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Abstract

We study the problem of high-dimensional Principal Component Analysis (PCA)
with missing observations. In simple, homogeneous missingness settings with a noise
level of constant order, we show that an existing inverse-probability weighted (IPW)
estimator of the leading principal components can (nearly) attain the minimax optimal
rate of convergence. However, deeper investigation reveals both that, particularly in
more realistic settings where the missingness mechanism is heterogeneous, the empirical
performance of the IPW estimator can be unsatisfactory, and moreover that, in the
noiseless case, it fails to provide exact recovery of the principal components. Our main
contribution, then, is to introduce a new method for high-dimensional PCA, called
primePCA, that is designed to cope with situations where observations may be missing
in a heterogeneous manner. Starting from the IPW estimator, primePCA iteratively
projects the observed entries of the data matrix onto the column space of our current
estimate to impute the missing entries, and then updates our estimate by computing
the leading right singular space of the imputed data matrix. It turns out that the
interaction between the heterogeneity of missingness and the low-dimensional structure
is crucial in determining the feasibility of the problem. We therefore introduce an
incoherence condition on the principal components and prove that in the noiseless case,
the error of primePCA converges to zero at a geometric rate when the signal strength is
not too small. An important feature of our theoretical guarantees is that they depend
on average, as opposed to worst-case, properties of the missingness mechanism. Our
numerical studies on both simulated and real data reveal that primePCA exhibits very
encouraging performance across a wide range of scenarios.
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1 Introduction

One of the ironies of working with Big Data is that missing data play an ever more significant
role, and often present serious difficulties for analysis. For instance, a common approach to
handling missing data is to perform a so-called complete-case analysis (Little and Rubin,
2014), where we restrict attention to individuals in our study with no missing attributes.
When relatively few features are recorded for each individual, one can frequently expect a
sufficiently large proportion of complete cases that, under an appropriate missing at random
hypothesis, a complete-case analysis may result in only a relatively small loss of efficiency. On
the other hand, in high-dimensional regimes where there are many features of interest, there
is often such a small proportion of complete cases that this approach becomes infeasible. As
a very simple illustration of this phenomenon, imagine an n× p data matrix in which each
entry is missing independently with probability 0.01. When p = 5, a complete-case analysis
would result in around 95% of the individuals (rows) being retained, but even when we reach
p = 300, only around 5% of rows will have no missing entries.

The inadequacy of the complete-case approach in many applications has motivated nu-
merous methodological developments in the field of missing data over the past 60 years or
so, including imputation (Ford, 1983; Rubin, 2004), factored likelihood (Anderson, 1957)
and Expectation-Maximisation approaches (Dempster, Laird and Rubin, 1977); see, e.g.,
Little and Rubin (2014) for an introduction to the area. Recent years have also witnessed
increasing emphasis on understanding the performance of methods for dealing with miss-
ing data in a variety of high-dimensional problems, including sparse regression (Loh and
Wainwright, 2012; Belloni, Rosenbaum and Tsybakov, 2017), classification (Cai and Zhang,
2018b), sparse principal component analysis (Elsener and van de Geer, 2018) and covariance
and precision matrix estimation (Lounici, 2014; Loh and Tan, 2018).

In this paper, we study the effects of missing data in one of the canonical problems of
high-dimensional data analysis, namely dimension reduction via Principal Component Anal-
ysis (PCA). This is closely related to the topic of matrix completion, which has received a
great deal of attention in the literature over the last decade or so (e.g. Candès and Recht,
2009; Candès and Plan, 2010; Keshavan, Montanari and Oh, 2010; Mazumder, Hastie and
Tibshirani, 2010; Koltchinskii, Lounici and Tsybakov, 2011; Candès et al., 2011; Negahban
and Wainwright, 2012). There, the focus is typically on accurate recovery of the missing
entries, subject to a low-rank assumption on the signal matrix; by contrast, our focus is on
estimation of the principal eigenspaces. Previously proposed methods for low-dimensional
PCA with missing data include non-linear iterative partial least squares (Wold and Lyt-
tkens, 1969), iterative PCA (Kiers, 1997; Josse and Husson, 2012) and its regularised variant
(Josse et al., 2009); see Dray and Josse (2015) for a nice survey and comparative study.
More broadly, the R-miss-tastic website https://rmisstastic.netlify.com/ provides
a valuable resource on methods for handling missing data.

The importance of the problem of high-dimensional PCA with missing data derives from
its manifold applications. For instance, in many commercial settings, one may have a matrix
of customers and products, with entries recording the number of purchases. Naturally, there
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will typically be a high proportion of missing entries. Nevertheless, PCA can be used to
identify items that distinguish the preferences of customers particularly effectively, to make
recommendations to users of products they might like and to summarise efficiently customers’
preferences. Later, we will illustrate such an application, on the Million Song Dataset, where
we are able to identify particular songs that have substantial discriminatory power for users’
preferences as well as other interesting characteristics of the user database. Other potential
application areas include health data, where one may seek features that best capture the
variation in a population, and where the corresponding principal component scores may be
used to cluster individuals into subgroups (that may, for instance, receive different treatment
regimens).

To formalise the problem we consider, suppose that the (partially observed) matrix Y ∈
Rn×d is of the form

Y = X + Z, (1)

for independent random matrices X and Z, where X is a low-rank matrix and Z is a noise
matrix with independent and identically distributed subgaussian entries having zero mean
and unit variance. The low-rank property of X is encoded through the assumption that it
is generated via

X = UV>K , (2)

where VK ∈ Rd×K has orthonormal columns and U is a random n×K matrix (with n > K)
having independent and identically distributed rows with mean zero.

We are interested in estimating the column space of VK , denoted by Col(VK), which is
also the K-dimensional leading eigenspace of Σy := n−1EY>Y. Cho, Kim and Rohe (2017)
considered a different but related model where U in (2) is deterministic, and is not necessarily
centred, so that VK is the top K right singular space of E(Y). (By contrast, in our setting,
E(Y) = 0, so the mean structure is uninformative for recovering VK .) In the context of p-
homogeneous missingness, where each entry of Y is observed independently with probability
p ∈ (0, 1), Cho, Kim and Rohe (2017) proposed to estimate Col(VK) by Col(V̂K), where V̂K

is a simple estimator formed as the top K eigenvectors of an inverse-probability weighted
(IPW) version of the sample covariance matrix (here, the weighting is designed to achieve
approximate unbiasedness). Our first contribution, in Section 2, is to provide a detailed,
finite-sample analysis of this estimator in the model given by (1) and (2), with a noise
level of constant order. The differences between the settings necessitate completely different
arguments, and reveal in particular a new phenomenon in the form of a phase transition in
the attainable risk bound for the sin Θ loss function, i.e. the Frobenius norm of the diagonal
matrix of the sines of the principal angles between V̂K and VK . Moreover, we also provide a
minimax lower bound in the case of estimating a single principal component, which reveals
that this estimator achieves the minimax optimal rate up to a poly-logarithmic factor.

While this appears to be a very encouraging story for the IPW estimator, it turns out that
it is really only the starting point for a more complete understanding of high-dimensional
PCA. For instance, in the noiseless case, the IPW estimator fails to provide exact recovery of
the principal components. Moreover, it is the norm rather than the exception in applications
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that the missingness mechanism is heterogeneous, in the sense that the probability of observ-
ing entries of Y varies (often significantly) across columns. For instance, in recommendation
systems, some products will typically be more popular than others, and hence we observe
more ratings in those columns. As another example, in meta-analyses of data from several
studies, it is frequently the case that some covariates are common across all studies, while
others appear only in a reduced proportion of them. In Section 2.2, we present an example
to show that PCA algorithms can break down entirely for such heterogeneous missingness
mechanisms when individual coordinates in VK may be large in absolute value. Intuitively,
if we do not observe the interaction between the jth and kth columns of Y, then we cannot
hope to estimate the jth or kth rows of VK , and this will cause substantial error if these
rows of VK contain significant signal. This example illustrates that it is only possible to
handle heterogeneous missingness in high-dimensional PCA with additional structure, and
indicates that it is natural to assume incoherence among the entries of VK ; i.e. no single
coordinate of VK is too large in absolute value.

Our main contribution, then, is to propose a new, iterative algorithm, called primePCA

(short for projected refinement for imputation of missing entries in Principal Component
Analysis), in Section 3, to estimate VK under this incoherence assumption, even with het-
erogeneous missingness. The initialiser for this algorithm is a modified version of the simple
estimator discussed above, where the modification accounts for potential heterogeneity. Each
iteration of primePCA projects the observed entries of Y onto the column space of the cur-
rent estimate of VK to impute missing entries, and then updates our estimate of VK by
computing the leading right singular space of the imputed data matrix. We show that in the
noiseless setting, i.e., Z = 0, primePCA achieves exact recovery of the principal eigenspaces
(with a geometric convergence rate) when the initial estimator is close to the truth and a suf-
ficiently large proportion of the data are observed. Moreover, we also provide a performance
guarantee for the initial estimator, showing that it satisfies the desired requirement with
high probability, conditional on any observed missingness pattern. Code for our algorithm
is available in the R package primePCA (Zhu, Wang and Samworth, 2019).

To the best of our knowledge, primePCA is the first method for high-dimensional PCA
that is designed to cope with settings where the missingness mechanism is heterogeneous. In-
deed, the previously mentioned works on high-dimensional PCA and other high-dimensional
statistical problems with missing data have either focused on a uniform missingness setting
or have imposed a lower bound on entrywise observation probabilities, which reduces to this
uniform case. A key contribution of our work is to account explicitly for the the effect of a
heterogeneous missingness mechanism, where the estimation error depends on average en-
trywise missingness rather than worst-case missingness; see the discussions after Theorem 4
and Proposition 2 below. In Section 4, the empirical performance of primePCA is compared
both with that of the initialiser, and with a popular method for matrix completion called
softImpute (Mazumder, Hastie and Tibshirani, 2010; Hastie et al., 2015), which solves a
nuclear-norm regularised optimisation problem, and which can be adapted to provide an
estimate of VK . It turns out that in many settings, primePCA outperforms the softImpute

algorithm, even when the latter is allowed access to the oracle choice of regularisation pa-
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rameter for each dataset. Our analysis of the Million Song Dataset is given in Section 5.
In Section 6, we illustrate how some of the ideas in this work may be applied to other
high-dimensional statistical problems involving missing data. Proofs of our main results are
deferred to Section 7; auxiliary results and their proofs are given in Section 8.

1.1 Notation

For a positive integer T , we write [T ] := {1, . . . , T}. For v = (v1, . . . , vd)
> ∈ Rd and

p ∈ [1,∞), we define ‖v‖p :=
(∑d

j=1 |vj|p
)1/p

and ‖v‖∞ := maxj∈[d] |vj|. We let Sd−1 :=

{u ∈ Rd : ‖u‖2 = 1} denote the unit Euclidean sphere in Rd. Given u = (u1, . . . , ud)
>,v =

(v1, . . . , vd)
> ∈ Rd, we denote their Hamming distance by dH(u,v) :=

∑d
j=1 1{uj 6=vj}. Also,

we write ej ∈ Rd, j ∈ [d], for the standard basis vector along the jth coordinate axis and 1d
for the all-one vector in Rd.

Given u = (u1, . . . , ud)
> ∈ Rd, we write diag(u) ∈ Rd×d for the diagonal matrix whose

jth diagonal entry is uj. We let Sd×d denote the set of symmetric matrices in Rd×d and
let Od1×d2 denote the set of matrices in Rd1×d2 with orthonormal columns. For a matrix

A = (Aij) ∈ Rd1×d2 , and p, q ∈ [1,∞], we write ‖A‖p :=
(∑

i,j |Aij|p
)1/p

if 1 ≤ p < ∞ and
‖A‖∞ := maxi,j |Aij| for its entrywise `p norm, and ‖A‖p→q := sup‖v‖p=1 ‖Av‖q for its p-to-q

operator norm, where A is viewed as a representation of a linear map from (Rd1 , ‖ · ‖p) to
(Rd2 , ‖·‖q). We provide special notation for the (Euclidean) operator norm and the Frobenius
norm by writing ‖A‖op := ‖A‖2→2 and ‖A‖F := ‖A‖2, respectively, and also write ‖A‖∗ for
the nuclear norm. If A ∈ Sd×d has the eigendecomposition A = Q diag(µ1, . . . , µd)Q

> for
some Q ∈ Od×d and µ1 ≥ · · · ≥ µd, we write λk(A) := µk for its kth largest eigenvalue and
abuse terminology slightly to refer to the leftmost k columns of Q as the top k eigenvectors
of A when µk > µk+1. Also, we write |A| := Q diag(|µ1|, . . . , |µd|)Q>. For any A ∈ Rn×d

with singular value decomposition A = U diag(µ1, . . . , µr)V
>, where U ∈ On×r, V ∈ Od×r

and µ1 ≥ . . . ≥ µr > 0, we write σk(A) := µk for its kth largest singular value and refer
to the leftmost k columns of U (resp. V) as the top k left (resp. right) singular vectors of
A. The Moore–Penrose pseudoinverse of A is defined as A† := V diag(µ−11 , . . . , µ−1r )U>. If
S ⊆ [n], we write AS ∈ R|S|×d for the matrix obtained by extracting the rows of A that are
in S.

