a computational problem
F , then Mout◦MF ◦Min is a potential randomised polynomial time algorithm
for another problem G for suitably constructed randomised polynomial time
algorithms Min and Mout. One such construction is the key to the proof of
Theorem 6 in the main document Wang, Berthet and Samworth (2016).
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