For two matrices A,B ∈ Sd×d, we write A � B if B −A is positive semidefinite. The
Kronecker product of two matrices A = (Aij) ∈ Rd1×d2 and B = (Bij) ∈ Rd′1×d′2 is defined as
the block matrix

A⊗B :=

A11B · · · A1d2B
...

. . .
...

Ad11B · · · Ad1d2B

 ∈ Rd1d′1×d2d′2 .

When d′1 = d1 and d′2 = d2, the Hadamard product of A and B, denoted A ◦B, is defined
such that (A ◦ B)ij = AijBij for any i ∈ [d1] and j ∈ [d2]. Moreover, we say that B is the
Hadamard inverse of A if A ◦B = 1d11

>
d2

.
If U,V ∈ Od×K , then the matrix of principal angles between Col(U) and Col(V) is given
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by Θ(U,V) := diag
(
cos−1(σ1), . . . , cos−1(σK)

)
, where σj = σj(U

>V); we let sin Θ(U,V) be
defined entrywise. We define the loss function

L(U,V) := ‖ sin Θ(U,V)‖F.

For a real-valued random variable X and r ∈ N, we define its (Orlicz) ψr-norm by

‖X‖ψr := sup
q∈N

q−1/r
(
E|X|q

)1/q
.

For a random vector x taking values in Rd and r ≥ 1, we define its (Orlicz) ψr-norm by

‖x‖ψr := sup
u∈Sd−1

‖u>x‖ψr ,

and define a version that is invariant to invertible affine transformations by

‖x‖ψ∗r := sup
u∈Sd−1

‖u>(x− Ex)‖ψr

Var1/2(u>x)
.

We say that a d-dimensional random vector x is sub-Gaussian if ‖x‖ψ∗2 < ∞. For two
distributions P1 and P2 defined on the same measurable space (X ,A) and such that P1 is
absolutely continuous with respect to P2, the Kullback–Leibler divergence from P2 to P1 is
given by

KL(P1, P2) :=

∫
X

log
dP1

dP2

dP1.

Finally, for a, b ≥ 0, we write a . b if there exists a universal constant C > 0 such that
a ≤ Cb, and, where a and b may depend on an additional variable x, say, we write a .x b if
there exists C > 0, depending only on x, such that a ≤ Cb.

2 The inverse-probability weighted estimator

For notational simplicity, we will write λj := λj(Σu) throughout the paper. Let Aij denote
the event that the (i, j)th entry Yij of Y is observed. We define the revelation matrix
Ω = (ωij) ∈ Rn×d by ωij := 1Aij

and the partially observed data matrix

YΩ := Y ◦Ω. (3)

In this section, we consider the simple case, where entries of the data matrix Y are observed
independently and completely at random (i.e., independent of (U,Z)) with p-homogeneous
missingness probability. Thus, P(Aij) = p ∈ (0, 1) for all i ∈ [n], j ∈ [d], and Aij and Ai′j′
are independent for (i, j) 6= (i′, j′).

For i ∈ [n], let y>i and ω>i denote the ith rows of Y and Ω respectively, and define
ỹi := yi ◦ωi. Writing P := Eω1ω

>
1 and W for its Hadamard inverse, we have that under the
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p-homogeneous missingness mechanism, P = p2
{
1d1

>
d − (1− p−1)Id

}
and W = p−2

{
1d1

>
d −

(1−p)Id
}

. Following Cho, Kim and Rohe (2017), we consider the following weighted sample
covariance matrix:

G :=

(
1

n
Y>ΩYΩ

)
◦W =

(
1

n

n∑
i=1

ỹiỹ
>
i

)
◦W.

The reason for including the weight W is to ensure that E(G|Y) = n−1Y>Y, so that G is
an unbiased estimator of Σy. Related ideas appear in the work of Cai and Zhang (2018a)
on high-dimensional covariance matrix estimation with missing data. There, the authors
propose a ‘generalised sample covariance matrix’, where the covariance between any two
dimensions j and k is estimated using only the observations for which both dimensions j
and k were observed. In practice, p is typically unknown and needs to be estimated. It is
thus natural to consider the following plug-in estimator Ĝ:

Ĝ =

(
1

n
Y>ΩYΩ

)
◦ Ŵ, (4)

where Ŵ = p̂−2
{
1d1

>
d − (1− p̂)Id

}
and p̂ := (nd)−1‖Ω‖1 denotes the proportion of observed

entries in Y. We let V̂K denote the top K eigenvectors of Ĝ.

2.1 Theory for homogeneous missingness

In order to describe our theoretical performance guarantee for V̂K , we first list our condi-
tions on the underlying data generating mechanism. We assume that (YΩ,Ω) is generated
according to (1), (2) and (3), where:

(A1) U, Z and Ω are independent;
(A2) U has independent and identically distributed rows (ui : i ∈ [n]) with Eu1 = 0 and

‖u1‖ψ∗2 ≤ τ ;
(A3) Z = (zij)i∈[n],j∈[d] has independent and identically distributed entries with Ez11 = 0,

Var z11 = 1 and ‖z11‖ψ∗2 ≤ τ ;
(A4) ‖y21j‖ψ1 ≤M for all j ∈ [d];
(A5) Ω has independent Bern(p) entries.

In many places in this work, we will think intuitively of τ and M as constants. In particular,
if U has multivariate normal rows and Z has normal entries, then we can simply take τ = 1.
For M , under the same normality assumptions, we have ‖y21j‖ψ1 = Var(y1j), so this intuition
amounts to thinking of the variance of each component of our data as being of constant
order.

The theorem below gives bounds on the expected proximity between Col(V̂K) and
Col(VK).
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Theorem 1. Assume (A1)–(A5) and that n, d ≥ 2, dp ≥ 1. Write R := λ1 + 1. Then there
exists a universal constant C > 0 such that

EL(V̂K ,VK) ≤ CK1/2

λKp

{(
Md(Rτ 2p+M log d) log2 d

n

)1/2

+
Md log2 d log n

n

}
. (5)

In particular, if n ≥ d log2 d log2 n/(λ1p+ log d), then there exists CM,τ > 0, depending only
on M and τ , such that

EL(V̂K ,VK) ≤ CM,τ

λKp

(
Kd(λ1p+ log d) log2 d

n

)1/2

. (6)

When M, τ are regarded as constants, Theorem 2 below shows that (6) is the minimax
rate up to logarithmic factors when K = 1. Note that the condition n ≥ d log2 d log2 n/(λ1p+
log d) is reasonable given the scaling requirement for consistency of the empirical eigenvectors
(Shen et al., 2016; Wang and Fan, 2017; Johnstone and Lu, 2009). Indeed, Theorem 5.1 in
Shen et al. (2016) shows that when λ1 � 1, the top eigenvector of the sample covariance
matrix estimator is consistent if and only if d/(nλ1) → 0. If we regard np as the effective
sample size in our missing data PCA problem, then it is a sensible analogy to assume
d/(npλ1) → 0 here, which implies that the condition n ≥ d log2 d log2 n/(λ1p + log d) holds
for large n, up to poly-logarithmic factors.

As mentioned in the introduction, Cho, Kim and Rohe (2017) considered the different
but related problem of singular space estimation in a model in which Y = Θ + Z, where Θ
is a matrix of the form UV>K for a deterministic matrix U, whose rows are not necessarily
centred. In this setting VK is the leading K-dimensional right singular space of Θ, and the
same estimator V̂K can be applied. An important distinction is that, when the rows of U are
not centred and the entries of Θ are of comparable magnitude, ‖Θ‖F is of order

√
nd, so when

K is regarded as a constant, it is natural to think of the singular values of Θ as also being
of order

√
nd. Indeed, this is assumed in Cho, Kim and Rohe (2017). On the other hand, in

our model, where the rows of U have mean zero, assuming that the eigenvalues are of order√
nd would amount to an extremely strong requirement, essentially restricting attention

to very highly spiked covariance matrices. Removing this condition requires completely
different arguments. Moreover, (6) reveals an interesting phase transition phenomenon that
has not been observed previously in the literature. Specifically, if the signal strength is
large enough that λ1 ≥ p−1 log d, then we should regard np as the effective sample size, as
might intuitively be expected. On the other hand, if λ1 < p−1 log d, then the estimation
problem is considerably more difficult and the effective sample size is of order np2. In fact,
by inspecting the proof of Theorem 1, we see that in the high signal case, it is the difficulty of
estimating the diagonal entries of Σy that drives the rate, while when the signal strength is
low, the bottleneck is the challenge of estimating the off-diagonal entries. By comparing (6)
with the minimax lower bound result in Theorem 2 below, we see that this phase transition
phenomenon is an inherent feature of this estimation problem rather than an artefact of the
proof techniques we used to derived the upper bound.
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In order to state our minimax lower bound, we let Pn,d(λ1, p) denote the class of distri-
butions of pairs (YΩ,Ω) satisfying (A1), (A2), (A3) and (A5) with K = 1. Since we are
now working with vectors instead of matrices, we write v in place of V1.

Theorem 2. There exists a universal constant c > 0 such that

inf
v̂

sup
P∈Pn,d(λ1,p)

EPL(v̂,v) ≥ cmin

{
1

λ1p

(
d(λ1p+ 1)

n

)1/2

, 1

}
,

where the infimum is taken over all estimators v̂ = v̂(YΩ,Ω) of v.

Theorem 2 reveals that V̂1 in Theorem 1 achieves the minimax optimal rate of estimation
up to a logarithmic factor when M and τ are regarded as constants and K = 1.

2.2 General observation mechanism

Although Section 2.1 may appear to indicate that the problem of high-dimensional PCA with
missing entries is essentially solved, the aim of this subsection is to show that the situation
changes dramatically once the data can be missing heterogeneously.

To this end, consider the following example. Suppose that ω is equal to (1, 0, 1, . . . , 1)>

or (0, 1, 1, . . . , 1)> with equal probability, so that

P = Eωω> =


1/2 0 1/2 . . . 1/2
0 1/2 1/2 . . . 1/2

1/2 1/2 1 . . . 1
...

...
...

. . .
...

1/2 1/2 1 . . . 1

 ∈ Rd×d.

In other words, for each i ∈ [n], we observe precisely one of the first two entries of yi,
together with all of the remaining (d − 2) entries. Let Σ = Id + αα>, where α =
(2−1/2, 2−1/2, 0, . . . , 0)> ∈ Rd, and Σ′ = Id +α′(α′)>, where α′ = (2−1/2,−2−1/2, 0, . . . , 0)> ∈
Rd. Suppose that y ∼ Nd(0,Σ) and let ỹ := y◦ω, and similarly assume that y′ ∼ Nd(0,Σ

′)
and set ỹ′ := y′ ◦ ω. Then (ỹ,ω) and (ỹ′,ω) are identically distributed. However, the
leading eigenvectors of Σ and Σ′ are respectively α and α′, which are orthogonal! Thus, it
is impossible to simultaneously estimate consistently the leading eigenvector of both Σ and
Σ′ from our observations. We note that it is the disproportionate weight of the first two co-
ordinates in the leading eigenvector, combined with the failure to observe simultaneously the
first two entries in the data, that makes the estimation problem intractable in this example.

The understanding derived from this example motivates us to assume that VK satisfies
the incoherence condition ‖VK‖∞ ≤ µ/

√
d for some µ > 0. The intuition here is that the

maximally incoherent case is where each column of VK is a unit vector proportional to a
vector whose entries are either 1 or −1, in which case ‖VK‖∞ = 1/

√
d. Our condition

asks for the columns of VK to have an incoherence of the same order as this maximally
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incoherent case. Similar conditions have been invoked in the literature on matrix completion
(e.g., Candès and Plan, 2010; Keshavan, Montanari and Oh, 2010), but for a different reason.
There, the purpose is to ensure that the true right singular space is not too closely aligned
with the standard basis, which allows the missing entries of the matrix to be inferred from
relatively few observations. In our case, the incoherence condition ensures that significant
estimation error in a few components of the leading eigenvectors does not affect the overall
statistical performance too much. Thus, it rules out examples such as the one described
above, where heavy corruption in only a few entries spoils any chance of consistent estimation.

3 Our new algorithm, primePCA

We are now in a position to introduce and analyse our iterative algorithm primePCA to es-
timate principal eigenspaces of the covariance matrix Σy. The basic idea is to iteratively

refine a current (input) iterate V̂
(in)
K by first imputing the missing entries of the data ma-

trix YΩ using the current estimate of VK , and then applying a singular value decomposition
(SVD) to the completed data matrix. More precisely, for i ∈ [n], we let Ji denote the
indices for which the corresponding entry of yi is observed, and regress the observed data
ỹi,Ji = yi,Ji on (V̂

(in)
K )Ji to obtain an estimate ûi of the ith row of U. This is natural in

view of the data generating mechanism yi = VKui + zi. We then use ŷi,J c
i

:= (V̂
(in)
K ûi)J c

i

to impute the missing values yi,J c
i
, retain the original observed entries as ŷi,Ji := yi,Ji , and

set our next (output) iterate V̂
(out)
K to be the top K right singular vectors of the imputed

matrix Ŷ := (ŷ1, . . . , ŷn)>. To motivate this final choice, observe that when Z = 0, we have
rank(Y) = K; we therefore have the SVD Y = LΓR>, where L ∈ On×K ,R ∈ Od×K and
Γ ∈ RK×K is diagonal with positive diagonal entries. This means that R = VKU>LΓ−1, so
the column spaces of R and VK coincide. For convenience, pseudocode of a single iteration
of refinement in this algorithm is given in Algorithm 1.

Algorithm 1 refine(K, V̂
(in)
K ,Ω,YΩ), a single step of refinement of current iterate V̂

(in)
K

Input: K ∈ [d], V̂
(in)
K ∈ Od×K , Ω ∈ {0, 1}n×d with mini ‖ωi‖1 ≥ 1, YΩ ∈ Rn×d

Output: V̂
(out)
K ∈ Od×K

1: for i in [n] do
2: Ji ← {j ∈ [d] : ωij = 1}
3: ûi ← (V̂

(in)
K )†Jiỹi,Ji

4: ŷi,J c
i
← V̂

(in)
K ûi,J c

i

5: ŷi,Ji ← yi,Ji
6: end for
7: Ŷ ← (ŷ1, . . . , ŷn)>

8: V̂
(out)
K ← top K right singular vectors of Ŷ

10



We now seek to provide formal justification for Algorithm 1. For any V(1),V(2) ∈ Od×K ,
we let W1DV(1),V(2)W>

2 be an SVD of (V(2))>V(1) and let WV(1),V(2) := W1W
>
2 . The

two-to-infinity distance between V(1) and V(2) is then defined to be

T (V(1),V(2)) := ‖V(1) −V(2)WV(1),V(2)‖2→∞.

Note that the definition of T (V(1),V(2)) does not depend on our choice of SVD and that
T (V(1),V(2)) = T (V(1)O1,V

(2)O2) for any O1,O2 ∈ OK×K . The following proposition
considers the noiseless setting Z = 0, and provides conditions under which, for any estimator
V̂

(in)
K that is close to VK , a single iteration of refinement in Algorithm 1 contracts the two-

to-infinity distance between their column spaces. In a slight abuse of notation, we write
Ωc := 1d1

>
d −Ω.

Proposition 1. Let V̂
(out)
K := refine

(
K, V̂

(in)
K ,Ω,YΩ

)
as in Algorithm 1 and let ∆ :=

T (V̂
(in)
K ,VK). We assume that mini∈[n] ‖ωi‖1 > K, that mini∈[n]

d1/2σK((V̂
(in)
K )Ji )

|Ji|1/2
≥ 1/σ∗ > 0,

and write the SVD of Y as LΓR>. Suppose that Z = 0, and that both ‖L‖2→∞ ≤ µ1(K/n)1/2

and ‖R‖2→∞ ≤ µ2(K/d)1/2 hold for some µ1, µ2 ≥ 1. Then there exist c1, C > 0, depending
only on µ1, µ2 and σ∗, such that whenever

(i) ∆ ≤ c1σK(Γ)

K2σ1(Γ)
√
d
,

(ii) ρ := CK2σ1(Γ)‖Ωc‖1→1

σK(Γ)n
< 1,

we have that

T (V̂
(out)
K ,VK) ≤ ρ∆.

In practice, in cases where either of the two conditions on mini∈[n] ‖ωi‖1 or σ∗ is not
satisfied, we first perform a screening step that restricts attention to a set of row indices for
which the data contain sufficient information to estimate the K principal components. This
screening step is explicitly accounted for in Algorithm 2 below, as well as in the theory that
justifies it.

Algorithm 2 provides pseudocode for the iterative primePCA algorithm, given an initial

estimator V̂
(0)
K . The iterations continue until either we hit the convergence threshold κ∗ or

the maximum iteration number niter. Theorem 3 below guarantees that, in the noiseless
setting of Proposition 1, the primePCA estimator converges to VK at a geometric rate.

Theorem 3. For t ∈ [niter], let V̂
(t)
K be the tth iterate of Algorithm 2 with input K, V̂

(0)
K ,

Ω ∈ {0, 1}n×d, YΩ ∈ Rn×d, niter ∈ N, σ∗ ∈ (0,∞) and κ∗ = 0. Write ∆ := T (V̂
(0)
K ,VK) and

let

I :=

{
i : ‖ωi‖1 > K, σK((VK)Ji) ≥

|Ji|1/2

d1/2σ∗

}
,

11



Algorithm 2 primePCA, an iterative algorithm for estimating VK given initialiser V̂
(0)
K

Input: K ∈ [d], V̂
(0)
K ∈ Od×K ,Ω ∈ {0, 1}n×d,YΩ ∈ Rn×d, niter ∈ N, σ∗ ∈ (0,∞), κ∗ ∈ [0,∞)

Output: V̂K ∈ Rd×K

1: for i in [n] do
2: Ji ← {j ∈ [d] : ωij = 1}
3: end for
4: for t in [niter] do

5: I(t−1) ←
{
i : ‖ωi‖1 > K, σK((V̂

(t−1)
K )Ji) ≥

|Ji|1/2
d1/2σ∗

}
6: V̂

(t)
K ← refine(K, V̂

(t−1)
K ,ΩI(t−1) , (YΩ)I(t−1)) # refine is defined in Algorithm 1.

7: if L(V̂
(t)
K , V̂

(t−1)
K ) < κ∗ then break

8: end if
9: end for

10: return V̂K = V̂
(t)
K

where Ji := {j : ωij = 1}. Let YI = LΓR> be an SVD of YI. Suppose that both ‖L‖2→∞ ≤
µ1(K/|I|)1/2 and ‖R‖2→∞ ≤ µ2(K/d)1/2 hold, for some µ1, µ2 ≥ 1. Let

Z :=

{
σK
(
(VK)Ji

)
d1/2

|Ji|1/2
: i ∈ [n], ‖ωi‖1 > K

}
,

and assume that ε := minz∈Z |z − σ−1∗ | > 0. Then there exist c1, C > 0, depending only on
µ1, µ2, σ∗ and ε, such that whenever

(i) ∆ ≤ c1σK(YI)

K2σ1(YI)
√
d
,

(ii) ρ :=
CK2σ1(YI)‖Ωc

I‖1→1

σK(YI)|I|
< 1,

we have that for every t ∈ [niter],

T (V̂
(t)
K ,VK) ≤ ρt∆.

3.1 Initialisation

Theorem 3 provides a general guarantee on the performance of primePCA, but relies on

finding an initial estimator V̂
(0)
K that is sufficiently close to the truth VK . The aim of this

subsection, then, is to propose a simple initialiser and show that it satisfies the requirement
of Theorem 3 with high probability, conditional on the missingness pattern.

Consider the following modified weighted sample covariance matrix

G̃ :=
1

n

n∑
i=1

ỹiỹ
>
i ◦ W̃,
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where for any j, k ∈ [d],

W̃jk :=

{
n∑n

i=1 ωijωik
if
∑n

i=1 ωijωik > 0,

0, otherwise.

Here, the matrix W̃ replaces Ŵ in (4) because we no longer wish to assume homogeneous

missingness. We take as our initial estimator of VK the matrix of top K eigenvectors of G̃,
denoted ṼK . Theorem 4 below studies the performance of this initialiser, in terms of its
two-to-infinity norm error, as required for application in Theorem 3. We write PΩ and EΩ

for probabilities and expectations conditional on Ω.

Theorem 4. Assume (A1)–(A4) and that n, d ≥ 2. Suppose further that ‖VK‖∞ ≤ µ/
√
d,

that
∑n

i=1 ωijωik > 0 for all j, k and let R := λ1 + 1. Then there exist cM,τ,µ, CM,τ,µ > 0,
depending only on M, τ and µ, such that for every ξ > 2, if

λK > cM,τ,µ

{(
max

(
‖W̃‖1, R‖W̃‖1→1

)
ξ log d

n

)1/2

+
ξ‖W̃‖F log2 d

n

}
, (7)

then

PΩ

{
T (ṼK ,VK)≥ CM,τ,µK

3/2R1/2

λKd1/2

(
1+

d1/2

KλK

)(
ξ1/2‖W̃‖1/2∞→∞ log1/2d

n1/2
+
ξ‖W̃‖2→∞ log d

n

)}
≤ 2(eK log 5 +K + 4)d−(ξ−1) + 2d−(ξ−2).

As a consequence, writing

A :=

{
σK(YI)

σ1(YI)
>
CM,τ,µK

7/2R1/2

c1λK

(
1+

d1/2

KλK

)(
ξ1/2‖W̃‖1/2∞→∞ log1/2d

n1/2
+
ξ‖W̃‖2→∞ log d

n

)}
,

where c1 is as in Theorem 3, we have that

PΩ

(
T (ṼK ,VK) >

c1σK(YI)

K2σ1(YI)d1/2

)
≤ 2(eK log 5 +K + 4)d−(ξ−1) + 2d−(ξ−2) + PΩ(Ac).

The first part of Theorem 4 provides a general probabilistic bound for T (ṼK ,VK), after
conditioning on the missingness pattern. This allows us, in the second part, to provide a
guarantee on the probability with which ṼK is a good enough initialiser for Theorem 3 to
apply. For intuition regarding PΩ(Ac), consider the p-homogenous missingness setting. In

that case, by Lemma 6, typical realisations of W̃ have ‖W̃‖∞→∞ = O(d/p2) and ‖W̃‖2→∞ =
O(d1/2/p2) when np2 � log d, so in the spiked model where λ1 and λK are both of order d,
we expect PΩ(Ac) to be small.

One of the attractions of our analysis is the fact that we are able to provide bounds that
only depend on entrywise missingness probabilities in an average sense, as opposed to worst-
case missingness probabilities. The refinements conferred by such bounds are particularly

13



important when the missingness mechanism is heterogeneous, as typically encountered in
practice. The averaging of missingness probabilities can be partially seen in Theorem 4,
since ‖W̃‖∞→∞ and ‖W̃‖2→∞ depend only on the `1 and `2 norms of each row of W̃, but is
even more evident in the proposition below, which gives a probabilistic bound on the original
sin Θ distance between ṼK and VK .

Proposition 2. Assume the same conditions as in Theorem 4. Then there exists a universal
constant C > 0 such that for any ξ > 1, if

λK > C

{(
Mτ 2R‖W̃‖1→1ξ log d

n

)1/2

+
M‖W̃‖opξ log2 d

n

}
, (8)

then

PΩ

{
L(ṼK ,VK) ≥ 29/2eτµ

λK

(
KMR

d

)1/2(
ξ1/2‖W̃‖1/21 log1/2 d

n1/2
+
ξ‖W̃‖F log d

n

)}
≤ (2K + 4)d−(ξ−1).

In this bound, then, we see that L(ṼK ,VK) only depends on W̃ through the entrywise
`1 and `2 norms of the whole matrix. Lemma 6 provides probabilistic control of these
norms under the p-homogeneous missingness mechanism. In general, if the rows of Ω are
independent and identically distributed, but different covariates are missing with different
probabilities, then entries of W̃ will concentrate around the reciprocals of the simultaneous
observation probabilities of pairs of covariates. As such, for a typical realisation of Ω,
our bound in Proposition 2 depends only on the harmonic averages of these simultaneous
observation probabilities and their squares. Such an averaging effect ensures that our method
is effective in a much wider range of heterogeneous settings than previously allowed in the
literature.

4 Simulation studies

In this section, we assess the empirical performance of primePCA as proposed in Algorithm 2,
with initialiser ṼK from Section 3.1, and denote the output of this algorithm by V̂prime

K . We
generate observations according to the model described in (1), (2) and (3) where the rows
of the matrix U are independent Nd(0,Σu) random vectors, for some Σu � 0. We further
generate the observation indicator matrix Ω, independently of U and Z, and investigate the
following four missingness mechanisms that represent different levels of heterogeneity:

(H1) Homogeneous: P(ωij = 1) = 0.05 for all i ∈ [n], j ∈ [d];

(H2) Mildly heterogeneous: P(ωij = 1) = PiQj for i ∈ [n], j ∈ [d], where P1, . . . , Pn
iid∼

U [0, 0.2] and Q1, . . . , Qd
iid∼ U [0.05, 0.95] independently;

(H3) Highly heterogeneous columns: P(ωij = 1) = 0.19 for i ∈ [n] and all odd j ∈ [d] and
P(ωij = 1) = 0.01 for i ∈ [n] and all even j ∈ [d].
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(H4) Highly heterogeneous rows: P(ωij = 1) = 0.18 for j ∈ [d] and all odd i ∈ [n] and
P(ωij = 1) = 0.02 for j ∈ [d] and all even i ∈ [n].

In Sections 4.1, 4.2 and 4.3 below, we investigate primePCA in noiseless, noisy and misspec-
ified settings respectively. In all cases, the average statistical error was estimated from 100
Monte Carlo repetitions of the experiment. For comparison, we also studied the softImpute
algorithm (Mazumder, Hastie and Tibshirani, 2010; Hastie et al., 2015), which is considered
to be state-of-the-art for matrix completion (Chi, Lu and Chen, 2018). This algorithm im-
putes the missing entries of Y by solving the following nuclear-norm-regularised optimisation
problem:

Ŷsoft := argmin
X∈Rn×d

{
1

2
‖YΩ −XΩ‖2F + λ‖X‖∗

}
,

where λ > 0 is to be chosen by the practitioner. The softImpute estimator of VK is then
given by the top K right singular space V̂soft

K of Ŷsoft.

Figure 4 presents Monte Carlo estimates of EL(V̂prime
K ,VK) for different choices of σ∗

in two different settings. The first uses the noiseless set-up of Section 4.1, together with
missingness mechanism (H1); the second uses the noisy setting of Section 4.2 with parameter
ν = 20 and missingness mechanism (H2). We see that the error barely changes when σ∗ varies
within [2, 10]; very similar plots were obtained for different data generation and missingness
mechanisms, though we omit these for brevity. For definiteness, we therefore fixed σ∗ = 3
throughout our simulation study.
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Figure 1: Estimates of EL(V̂prime
K ,VK) for various choices of σ∗ under (H1) in the noiseless

setting of Section 4.1 (left) and (H2) in the noisy setting of Section 4.2 with ν = 20 (right).

4.1 Noiseless case

In the noiseless setting, we set Z = 0, and also fix n = 2000, d = 500, K = 2 and Σu = 100I2.
We set

VK =

√
1

500

(
1250 1250

1250 −1250

)
∈ R500×2.
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In Figure 2, we present the logarithm of the estimated average loss of primePCA and
softImpute under (H1), (H2), (H3) and (H4). We set the range of y-axis to be the same
for each method to facilitate straightforward comparison. We see that the statistical error
of primePCA decreases geometrically as the number of iterations increases, which confirms
the conclusion of Theorem 3 in this noiseless setting. Moreover, after a moderate number
of iterations, its performance is a substantial improvement on that of the softImpute algo-
rithm, even if this latter algorithm is given access to an oracle choice of the regularisation
parameter λ. The high statistical error of softImpute in these settings can be partly ex-
plained by the default value of the tuning parameter thresh in the softImpute package
in R, namely 10−5, which corresponds to the red curve in the right-hand panels of Figure 2.
By reducing the values of thresh to 10−7 and 10−9, corresponding to the green and blue
curves in Figure 2 respectively, we were able to improve the performance of softImpute to
some extent, though the statistical error is sensitive to the choice of the regularisation pa-
rameter λ. Moreover, even with the optimal choice of λ, it is not competitive with primePCA

(which is also considerably faster to compute, even with 2000 iterations).

4.2 Noisy case

Here, we generate the rows of Z as independent Nd(0, Id) random vectors, independent of
all other data. We maintain the same choices of n, d, K and VK as in Section 4.1, set
Σu = ν2I2 and vary ν > 0 to achieve different signal-to-noise ratios. In particular, defining
SNR := tr Cov(x1)/ tr Cov(z1), the choices ν = 20, 40, 60 correspond to the low, medium and
high signal-to-noise ratios SNR = 1.6, 6.4, 14.4, respectively. For an additional comparision,
we also considered a variant of the softImpute algorithm called hardImpute (Mazumder,
Hastie and Tibshirani, 2010), which retains only a fixed number of top singular values in
each iteration of matrix imputation; this can be achieved by setting the argument λ in the
softImpute function to be 0.

We remark that in general, the choice of λ for softImpute is more challenging than in
many regularised M -estimation contexts, because in our setting we have no response variable,
so cross-validation techniques are less readily available. For our comparisons, therefore, we
gave the softImpute algorithm a particularly strong form of oracle choice of λ, namely
where λ was chosen for each individual repetition of the experiment, so as to minimise the
loss function. Naturally, such a choice is not available to the practitioner. Moreover, in order
to ensure the range of λ was wide enough to include the best softImpute solution, we set
the argument rank.max in that algorithm to be 20.

In Table 1, we report the statistical error of primePCA after 2000 iterations of refinement,
together with the corresponding statistical errors of our initial estimator primePCA init and
those of softImpute(oracle) and hardImpute. Remarkably, primePCA exhibits stronger
performance than these other methods across each of the signal-to-noise ratio regimes and
different missingness mechanisms. We also remark that hardImpute is inaccurate and un-
stable, because it might converge to the local optimum that is far from the truth.
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Figure 2: Logarithms of the average Frobenius norm sin Θ error of primePCA and softImpute

under various heterogeneity levels of missingness in absence of noise. The three rows of plots
above, from the top to bottom, correspond to (H1), (H2), (H3) and (H4).
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Table 1: Average losses (with standard errors in brackets) under (H1), (H2), (H3) and (H4).

ν = 20 ν = 40 ν = 60
(H1) hardImpute 0.444(0.001) 0.251(0.001) 0.186(0.0005)

softImpute(oracle) 0.186(0.0004) 0.095(0.0002) 0.064(0.0002)

primePCA init 0.306(0.001) 0.266(0.001) 0.259(0.001)

primePCA 0.171(0.0004) 0.084(0.0002) 0.056(0.0001)

(H2) hardImpute 0.473(0.001) 0.291(0.001) 0.236(0.001)

softImpute(oracle) 0.308(0.001) 0.185(0.001) 0.141(0.001)

primePCA init 0.399(0.002) 0.357(0.001) 0.349(0.001)

primePCA 0.232(0.001) 0.115(0.001) 0.077(0.0005)

(H3) hardImpute 0.479(0.001) 0.385(0.001) 0.427(0.001)

softImpute(oracle) 0.374(0.001) 0.222(0.001) 0.170(0.001)

primePCA init 0.486(0.001) 0.449(0.001) 0.442(0.001)

primePCA 0.290(0.001) 0.145(0.001) 0.097(0.0004)

(H4) hardImpute 0.174(0.0005) 0.089(0.0003) 0.062(0.0003)

softImpute(oracle) 0.121(0.0002) 0.062(0.0001) 0.042(0.0001)

primePCA init 0.203(0.001) 0.175(0.0005) 0.169(0.0004)

primePCA 0.116(0.0003) 0.058(0.0002) 0.038(0.0001)

4.3 Near low-rank case

Here, we set n = 2000, d = 500, K = 10, Σu = diag(210, 29, . . . , 2), and fixed VK once for all
experiments to be the top K eigenvectors of one realisation1 of the sample covariance matrix
of n independent Nd(0, Id) random vectors. Here ‖VK‖∞/d1/2 < 3.63, and we again gener-
ated the rows of Z as independent Nd(0, Id) random vectors. Table 2 reports the average loss

of estimating the top K̂ eigenvectors of Σy, where K̂ varies from 1 to 5. Interestingly, even
in this misspecified setting, primePCA is competitive with the oracle version of softImpute.

5 Real data analysis: Million Song Dataset

We apply primePCA to a subset of the Million Song Dataset2 to analyse music preferences.
The original data can be expressed as a matrix with 110,000 users (rows) and 163,206 songs
(columns), with entries representing the number of times a song was played by a particular
user. The proportion of non-missing entries in the matrix is 0.008%. Since the matrix is very
sparse, and since most songs have very few listeners, we enhance the signal-to-noise ratio
by restricting our attention to songs that have at least 100 listeners (1,777 songs in total).
This improves the proportion of non-missing entries to 0.23%. Further summary information

1In R, we set the random seed to be 2019 before generating VK .
2https://www.kaggle.com/c/msdchallenge/data
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Table 2: Average losses (with standard errors in brackets) in the setting of Section 4.3 under
(H1), (H2), (H3) and (H4).

K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 5
(H1) hardImpute 0.308(0.002) 0.507(0.002) 0.764(0.004) 1.199(0.006) 1.524(0.004)

softImpute(oracle) 0.107(0.001) 0.182(0.001) 0.275(0.001) 0.401(0.001) 0.596(0.001)

primePCA init 0.203(0.001) 0.345(0.001) 0.554(0.003) 1.074(0.007) 1.427(0.006)

primePCA 0.141(0.001) 0.200(0.001) 0.269(0.001) 0.374(0.001) 0.580(0.001)

(H2) hardImpute 0.298(0.002) 0.466(0.002) 0.696(0.003) 1.124(0.006) 1.452(0.004)

softImpute(oracle) 0.188(0.001) 0.283(0.001) 0.410(0.001) 0.562(0.001) 0.751(0.001)

primePCA init 0.285(0.001) 0.443(0.004) 0.757(0.013) 1.201(0.004) 1.533(0.003)

primePCA 0.190(0.002) 0.267(0.002) 0.368(0.003) 0.543(0.008) 0.797(0.009)

(H3) hardImpute 0.302(0.001) 0.482(0.002) 0.695(0.002) 1.004(0.006) 1.373(0.004)

softImpute(oracle) 0.206(0.001) 0.338(0.001) 0.492(0.001) 0.664(0.002) 0.878(0.002)

primePCA init 0.341(0.001) 0.528(0.019) 1.097(0.008) 1.306(0.008) 1.597(0.004)

primePCA 0.222(0.001) 0.330(0.002) 0.452(0.003) 0.641(0.008) 0.919(0.007)

(H4) hardImpute 0.090(0.001) 0.148(0.001) 0.226(0.001) 0.3460.002 0.589(0.007)

softImpute(oracle) 0.071(0.001) 0.112(0.001) 0.164(0.001) 0.233(0.001) 0.332(0.001)

primePCA init 0.139(0.001) 0.220(0.001) 0.325(0.001) 0.475(0.002) 0.805(0.012)

primePCA 0.098(0.001) 0.135(0.001) 0.176(0.001) 0.236(0.001) 0.328(0.001)

about the filtered data is provided below:

1. Quantiles of non-missing matrix entry values:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1 1 1 1 1 2 3 5 8 500

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
8 9 9 10 11 13 15 18 23 33 500

2. Quantiles of the number of listeners for each song:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
100 108 117 126 139 154 178 214 272.8 455.6 5043

3. Quantiles of the total play counts of each user:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 0 1 3 4 6 9 14 21 38 1114

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
38 41 44 48 54 60 68 79 97 132 1114

19



Moreover, from the first numbered point above, we see that the distribution of play counts
has an extremely heavy tail. To guard against excessive influence from the outliers, we
discretise the play counts into five interest levels as follows:

Play count 1 2 – 3 4 – 6 7 – 10 ≥ 11
Level of interest 1 2 3 4 5
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Figure 3: Leading eigenvalues of Σ̂y.

We are now in a position to analyse the data using primePCA. For i = 1, . . . , n = 110,000
and j = 1, . . . , d = 1,777, let Yij ∈ {1, . . . , 5} denote the level of interest of user i in song j,

let K̂ = 10 and let I = {i : ‖ωi‖1 > K̂}. Our initial goal is to assess the top K̂ eigenvalues of
Σy to see if there is low-rank signal in Y = (Yij). To this end, we first apply Algorithm 2 to
obtain Vprime

K̂
; next, for each i ∈ I, we run Steps 2–5 of Algorithm 1 to obtain the estimated

principal score ûi, so that we can approximate yi by ŷi = V̂prime

K̂
ûi. This allows us to

estimate Σy by Σ̂y = n−1
∑

i∈I ŷiŷ
>
i . Figure 3 displays the top K̂ eigenvalues of Σ̂y, which

exhibit a fairly rapid decay, thereby providing evidence for the existence of low-rank signal
in Y.

In the left panel of Figure 4, we present the estimate V̂prime
2 of the top two eigenvectors

of the covariance matrix Σy, with colours indicating the genre of the song. The outliers in
the x-axis of this plot are particularly interesting: they reveal songs that polarise opinion
among users (see Table 3) and that best capture variation in individuals’ preferences for
types of music measured by the first principal component. It is notable that Rock songs
are overrepresented among the outliers (see Table 4), relative to, say, Country songs. Users
who express a preference for particular songs are also more likely to enjoy songs that are
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nearby in the plot. Such information is therefore potentially commercially valuable, both as
an efficient means of gauging users’ preferences, and for providing recommendations.

The right panel of Figure 4 presents the principal scores {ûi}ni=1 of the users, with frequent
users (whose total song plays are in the top 10% of all users) in red and occasional users in
blue. This plot reveals, for instance, that the second principal component is well aligned with
general interest in the website. Returning to the left plot, we can now interpret a positive
y-coordinate for a particular song (which is the case for the large majority of songs) as being
associated with an overall interest in the music provided by the site.
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Figure 4: Plots of the first two principal components V̂prime
2 (left) and the associated scores

{ûi}ni=1 (right).

6 Discussion

Heterogeneous missingness is ubiquitous in contemporary, large-scale data sets, yet we cur-
rently understand very little about how existing procedures perform or should be adapted to
cope with the challenges this presents. Here we attempt to extract the lessons learned from
this study of high-dimensional PCA, in order to see how related ideas may be relevant in
other statistical problems where one wishes to recover low-dimensional structure with data
corrupted in a heterogeneous manner.

A key insight, as gleaned from Section 2.2, is that the way in which the heterogeneity
interacts with the underlying structure of interest is crucial. In the worst case, the miss-
ingness may be constructed to conceal precisely the structure one seeks to uncover, thereby
rendering the problem infeasible by any method. The only hope, then, in terms of providing
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Table 3: Titles, artists and genres of the 22 outlier songs in Figure 4.

ID Title Artist Genre
1 Your Hand In Mine Explosions In The Sky Rock
2 All These Things That I’ve Done The Killers Rock
3 Lady Marmalade Christina Aguilera / Lil’ Kim/ Pop

Mya / Pink
4 Here It Goes Again Ok Go Rock
5 I Hate Pretending (Album Version) Secret Machines Rock
6 No Rain Blind Melon Rock
7 Comatose (Comes Alive Version) Skillet Rock
8 Life In Technicolor Coldplay Rock
9 New Soul Yael Nam Pop
10 Blurry Puddle Of Mudd Rock
11 Give It Back Polly Paulusma Pop
12 Walking On The Moon The Police Rock
13 Face Down (Album Version) The Red Jumpsuit Apparatus Rock
14 Savior Rise Against Rock
15 Swing Swing The All-American Rejects Rock
16 Without Me Eminem Rap
17 Almaz Randy Crawford Pop
18 Hotel California Eagles Rock
19 Hey There Delilah Plain White T’s Rock
20 Revelry Kings Of Leon Rock
21 Undo Bjrk Rock
22 You’re The One Dwight Yoakam Country

theoretical guarantees, is to rule out such an adversarial interaction. This was achieved
via our incoherence condition in Section 3, and we look forward to seeing how the relevant
interactions between structure and heterogeneity can be controlled in other statistical prob-
lems such as those mentioned in the introduction. For instance, in sparse linear regression,
one would anticipate that missingness of covariates with strong signal would be much more
harmful than corresponding missingness for noise variables.

Our study also contributes to the broader understanding of the uses and limitations

Table 4: Genre distribution of the outliers (songs whose corresponding coordinate in the
estimated leading principal component is of magnitude larger than 0.07).

Rock Pop Electronic Rap Country RnB Latin Others
Population 48.92% 18.53% 9.12% 7.15% 4.33% 2.35% 2.26% 7.34%

Outliers 72.73% 18.18% 0% 4.54% 4.54% 0% 0% 0%
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of spectral methods for estimating hidden low-dimensional structures in high-dimensional
problems. We have seen that the IPW estimator is both methodologically simple and achieves
near-minimax optimality when the noise level is of constant order. Similar results have been
obtained for spectral clustering for network community detection in stochastic block models
(Rohe et al., 2011) and in low-rank-plus-sparse matrix estimation problems (Fan, Liao and
Mincheva, 2013). On the other hand, the IPW estimator fails to provide exact recovery of the
principal components in the noiseless setting. In these other aforementioned problems, it has
also been observed that refinement of an initial spectral estimator can enhance performance,
particularly in high signal-to-noise ratio regimes (Gao et al., 2016; Zhang, Cai and Wu, 2018),
as we were able to show for our primePCA algorithm. This suggests that such a refinement
has the potential to confer a sharper dependence of the statistical error rate on the signal-to-
noise ratio compared with a vanilla spectral algorithm, and understanding this phenomenon
in greater detail provides another interesting avenue for future research.

7 Proofs of main results

We define two linear maps D,F : Rd×d → Rd×d, such that for any A = (Aij) ∈ Rd×d, we have
[D(A)]ij := Aij1{i=j} and F(A) := A−D(A). In other words, D(A) and F(A) correspond
to the diagonal and off-diagonal parts of A respectively.

Proof of Theorem 1. Since yi = VKui + zi, we have that

‖yi‖ψ2 ≤ ‖VKui‖ψ2 + ‖zi‖ψ2 = ‖ui‖ψ2 + ‖zi‖ψ2 ≤ (λ1/2 + 1)τ. (9)

Moreover, since maxj∈[d] ‖y1j‖ψ2 ≤ M1/2 by Lemma 1, it follows from van der Vaart and
Wellner (1996, Lemma 2.2.2) that there exist a universal constant C > 0 such that3∥∥‖yi‖∞∥∥ψ2

≤ {CM log d}1/2. (10)

Recall that ỹ>i = (ỹi1, . . . , ỹid) denotes the ith row of YΩ. Define Ai := F(ỹiỹ
>
i ) and

3In van der Vaart and Wellner (1996), the ψ2-norm of a random variable is defined slightly differently as

‖X‖ψ2
:= inf{a : Ee(X/a)2 ≤ 2}. It can be shown (Vershynin, 2012, Lemma 5.5) that these two norms are

equivalent.
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Bi := D(ỹiỹ
>
i ). We have the following decomposition of Ĝ:

Ĝ =
1

n

n∑
i=1

(
1

p̂2
Ai −

1

p2
EAi

)
+

1

n

n∑
i=1

(
1

p̂
Bi −

1

p
EBi

)
+ Σy

=
1

np̂2

n∑
i=1

(Ai − EAi) +
1

np̂

n∑
i=1

(Bi − EBi) +

(
1

p̂2
− 1

p2

)
EA1 +

(
1

p̂
− 1

p

)
EB1 + Σy

=
1

np̂2

n∑
i=1

(Ai − EAi) +
1

np̂

n∑
i=1

(Bi − EBi) +

(
p2

p̂2
− 1

)
F(Σy) +

(
p

p̂
− 1

)
D(Σy) + Σy

=
1

np̂2

n∑
i=1

(Ai − EAi) +
1

np̂

n∑
i=1

(Bi − EBi) +

(
p

p̂
− p2

p̂2

)
D(Σy) +

p2

p̂2
Σy.

We regard Ĝ as a perturbed version of (p2/p̂2)Σy. Applying Yu, Wang and Samworth
(2015, Theorem 2), we have

L(V̂K ,VK)

≤ 2K1/2p̂2

p2λK

∥∥∥∥ 1

np̂2

n∑
i=1

(Ai − EAi) +
1

np̂

n∑
i=1

(Bi − EBi) +

(
p

p̂
− p2

p̂2

)
D(Σy)

∥∥∥∥
op

≤ 2K1/2

λK

(∥∥∥∥ 1

np2

n∑
i=1

(Ai − EAi)

∥∥∥∥
op

+

∥∥∥∥ p̂

np2

n∑
i=1

(Bi − EBi)

∥∥∥∥
op

+

∥∥∥∥( p̂p − 1

)
D(Σy)

∥∥∥∥
op

)
.

(11)

We will control the expectation of the three terms on the right-hand side of (11) separately.
Define p̂i := d−1

∑d
j=1 ωij. For notational simplicity, we write P′ and E′ respectively for

the probability and expectation conditional on (p̂1, . . . , p̂n). Also, let p̂
(2)
i := E′(ωi1ωi2)

and p̂
(3)
i := E′(ωi1ωi2ωi3) (if d = 2, then p̂

(3)
i := 0). For the first term, we apply a

symmetrisation argument. Let {A∗i }ni=1 denote copies of {Ai}ni=1 that are independent of
{ui, zi,ωi}ni=1, let {εi}ni=1 be independent Rademacher random variables that are indepen-
dent of {ui, zi,ωi,A∗i }ni=1 and write E∗ for expectation conditional on {ui, zi,ωi}ni=1. Then
by Jensen’s inequality,

E
∥∥∥∥ 1

np2

n∑
i=1

(Ai − EAi)

∥∥∥∥
op

= E
∥∥∥∥ 1

np2

n∑
i=1

(Ai − E∗A∗i )
∥∥∥∥
op

≤ E
∥∥∥∥ 1

np2

n∑
i=1

(Ai −A∗i )

∥∥∥∥
op

= E
∥∥∥∥ 1

np2

n∑
i=1

εi(Ai −A∗i )

∥∥∥∥
op

≤ 2E
∥∥∥∥ 1

np2

n∑
i=1

εiAi

∥∥∥∥
op

. (12)

Since Ai = ỹiỹ
>
i −D(ỹiỹ

>
i ), we have that

E′{(A2
i )jk | yi} =

E′{ỹ2ij‖ỹi‖22 − ỹ4ij | yi} = p̂
(2)
i y2ij

∑
t6=j y

2
it, if j = k,∑

t/∈{j,k} E′{ỹij ỹikỹ2it | yi} = p̂
(3)
i yijyik

∑
t/∈{j,k} y

2
it, if j 6= k.
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Writing yi,−t := yi − yitet, we then have

E′(A2
i | yi) = p̂

(3)
i

d∑
t=1

y2ityi,−ty
>
i,−t + (p̂

(2)
i − p̂

(3)
i )D

( d∑
t=1

y2ityi,−ty
>
i,−t

)

� p̂
(3)
i ‖yi‖2∞

d∑
t=1

yi,−ty
>
i,−t + (p̂

(2)
i − p̂

(3)
i )‖yi‖2∞D

( d∑
t=1

yi,−ty
>
i,−t

)
.

Notice that

d∑
t=1

yi,−ty
>
i,−t =

d∑
t=1

(
yiy

>
i − yitety>i − yityie>t + y2itete

>
t

)
= (d− 2)yiy

>
i +D(yiy

>
i ).

Therefore,

E′(A2
i | yi) � ‖yi‖2∞

{
p̂
(3)
i (d− 2)yiy

>
i +

(
(d− 1)p̂

(2)
i − (d− 2)p̂

(3)
i

)
D(yiy

>
i )
}

� d‖yi‖2∞
{
p̂
(3)
i yiy

>
i + p̂

(2)
i D(yiy

>
i )
}
.

Now, observe that ‖Ai‖op ≤ dp̂i‖yi‖2∞, so for q ≥ 2,

E′
(
Aq
i

)
� E′

{
(dp̂i‖yi‖2∞)q−2E′(A2

i | yi)
}
� dq−1p̂q−2i E′

[
‖yi‖2q−2∞

{
p̂
(3)
i yiy

>
i + p̂

(2)
i D(yiy

>
i )
}]
.

By the Cauchy–Schwarz inequality, we therefore have that

‖E′
(
εqiA

q
i

)
‖op ≤ dq−1p̂q−2i p̂

(3)
i

[
E
(
‖yi‖4q−4∞

)
sup

v∈Sd−1

E
{

(v>yi)
4
}]1/2

+ dq−1p̂q−2i p̂
(2)
i E‖yi‖2q∞

≤ dq−1p̂q−2i

{
p̂
(3)
i (4q − 4)q−1(CM log d)q−18Rτ 2 + p̂

(2)
i (2q)q(CM log d)q

}
≤ q!

2

{
32eCMRτ 2p̂

(3)
i d log d+ e2p̂

(2)
i d(CM log d)2

}(
4eCMp̂id log d

)q−2
≤ q!

2
C ′Md log d

{
Rτ 2p̂

(3)
i + p̂

(2)
i M log d

}(
4eCMp̂id log d

)q−2
,

where C ′ > 0 is a universal constant, the second inequality uses (9) and (10) and the
penultimate bound uses Stirling’s inequality.

Let ρ := 4eCMd(maxi p̂i) log d and σ2 := C ′Mn−1d log d
∑n

i=1

{
Rτ 2p̂

(3)
i + p̂

(2)
i M log d

}
.

Then by Tropp (2012, Theorem 6.2), we obtain that

P′
(∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
op

≥ t

)
≤ 2d exp

(
−nt2/2
σ2 + ρt

)
.

Consequently, for t0 := 2σn−1/2 log1/2 d+ 4ρn−1 log d, we have

E′
∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
op

≤ t0 +

∫ ∞
t0

2d
{
e−nt

2/(4σ2) + e−nt/(4ρ)
}
dt ≤ 4t0.
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Given (12), integrating the left-hand side of the above inequality over (p̂i)
n
i=1 yields

E
∥∥∥∥ 1

np2

n∑
i=1

(Ai − EAi)

∥∥∥∥
op

.
(Eσ2)1/2 log1/2 d

n1/2p2
+

Eρ log d

np2

.

√
Md{Rτ 2p+M log d} log2 d

np2
+
Md log2 d log n

np
, (13)

where the first inequality uses Jensen’s inequality and the second inequality uses Lemma 4.
For the second sum on the right-hand side of (11), we have by van der Vaart and Wellner

(1996, Lemma 2.2.2) again that∥∥∥∥∥∥∥∥ 1

n

n∑
i=1

(Bi − EBi)

∥∥∥∥
op

∥∥∥∥
ψ1

=

∥∥∥∥max
j∈[d]

∣∣∣∣ 1n
n∑
i=1

(ỹ2ij − Eỹ2ij)
∣∣∣∣∥∥∥∥
ψ1

.
log d

n

∥∥∥∥ n∑
i=1

(ỹ2i1 − Eỹ2i1)
∥∥∥∥
ψ1

.
M log d√

n
,

where the final inequality uses Lemma 2 and the fact that ‖ỹ2i1−Eỹ2i1‖ψ1 ≤ ‖ỹ2i1‖ψ1 +Eỹ2i1 ≤
2M . Now by the Cauchy–Schwarz inequality,

E
∥∥∥∥ p̂

np2

n∑
i=1

(Bi − EBi)

∥∥∥∥
op

≤
{
E
(
p̂2

p4

)
E
(∥∥∥∥ 1

n

n∑
i=1

(Bi − EBi)

∥∥∥∥2
op

)}1/2

.

{(
1

p2
+

1

ndp3

)
M2 log2 d

n

}1/2

.
M log d

p
√
n

, (14)

which is dominated by the bound in (13).
Finally, for the third term on the right-hand side of (11), we have by the Cauchy–Schwarz

inequality again that

E
∥∥∥∥( p̂p − 1

)
D(Σy)

∥∥∥∥
op

.
M√
ndp

, (15)

which is also dominated by the bound in (13). Substituting (13), (14) and (15) into (11)
establishes (5). If we regard M and τ as constants and if n ≥ d log2 d log2 n/(λ1p + log d),
then the second term in the bracket of the right-hand side of (5) is dominated by the first
term, and claim (6) follows immediately.

Proof of Theorem 2. Without loss of generality, we may assume that d ≥ 50 and that d is
even, and write d = 2h for some h ∈ N. By the Gilbert–Varshamov lemma (see, e.g. Massart,
2007, Lemma 4.7), there exist W ⊆ {0, 1}h such that log |W | ≥ h/16 and dH(w,w′) ≥ h/4
for any distinct pair of vectors w,w′ ∈ W . Let γ ∈ [0, π/2] be a real number to be specified
later. To each w ∈ W , we can associate a distribution Pw ∈ Pn,d(λ1, p) such that U is
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a random vector (n × 1 random matrix) with independent N(0, λ1) entries, Z is an n × d
random matrix with independent N(0, 1) entries, and

V1 = V1,w :=
1√
h

{
w ⊗

(
cos γ
sin γ

)
+ (1h −w)⊗

(
cos γ
− sin γ

)}
∈ Sd−1.

Fixing distinct w,w′ ∈ W , we write v = (vj)j∈[d] := V1,w and v′ = (v′j)j∈[d] := V1,w′

and let Qw and Qw′ denote respectively the marginal distribution of (ỹ1,ω1) under Pw

and Pw′ . Define S := {j ∈ [d] : ω1j = 1} and also set v̄S := (vj1{j∈S})j∈[d] ∈ Rd and
v̄′S := (v′j1{j∈S})j∈[d] ∈ Rd. Then

KL(Pw, Pw′) = KL(Q⊗nw , Q⊗nw′ ) = nKL(Qw, Qw′) = nEQw

{
EQw

(
log

dQw

dQw′

∣∣∣∣ ω1

)}
= nEKL

(
Nd(0, Id + λ1v̄Sv̄>S ), Nd(0, Id + λ1v̄

′
Sv̄
′>
S )
)
, (16)

where the final expectation is over the marginal distribution of S under Pw. We partition
S = S0 t S1+ t S1−, where S0 := {j ∈ S : j is odd}, S1+ := {j ∈ S : j is even and vj = v̄′j}
and S1− := {j ∈ S : j is even and vj 6= v′j}. Since by construction we always have ‖v̄S‖2 =
‖v̄′S‖2, we can apply Lemma 5 to obtain

KL
(
N(0, Id + λ1v̄Sv̄>S ), N(0, Id + λ1v̄

′
S(v̄′S)>)

)
=
λ21(‖v̄S‖42 − 〈v̄S, v̄′S〉2)

2(1 + λ1‖v̄S‖22)

≤ λ21〈v̄S, v̄S + v̄′S〉〈v̄S, v̄S − v̄′S〉
2 max{1, λ1‖v̄S‖22}

=
λ21
(∑

j∈S0∪S1+
2v2j
)(∑

j∈S1−
2v2j
)

2 max{1, λ1
∑

j∈S v
2
j}

≤ min

{
2λ21
h2
(
|S0 × S1−| sin2 γ cos2 γ + |S1+ × S1−| sin4 γ

)
,

2λ1|S1−| sin2 γ

h

}
.

Substituting the above bound into (16), we have

KL(Pw, Pw′) ≤ 2nλ1pmin{1, λ1p} sin2 γ. (17)

On the other hand, since dH(w,w′) ≥ h/4, we also have

sin2 Θ(v,v′) = 1− (v>v′)2 = 1−
(

1− 2dH(w,w′) sin2 γ

h

)2

≥ 1

2
sin2 γ. (18)

By (17), (18) and Fano’s inequality (Yu, 1997, Lemma 3),

inf
v̂

sup
P∈Pn,d,1(λ1,p)

EPL(v̂,v) ≥ inf
v̂

max
w∈W

EPwL(v̂,v)

≥ 1

2
√

2
sin γ

(
1− log 2 + 2nλ1pmin{1, λ1p} sin2 γ

log |W |

)
.
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We now choose γ ∈ [0, π/2] such that sin2 γ = min
{ log |W |

8nλ1pmin{1,λ1p} , 1
}

. Since d ≥ 50, we

obtain log |W | ≥ d/32 ≥ 2 log 2. Therefore,

inf
v̂

sup
P∈Pn,d,1(λ1,p)

EPL(v̂,v) ≥ 1

8
√

2
sin γ ≥ min

{
1

200λ1

√
dmax(1, λ1p)

np2
,

1

8
√

2

}
,

as desired.

Proof of Proposition 1. For notational simplicity, we write V̂K := V̂
(in)
K and V̂S,K := (V̂K)S

for any S ⊆ [d]. For i ∈ I, let `>i ∈ RK denote the ith row of L. For any i ∈ I, we have
ŷi,Ji = yi,Ji and

ŷi,J c
i
− yi,J c

i
= V̂J c

i ,K
(V̂>Ji,KV̂Ji,K)−1V̂>Ji,Kyi,Ji − yi,J c

i

= V̂J c
i ,K

(V̂>Ji,KV̂Ji,K)−1V̂>Ji,KRJiWV̂K ,R
W−1

V̂K ,R
Γ`i −RJ c

i
Γ`i

= V̂J c
i ,K

(V̂>Ji,KV̂Ji,K)−1V̂>Ji,K(RJiWV̂K ,R
− V̂Ji,K)W−1

V̂K ,R
Γ`i

+ (V̂J c
i ,K
−RJ c

i
WV̂K ,R

)W−1
V̂K ,R

Γ`i.

Thus

‖ŷi,J c
i
− yi,J c

i
‖∞ ≤ σ∗

√
d‖V̂J c

i ,K
‖2→∞‖RJiWV̂K ,R

− V̂Ji,K‖2→∞‖Γ`i‖2
+ ‖V̂J c

i ,K
−RJ c

i
WV̂K ,R

‖2→∞‖Γ`i‖2
≤ ∆‖Γ`i‖2

(
1 + σ∗

√
d‖V̂K‖2→∞

)
≤ ∆σ1(Γ)µ1

(
K

n

)1/2{
1 + σ∗

(
µ2

√
K + ∆

√
d
)}

≤ C ′

n1/2
∆σ1(Γ)µ1µ2K =: m,

say, where C ′ > 0 depends only on σ∗ and c1. Note that the inequality above holds for
all i ∈ I. Writing E := Ŷ − Y for convenience, we have found that ‖E‖∞ ≤ m. Let
L⊥ ∈ On×(n−K),R⊥ ∈ Od×(d−K) be the orthogonal complements of L ∈ On×K and R ∈ Od×K

respectively, so that (L,L⊥) ∈ On×n and (R,R⊥) ∈ Od×d. We wish to apply Cai and Zhang
(2018a, Theorem 1). To this end, note that

‖L>ER‖op = sup
s,t∈SK−1

(Ls)>E(Rt) ≤ ‖L‖2→∞‖R‖2→∞‖E‖1 ≤
Kµ1µ2m‖Ωc‖1√

nd
.

Hence, writing α := σK(Γ + L>ER), we have by Weyl’s inequality that

σK(Γ)− Kµ1µ2m‖Ωc‖1√
nd

≤ α ≤ σK(Γ) +
Kµ1µ2m‖Ωc‖1√

nd
.
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Now, writing β := ‖L>⊥ŶR⊥‖op = ‖L>⊥ER⊥‖op, we have

β ≤ ‖E‖op ≤ ‖E‖F ≤ m
√
‖Ωc‖1.

In addition, by Cauchy–Schwarz and Jensen’s inequality,

‖L>E‖op = sup
s∈SK−1

t∈Sd−1

(Ls)>Et ≤ ‖L‖2→∞ sup
t∈SK−1

‖Et‖1

≤ µ1(Kn)1/2
1

n

n∑
i=1

m
√
‖ωc

i‖1 ≤ µ1m(K‖Ωc‖1)1/2.

Similarly,
‖ER‖op ≤ µ2m(K‖Ωc‖1)1/2.

Hence there exists c1 > 0, depending only on µ1, µ2 and σ∗, such that whenever ∆ ≤
c1σK(Γ)

K2σ1(Γ)
√
d
, we have

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op) ≥ σ2
K(Γ)

2
and α, β ≤ 2σK(Γ).

Now let ŶI = L̂Γ̂R̂> be an SVD of Ŷ. We can now apply Cai and Zhang (2018a, Theorem 1)
to deduce that for such c2,

‖ sin Θ(R̂,R)‖op ≤
α‖L>E‖op + β‖ER‖op

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op)
≤ 4m(µ1 + µ2)(K‖Ωc‖1)1/2

σK(Γ)

≤ 4C ′K3/2σ1(Γ)(µ1 + µ2)µ1µ2

σK(Γ)

(
‖Ωc‖1
n

)1/2

∆ =: κ∆,

say. Similarly,

‖ sin Θ(L̂,L)‖op ≤
α‖ER‖op + β‖L>E‖op

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op)
≤ κ∆.

We are now in a position to show contraction in terms of two-to-infinity norm. By Cape,
Tang and Priebe (2018, Theorem 3.7),

T (R̂,R) ≤ 2‖R⊥R>⊥E>LL>‖2→∞
σK(Γ)

+
2‖R⊥R>⊥E>L⊥L>⊥‖2→∞

σK(Γ)
‖ sin Θ(L̂,L)‖op

+ ‖ sin Θ(R̂,R)‖2op‖R‖2→∞ =: T1 + T2 + T3, (19)

say. Note that

‖R⊥R>⊥‖∞→∞ ≤ ‖Id‖∞→∞ + ‖RR>‖∞→∞ = 1 + sup
‖v‖∞≤1

‖RR>v‖∞

≤ 1 + sup
‖v‖2≤

√
d

‖R‖2→∞‖R>v‖2 ≤ 1 +
√
Kµ2.
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Hence,

T1 ≤
2(1 +

√
Kµ2)‖E>LL>‖2→∞
σK(Γ)

≤ 2(1 +
√
Kµ2)‖E>L‖2→∞
σK(Γ)

≤ 2(1 +
√
Kµ2)µ1

√
Km‖Ωc‖1→1√

nσK(Γ)
.µ1,µ2

K2σ1(Γ)‖Ωc‖1→1∆

nσK(Γ)
.

Moreover,

T2 ≤
2(1 +

√
Kµ2)‖E>‖2→∞κ∆

σK(Γ)
≤ 2(1 +

√
Kµ2)m‖Ωc‖1/21→1κ∆

σK(Γ)

.µ1,µ2

K3/2σ1(Γ)‖Ωc‖1/21→1κ∆2

√
nσK(Γ)

.

Finally,

T3 ≤ µ2κ
2∆2

(
K

d

)1/2

.

Write

η :=
K2σ1(Γ)‖Ωc‖1/21→1√

nσK(Γ)

for simplicity, so that κ .µ1,µ2,σ∗ (d/K)1/2η. Given that T (V̂
(out)
K ,VK) = T (R̂,R), substi-

tuting the bounds for T1, T2, T3 into (19) yields that

T (V̂
(out)
K ,VK) .µ1,µ2,σ∗

{
η

(
‖Ωc‖1→1

n

)1/2

+

√
d

K
η2∆ +

(
d

K

)1/2

η2∆

}
∆

≤ η2
{

σK(Γ)

K2σ1(Γ)
+ 2

(
d

K

)1/2

∆

}
∆ .µ1,µ2

η2σK(Γ)

K2σ1(Γ)
∆ =

K2σ1(Γ)‖Ωc‖1→1

σK(Γ)n
∆,

as desired.

Proof of Theorem 3. We prove this result by induction on t. The case t = 0 is true by
definition of ∆, so suppose that the conclusion holds for some t ∈ {0} ∪ [niter− 1]. We make
the following two claims:

(a) I(t) = I;

(b) The error is further contracted by refinement, i.e., T (V̂
(t+1)
K ,VK) ≤ ρT (V̂

(t)
K ,VK).

To prove claim (a), notice that for each i ∈ [n], by Weyl’s inequality and the inductive
hypothesis,∣∣σK((V̂(t)

K )Ji
)
− σK((VK)Ji)

∣∣ =
∣∣σK((V̂(t)

K )Ji
)
− σK

(
(VK)JiWV̂

(t)
K ,VK

)∣∣
≤
∥∥(V̂

(t)
K )Ji − (VK)JiWV̂

(t)
K ,VK

∥∥
op

≤ |Ji|1/2T
(
V̂

(t)
K ,VK

)
≤ |Ji|1/2ρt∆.
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Now, for i ∈ I,

σK
(
(V̂

(t)
K )Ji

)
≥ σK

(
(VK)Ji

)
− |σK

(
(V̂

(t)
K )Ji

)
− σK

(
(VK)Ji

)
|

≥
(
σ−1∗ + ε−

√
d∆
)
(|Ji|/d)1/2.

On the other hand, if i ∈ Ic and ‖ωi‖1 > K, then

σK
(
(V̂

(t)
K )Ji

)
≤ σK

(
(VK)Ji

)
+ |σK

(
(V̂

(t)
K )Ji

)
− σK

(
(VK)Ji

)
|

≤
(
σ−1∗ − ε+

√
d∆
)
(|Ji|/d)1/2.

Hence, if we choose c1 ≤ ε, then
√
d∆ < ε, so for i ∈ I,

σK
(
(V̂

(t)
K )Ji

)
>
( |Ji|
dσ∗

)1/2
;

moreover, for i ∈ Ic,
σK
(
(V̂

(t)
K )Ji

)
<
( |Ji|
dσ∗

)1/2
.

Claim (a) follows. As for claim (b), note that V̂
(t+1)
K = refine(K, V̂

(t)
K ,ΩI(t) , (YΩ)I(t)).

Taking c1, C > 0 from Proposition 1, and reducing c1 if necessary so that c1 ≤ ε, we may
apply this proposition to deduce that whenever

(i) T (V̂
(t)
K ,VK) ≤ c1σK(YI)

K2σ1(YI)
√
d
;

(ii) ρ :=
CK2σ1(YI)‖Ωc

I‖1→1

σK(YI)|I|
< 1,

we have T (V̂
(t+1)
K ,VK) ≤ ρT (V̂

(t)
K ,VK). But the conditions (i) and (ii) are ensured by the

inductive hypothesis and our assumptions, so the conclusion follows.

Proof of Theorem 4. Let E := G̃ − EΩG̃ = G̃ − Σy. By Cape, Tang and Priebe (2018,
Theorem 3.7), when λK ≥ 2‖E‖op, we have that

T (ṼK ,VK) ≤ 2λ−1K ‖V−KV>−KEVKV>K‖2→∞
+ 2λ−1K ‖V−KV>−KEV−KV>−K‖2→∞‖ sin Θ(ṼK ,VK)‖op
+ 2λ−1K ‖V−KV>−KΣyV−KV>−K‖2→∞‖ sin Θ(ṼK ,VK)‖op
+ ‖ sin Θ(ṼK ,VK)‖2op‖VK‖2→∞

=: T1 + T2 + T3 + T4.

Note that if λK satisfies (27) for some ξ > 1, then PΩ(‖E‖op ≥ λK/4) ≤ 4d−(ξ−1). In fact,

since ‖W̃‖op ≤ ‖W̃‖F, there exists cM,τ,µ > 0 such that (7) implies (27), which, together
with (26) ensures that PΩ(‖E‖op ≥ λK/2) ≤ 4d−(ξ−1).
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To bound T1, we have

‖V−KV>−KEVKV>K‖2→∞ ≤ ‖V−KV>−K‖∞→∞‖EVKV>K‖2→∞
≤ (1 +Kµ2) max

j∈[d]
sup

u∈SK−1

e>j EVKu, (20)

where the second inequality is due to the fact that

‖V−KV>−K‖∞→∞ ≤ ‖Id‖∞→∞ + ‖VKV>K‖∞→∞ ≤ 1 +Kµ2.

We use a covering argument to bound the supremum term. Let NK(1/2) be a 1/2-net of the
Euclidean sphere SK−1, i.e., for any u ∈ SK−1, there exists a point π(u) ∈ NK(1/2) such
that ‖u− π(u)‖2 ≤ 1/2. Note that for any u ∈ SK−1,

e>j EVKu = e>j EVKπ(u) + e>j EVK(u− π(u)) ≤ max
v∈NK(1/2)

e>j EVKv +
1

2
sup

v∈SK−1

e>j EVKv,

which further implies that

sup
u∈SK−1

e>j EVKu ≤ 2 max
u∈NK(1/2)

e>j EVKu. (21)

We then argue similarly as in (23), with VKu taking the role of vk there (since ‖VKu‖∞ ≤
µ(K/d)1/2, we correspondingly have

√
Kµ taking the role of the incoherence parameter µ

there), to obtain that for any ξ > 0,

PΩ

{∣∣e>j EVKu
∣∣ ≥ 2eτµ

(
KMR

d

)1/2(
ξ1/2‖W̃j‖1/21

n1/2
+
ξ‖W̃j‖2

n

)}
≤ 2e−ξ.

By Vershynin (2012, Lemma 5.2), |NK(1/2)| ≤ 5K . Hence, by (20), (21) and a union bound,
we have for any ξ > log 5 that

PΩ

{
T1 ≥

8τµ(1 +Kµ2)

λK

(
KMR

d

)1/2(
ξ1/2‖W̃‖1/2∞→∞

n1/2
+
ξ‖W̃‖2→∞

n

)}
≤ 2deK log 5−ξ.

Next we bound T2. Note that

‖V−KV>−KEV−KV>−K‖2→∞ ≤ ‖V−KV>−K‖∞→∞‖E‖2→∞ ≤ (1 +Kµ2)‖E‖2→∞.

For j, k ∈ [d], let Ijk := {i : ωijωik = 1} and njk := |Ijk| = n/W̃jk. Then

Ejk =
1

n

n∑
i=1

ỹij ỹikW̃jk − [EΩG̃]jk =
1

njk

∑
i∈Ijk

yijyik − [EΩG̃]jk.

By applying both parts of Lemma 1, for any i ∈ [n] and j, k ∈ [d], we have ‖yijyik‖ψ1 ≤
2‖yij‖ψ2‖yik‖ψ2 ≤ 2M . Applying Bernstein’s inequality (Boucheron, Lugosi and Massart,
2013, Theorem 2.10) yields that for any ξ > 0,

PΩ

{
|Ejk| ≥ 2eM

((
2ξW̃jk

n

)1/2

+
ξW̃jk

n

)}
≤ 2e−ξ.
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Therefore, a union bound with (j, k) ∈ [d]× [d] yields that

PΩ

{
T2 ≥

4
√

2eM(1 +Kµ2)

λK

((
2ξ‖W̃‖∞→∞

n

)1/2

+
ξ‖W̃‖2→∞

n

)
‖ sin Θ(ṼK ,VK)‖op

}
≤ 2d2e−ξ.

Now we bound T3. We have that

T3 =
2‖V−KV>−K‖2→∞

λK
‖ sin Θ(ṼK ,VK)‖op ≤

2
{

1 + µ(K/d)1/2
}

λK
‖ sin Θ(ṼK ,VK)‖op.

Finally, T4 satisfies

T4 ≤
µK1/2

d1/2
‖ sin Θ(ṼK ,VK)‖2op.

Since ‖ sin Θ(ṼK ,VK)‖op ≤ min
{
L(ṼK ,VK), 1

}
, combining our bounds for {Tj}4j=1 yields

that there exists CM,τ,µ > 0 such that for any ξ > 2,

PΩ

{
T (ṼK ,VK) ≥ KCM,τ,µ

λK

{
L(ṼK ,VK)+

(
KR

d

)1/2}(
ξ1/2‖W̃‖1/2∞→∞

n1/2
+
ξ‖W̃‖2→∞

n

)
+ µ

(
K1/2

d1/2
+

4

λK

)
L(ṼK ,VK)

}
≤ 2deK log 5−ξ + 2d2e−ξ + 4d−(ξ−1).

It therefore follows from Proposition 2, which applies because condition (7) for a suit-

able cM,τ,µ implies (8), together with the facts that ‖W̃‖1 ≤ d‖W̃‖∞→∞ and ‖W̃‖F ≤
d1/2‖W̃‖2→∞ that the first conclusion of the theorem holds. The second conclusion then
follows immediately.

Proof of Proposition 2. In this proof, we use the shorthand Du := diag(u) for u ∈ Rd. We

represent G̃ under the orthonormal basis (VK ,V−K) as follows:

G̃ = (VK ,V−K)

(
V>KG̃VK V>KG̃V−K
V>−KG̃VK V>−KG̃V−K

)(
V>K
V>−K

)
.

Define

G∗ := (VK ,V−K)

(
V>KG̃VK 0

0 V>−KG̃V−K

)(
V>K
V>−K

)
.

In the sequel, we regard G̃ as a corrupted version of G∗ with the off-diagonal blocks
V>KG̃V−K and V>−KG̃VK as perturbations. We have

‖V>KG̃V−K‖F = ‖V>K(G̃−Σy)V−K‖F ≤ ‖V>K(G̃− EΩG̃)‖F
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We control the right-hand side through a concentration inequality, and for k ∈ [K] let vk
denote the kth column of VK . For any j ∈ [d] and k ∈ [K],

v>k (G̃− EΩG̃)ej =
1

n

n∑
i=1

v>k
{
ỹiỹ

>
i ◦ W̃ − EΩ

(
ỹiỹ

>
i ◦ W̃

)}
ej

=
1

n

n∑
i=1

{
ỹ>i Dvk

W̃Dej
ỹi − EΩ

(
ỹ>i Dvk

W̃Dej
ỹi
)}

=
1

n

n∑
i=1

{
ỹijỹ

>
i Dvk

W̃j − EΩ
(
ỹijỹ

>
i Dvk

W̃j

)}
, (22)

where W̃j denotes the jth column of W̃. Note that

‖yi‖ψ∗2 ≤ sup
v∈Sd−1

‖v>VKui‖ψ2 + ‖v>zi‖ψ2√
v>VKΣuV>Kv + 1

≤ 2τ.

Thus for any vector a ∈ Rd, we have by Lemma 1 that

‖yij(a>yi)‖ψ1 ≤ 2‖yij‖ψ2‖a>yi‖ψ2 ≤ 4τ(Ma>Σya)1/2.

For i ∈ [n], let ai := ωijW̃j ◦ vk ◦ ωi. Now for any q ≥ 2,

EΩ
∣∣ỹij(W̃>

j Dvk
ỹi)
∣∣q = EΩ|yija>i yi|q ≤

(
4qτ
√
Ma>i Σyai

)q
≤ 16qqτ 2µ2MR

d

(
4τµ

√
MR‖W̃j‖22/d

)q−2 d∑
t=1

W̃ 2
tjωitωij

≤ 8e2q!τ 2µ2MR

d

(
4eτµ

√
MR‖W̃j‖22/d

)q−2 d∑
t=1

W̃ 2
tjωitωij,

where the penultimate inequality uses the fact that ‖ai‖22 ≤ µ2‖W̃j‖22/d, and the last in-
equality is due to Stirling’s approximation. Hence,

1

n

n∑
i=1

EΩ|ỹijW̃>
j Dvk

ỹi|q ≤
8e2q!τ 2µ2MR

d

(
4eτµ

√
MR‖W̃j‖22/d

)q−2 d∑
t=1

n∑
i=1

W̃ 2
jtωitωij

n

=
8e2q!τ 2µ2MR

d

(
4eτµ

√
MR‖W̃j‖22/d

)q−2
‖W̃j‖1.

Thus by (22) and Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, Theo-
rem 2.10), we have that for any ξ > 0,

PΩ

{∣∣v>k (G̃− EΩG̃)ej
∣∣ ≥ 25/2eτµ

(
MR

d

)1/2((
ξ‖W̃j‖1

n

)1/2

+
ξ‖W̃j‖2

n

)}
≤ 2e−ξ. (23)
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By a union bound over (j, k) ∈ [d]× [K], for any ξ > 1,

PΩ

{
‖V>KG̃V−K‖F ≥ 8eτµ

(
KMR

d

)1/2(
ξ1/2‖W̃‖1/21 log1/2 d

n1/2
+
ξ‖W̃‖F log d

n

)}
≤ 2Kd−(ξ−1). (24)

Now we provide a condition under which λmin(V>KG̃VK) > ‖V>−KG̃V−K‖op, which en-
sures that VK is the top K eigenspace of G∗. Note that

λmin(V>KG̃VK) ≥ λK + 1− ‖V>K(G̃−Σy)VK‖op ≥ λK + 1− ‖G̃−Σy‖op
and

‖V>−KG̃V−K‖op ≤ 1 + ‖G̃−Σy‖op.
This implies that if λK > 4‖G̃−Σy‖op, then

λmin(V>KG̃VK)− ‖V>−KG̃V−K‖op > λK/2. (25)

In the following, we derive an exponential tail bound for ‖G̃−Σy‖op = ‖G̃− EΩG̃‖op. Let

Ai := ỹiỹ
>
i ◦ W̃ and note that ‖Ai‖op ≤ ‖yi‖2∞‖W̃‖op. Thus, for any v = (v1, . . . , vd)

> ∈
Sd−1 and any integer q ≥ 2,

EΩ
(
v>|Ai|qv

)
≤ EΩ

(∥∥Ai

∥∥q−2
op

v>A2
iv
)
≤ EΩ

{(
‖W̃‖op‖yi‖2∞

)q−2
v>
(
ỹiỹ

>
i ◦ W̃

)2
v
}

= ‖W̃‖q−2op EΩ
{
‖yi‖2(q−2)∞ v>Dỹi

W̃Dỹi
Dỹi

W̃Dỹi
v
}

= ‖W̃‖q−2op EΩ
{
‖yi‖2(q−2)∞ tr(D2

ỹi
W̃Dỹi

vv>Dỹi
W̃)
}

= ‖W̃‖q−2op

d∑
j=1

ωijEΩ
{
y2ij‖yi‖2(q−2)∞

(
W̃>

j Dvỹi
)2}

.

Now, for each j ∈ [d], and q ≥ 2,

EΩ
{
y2ij‖yi‖2(q−2)∞ (W̃>

j Dvỹi)
2
}

= EΩ
[
y2ij‖yi‖2(q−2)∞ {(W̃j ◦ v ◦ ωi)>yi}2

]
≤
(
Ey8ij

)1/4{E(‖yi‖8(q−2)∞
)}1/4

8Rτ 2‖W̃j ◦ v ◦ ωi‖22

.MRτ 2{8(q − 2)CM log d}q−2
d∑
t=1

(vtW̃tjωit)
2,

where the last inequality is due to the fact that
∥∥‖yi‖∞∥∥ψ2

≤ (CM log d)1/2 by (10). There-

fore,

n∑
i=1

EΩ
(
v>|Ai|qv

)
.MRτ 2

{
8(q − 2)CM‖W̃‖op log d

}q−2 d∑
j,t=1

n∑
i=1

ωijωitv
2
t W̃

2
tj

= nMRτ 2
{

8(q − 2)CM‖W̃‖op log d
}q−2 d∑

j,t=1

v2t W̃tj

. q!nMRτ 2‖W̃>‖1→1

(
8eCM‖W̃‖op log d

)q−2
,
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where ‖W̃>‖1→1 = sup‖u‖1=1‖W̃>u‖1 = ‖W̃‖1→1. Since the above inequality holds for all

v ∈ Sd−1, we have∥∥∥∥ n∑
i=1

EΩ
(
|Ai|q

)∥∥∥∥
op

. q!nMRτ 2‖W̃‖1→1

(
8eCM‖W̃‖op log d

)q−2
.

By a version of the Matrix Bernstein inequality for non-central absolute moments, which we
give as Lemma 3, there exists a universal constant C1 > 0 such that for any ξ > 1,

PΩ

{∥∥G̃− EΩG̃
∥∥
op
≥ C1

((
MRτ 2‖W̃‖1→1ξ log d

n

)1/2

+
M‖W̃‖opξ log2 d

n

)}
≤ 4d−(ξ−1).

(26)
Now let

A :=

{
λmin(V>KG̃VK)− ‖V>−KG̃V−K‖op >

λK
2

}
.

From (25) and (26), we deduce that for any ξ > 1, if

λK ≥ 4C1

{(
MRτ 2‖W̃‖1→1ξ log d

n

)1/2

+
M‖W̃‖opξ log2 d

n

}
, (27)

then PΩ(Ac) ≤ PΩ
{
‖G̃−Σy‖op ≥ λK/4

}
≤ 4d−(ξ−1). The desired result follows immediately

by combining this with (24) and applying Yu, Wang and Samworth (2015, Theorem 2).

8 Auxiliary results

Lemma 1. Let X and Y be two sub-Gaussian random variables. Then we have ‖X‖2ψ2
≤

‖X2‖ψ1 and ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2.

Proof. For any x ≥ 0, let dxe := inf{z ∈ N : z ≥ x}. According to the definitions of the
ψ1-norm and ψ2-norm, we have that

‖X‖2ψ2
= sup

p∈N

E(|X|p)2/p

p
≤ sup

p∈N

{
E
(
X2dp/2e)} 1

dp/2e

p
≤ ‖X2‖ψ1 ,

where the penultimate inequality is due to Jensen’s inequality and the last inequality is due
to the fact that p ≥ dp/2e. For the second inequality,

‖XY ‖ψ1 = sup
p∈N

(E|XY |p)1/p

p
≤ 2 sup

p∈N

(E|X|2p)1/(2p)√
2p

(E|Y |2p)1/(2p)√
2p

≤ 2 sup
p∈N

(E|X|2p)1/(2p)√
2p

sup
q∈N

(E|Y |2q)1/(2q)√
2q

≤ 2‖X‖ψ2‖Y ‖ψ2 ,

as required.
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Lemma 2. If X1, . . . , Xn are independent centred random variables with maxi∈[n] ‖Xi‖ψ1 <
∞, then there exists a universal constant C > 0 such that∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
ψ1

≤ C

( n∑
i=1

‖Xi‖2ψ1

)1/2

.

Proof. Write Ki := ‖Xi‖ψ1 and K := (K1, . . . , Kn)>. From Vershynin (2012, Lemma 5.15),
there exist universal constants c1, C1 > 0 such that for |t| ≤ c1/‖K‖∞,

E exp

{
t

n∑
i=1

Xi

}
=

n∏
i=1

E exp{tXi} ≤ exp
{
C1t

2‖K‖22
}
.

Setting t = min{C−1/21 ‖K‖−12 , c1‖K‖−1∞ } in the above expression, the right-hand side is
bounded above by e. The desired result follows from the fact that (5.15) and (5.16) in
Vershynin (2012) are two definitions that yield equivalent ψ1-norms.

The following lemma provides a variant of the existing matrix Bernstein inequality
(Tropp, 2012, Theorem 6.2). The primary difference is that we impose non-central abso-
lute moment inequalities, as opposed to central moment inequalities. We believe that this
inequality may be of independent interest, with applications beyond the scope of this pa-
per. Recall that if A ∈ Sd×d, with eigendecomposition A = Q diag(µ1, . . . , µd)Q

> for some
orthogonal Q ∈ Rd×d, then we write |A| := Q diag(|µ1|, . . . , |µd|)Q>.

Lemma 3 (Matrix Bernstein inequality with non-central absolute moment conditions). Let
{Xi}i∈[n] be independent symmetric d× d random matrices. Assume that

E
(
|Xi|q

)
� q!

2
Rq−2A2

i for q = 2, 3, 4, . . .

for some R > 0 and deterministic d-dimensional symmetric matrices {Ai}i∈[n]. Define the
variance parameter

σ2 :=

∥∥∥∥ n∑
i=1

A2
i

∥∥∥∥
op

.

Then for each t > 0,

P
[
λmax

{ n∑
i=1

(Xi − EXi)

}
≥ t

]
≤ 4d exp

(
−t2/32

σ2 +Rt

)
.

Proof. Let X̃1, . . . , X̃n, ε1, . . . , εn be independent random matrices and variables, indepen-

dent of (X1, . . . ,Xn), satisfying X̃i
d
= Xi and εi ∼ U({−1, 1}) for i ∈ [n]. Write Sn :=∑n

i=1(Xi−EXi) and S̃n :=
∑n

i=1(X̃i−EXi). Given X1, . . . ,Xn, let v∗ = v∗(X1, . . . ,Xn) be
a leading unit-length eigenvector of Sn. Let ṽ1, . . . , ṽd denote orthonormal eigenvectors of
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X̃1 with corresponding eigenvalues µ̃1, . . . , µ̃d; fix v ∈ Sd−1, and let wj := (ṽ>j v)2 for j ∈ [d].

Since
∑d

j=1wj = 1, we have by Jensen’s inequality that for q ∈ {2, 3, . . .},

|v>X̃1v|q =

∣∣∣∣ d∑
j=1

wjµ̃j

∣∣∣∣q ≤ d∑
j=1

wj|µ̃j|q = v>|X̃1|qv.

We deduce that E
{

(v>X̃iv)q+
}
≤ E

{
|v>X̃iv|q

}
≤ q!

2
Rq−2v>A2

iv for i ∈ [n], so by Bernstein’s
inequality (Boucheron, Lugosi and Massart, 2013, Corollary 2.11),

P
(
v>∗ S̃nv∗ > t/2

∣∣ X1, . . . ,Xn

)
≤ exp

(
−t2/8

v>∗
∑n

i=1 A2
iv∗ +Rt

)
≤ exp

(
−t2/8
σ2 +Rt

)
.

We may assume that the right-hand side of the above inequality is at most 1/2, since other-
wise the lemma is trivially true. Therefore,

P{λmax(Sn) ≥ t} = P(v>∗ Snv∗ ≥ t) ≤ 2E
{
P
(
v>∗ S̃nv∗ ≤ t/2

∣∣ X1, . . . ,Xn

)
1{v>∗ Snv∗≥t}

}
= 2P

(
v>∗ S̃nv∗ ≤ t/2 and v>∗ Snv∗ ≥ t

)
≤ 2P(v>∗ (Sn − S̃n)v∗ ≥ t/2)

≤ 2P
[
λmax

{ n∑
i=1

εi(Xi − X̃i)

}
≥ t/2

]
≤ 4P

{
λmax

( n∑
i=1

εiXi

)
≥ t/4

}
,

(28)

where we have used the fact that εi(Xi−X̃i)
d
= Xi−X̃i for all i in the penultimate inequality.

Since E(εiXi) = 0 and E
{

(εiXi)
q
}
� E(|Xi|q) � q!

2
Rq−2A2

i for q ∈ {2, 3, . . .}, applying
the matrix Bernstein inequality (Tropp, 2012, Theorem 6.2) to the sequence {εiXi}i∈[n] yields

P
{
λmax

( n∑
i=1

εiXi

)
≥ t/4

}
≤ d exp

(
−t2/32

σ2 +Rt

)
.

We attain the conclusion by combining the above inequality with (28).

Lemma 4. Let X1, . . . , Xn be independent Bin(d, p) random variables and let p̂i := Xi/d.
When dp ≥ 1 and n ≥ 2, we have

Emax
i∈[n]

p̂i ≤ 10p log n.

Proof. By Bernstein’s inequality (van der Vaart and Wellner, 1996, Lemma 2.2.9) and a
union bound,

P
(

max
i∈[n]

p̂i ≥ p+ t
)
≤ n exp

(
− dt2

2(p+ t/3)

)
.

Setting t0 := 2
√
pd−1 log n+ 4

3d
log n, we have

Emax
i∈[n]

p̂i = p+ t0 +

∫ ∞
t0

n{e−dt2/(4p) + e−3dt/4} dt ≤ p+ t0 +

√
πp

d
+

4

3d
≤ 10p log n,

where we have used log n ≥ log 2 and 1/d ≤ p in the final inequality.
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Lemma 5. Suppose that β,η ∈ Rd and ‖η‖2 = ‖β‖2. Let Σ1 := Id + ββ> and Σ2 :=
Id + ηη>. Then

KL
(
Nd(0,Σ1), Nd(0,Σ2)

)
=
‖η‖42 − (η>β)2

2(1 + ‖η‖22)
.

Proof. Since ‖η‖2 = ‖β‖2, the matrices Σ1 and Σ2 share the same set of eigenvalues. Hence
|Σ1| = |Σ2| and we have

KL(Nd(0,Σ1), Nd(0,Σ2)) =
1

2

{
tr
(
Σ−12 Σ1

)
− d
}

=
1

2

{
tr
(
(Id + ηη>)−1(Id + ββ>)

)
− d
}
.

Now, by the Sherman–Morrison formula,

(Id + ηη>)−1 = Id −
ηη>

1 + ‖η‖22
and thus we have

KL(N(0,Σ1), N(0,Σ2)) =
1

2

[
tr

((
Id −

ηη>

1 + ‖η‖22

)
(Id + ββ>)

)
− d
]

=
1

2

(
‖β‖22 −

‖η‖22
1 + ‖η‖22

− (η>β)2

1 + ‖η‖22

)
=
‖η‖42 − (η>β)2

2(1 + ‖η‖22)
,

as required.

Theorem 4 and Proposition 2 exhibit bounds on T (ṼK ,VK) and L(ṼK ,VK) given a
deterministic observation scheme. To provide some intuition on the size of these bounds
under the p-homogeneous missingness setting described in Section 2.1, the following lemma
derives probabilistic bounds for various norms of W̃.

Lemma 6. Assume (A5). Then there exists an event of probability at least 1 − d2e−3np2/32
on which each of the following inequalities hold:

(i) ‖W̃‖op ≤ 2dp−2;

(ii) ‖W̃‖1→1 = ‖W̃‖∞→∞ ≤ 2dp−2;

(iii) ‖W̃‖1 ≤ 2d2p−2;

(iv) ‖W̃‖F ≤ 2dp−2;

(v) ‖W̃‖2→∞ ≤ 2d1/2p−2.

Proof. Define an event
A :=

{
‖W̃ − p−21d1>d ‖∞ ≤ p−2

}
.

For j, k ∈ [d], write P̂jk := n−1
∑n

i=1 ωijωik. Then by a union bound and Bernstein’s inequal-
ity (Wainwright, 2019, Proposition 2.14), we have

P(Ac) ≤
∑
j,k∈[d]

P
(
P̂jk < p2/2

)
≤ d2e−3np

2/32.

Note that on A, we have ‖W̃‖∞ ≤ 2p−2. The desired bounds then follow respectively from

the following inequalities: ‖W̃‖op ≤ d‖W̃‖∞, ‖W̃‖1→1 = ‖W̃‖∞→∞ ≤ d‖W̃‖∞, ‖W̃‖1 ≤
d2‖W̃‖∞, ‖W̃‖F ≤ d‖W̃‖∞ and ‖W̃‖2→∞ ≤ d1/2‖W̃‖∞.
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