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We study the least squares regression function estimator over the
class of real-valued functions on [0, 1]d that are increasing in each
coordinate. For uniformly bounded signals and with a fixed, cubic
lattice design, we establish that the estimator achieves the minimax
rate of order n−min{2/(d+2),1/d} in the empirical L2 loss, up to poly-
logarithmic factors. Further, we prove a sharp oracle inequality, which
reveals in particular that when the true regression function is piece-
wise constant on k hyperrectangles, the least squares estimator en-
joys a faster, adaptive rate of convergence of (k/n)min(1,2/d), again
up to poly-logarithmic factors. Previous results are confined to the
case d ≤ 2. Finally, we establish corresponding bounds (which are
new even in the case d = 2) in the more challenging random design
setting. There are two surprising features of these results: first, they
demonstrate that it is possible for a global empirical risk minimi-
sation procedure to be rate optimal up to poly-logarithmic factors
even when the corresponding entropy integral for the function class
diverges rapidly; second, they indicate that the adaptation rate for
shape-constrained estimators can be strictly worse than the paramet-
ric rate.

1. Introduction. Isotonic regression is perhaps the simplest form of
shape-constrained estimation problem, and has wide applications in a num-
ber of fields. For instance, in medicine, the expression of a leukaemia antigen
has been modelled as a monotone function of white blood cell count and
DNA index (Schell and Singh, 1997), while in education, isotonic regression
has been used to investigate the dependence of college grade point average
on high school ranking and standardised test results (Dykstra and Robert-
son, 1982). A further application area for isotonic regression approaches
has recently emerged in genetic heritability studies, where it is often gen-
erally accepted that phenotypes such as height, fitness or disease depend
in a monotone way on genetic factors (Mani et al., 2008; Roth, Lipshitz
and Andrews, 2009; Luss, Rosset and Shahar, 2012). In these latter con-
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texts, as an initial simplifying structure, it is natural to ignore potential
genetic interactions and consider additive isotonic regression models; how-
ever, these have been found to be inadequate in several instances (Shao et
al., 2008; Goldstein, 2009; Eichler et al., 2010). Alternative simplifying inter-
action structures have also been explored, including those based on products
(Elena and Lenski, 1997), logarithms (Sanjuan and Elena, 2006) and min-
ima (Tong et al., 2001), but the form of genetic interaction between factors
is not always clear and may vary between phenotypes (Mani et al., 2008;
Luss, Rosset and Shahar, 2012).

Motivated by these considerations, we note that a general class of isotonic
functions, which includes all of the above structures as special cases, is the
class of block increasing functions

Fd :=
{
f : [0, 1]d → R, f(x1, . . . , xd) ≤ f(x′1, . . . , x

′
d)

when xj ≤ x′j for j = 1, . . . , d
}
.

In this paper, we suppose that we observe data (X1, Y1), . . . , (Xn, Yn), with
n ≥ 2, satisfying

(1) Yi = f0(Xi) + εi, i = 1, . . . , n,

where f0 : [0, 1]d → R is Borel measurable, ε1, . . . , εn are independent N(0, 1)
noise, and the covariates X1, . . . , Xn, which take values in the set [0, 1]d,
can either be fixed or random (independent of ε1, . . . , εn). Our goal is to
study the performance of the least squares isotonic regression estimator f̂n ∈
argminf∈Fd

∑n
i=1{Yi − f(Xi)}2 in terms of its empirical risk

(2) Rn(f̂n, f0) := E
[

1

n

n∑
i=1

{f̂n(Xi)− f0(Xi)}2
]
.

Note that this loss function only considers the errors made at the design
points X1, . . . , Xn, and these points naturally induce a directed acyclic graph
GX = (V (GX), E(GX)) with V (GX) = {1, . . . , n} and E(GX) = {(i, i′) :
(Xi)j ≤ (Xi′)j ∀ j = 1, . . . , d}. It is therefore natural to restate the problem
in terms of isotonic vector estimation on directed acyclic graphs. Recall that
given a directed acyclic graph G = (V (G), E(G)), we may define a partially
ordered set (V (G),≤), where u ≤ v if and only if there exists a directed
path from u to v. We define the class of isotonic vectors on G by

M(G) := {θ ∈ RV (G) : θu ≤ θv for all u ≤ v}.

Hence, for a signal vector θ0 = ((θ0)i)
n
i=1 := (f0(Xi))

n
i=1 ∈M(GX), the least

squares estimator θ̂n = ((θ̂n)i)
n
i=1 := (f̂n(Xi))

n
i=1 can be seen as the projec-

tion of (Yi)
n
i=1 onto the polyhedral convex cone M(GX). Such a geometric
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interpretation means that least squares estimators for isotonic regression, in
general dimensions or on generic directed acyclic graphs, can be efficiently
computed using convex optimisation algorithms (see, e.g., Dykstra (1983);
Kyng, Rao and Sachdeva (2015); Stout (2015)).

In the special case where d = 1, model (1) reduces to the univariate
isotonic regression problem that has a long history (e.g. Brunk, 1955; van
Eeden, 1958; Barlow et al., 1972; van de Geer, 1990, 1993; Donoho, 1991;
Birgé and Massart, 1993; Meyer and Woodroofe, 2000; Durot, 2007, 2008;
Yang and Barber, 2017). See Groeneboom and Jongbloed (2014) for a gen-
eral introduction. Since the risk only depends on the ordering of the de-
sign points in the univariate case, fixed and random designs are equivalent
for d = 1 under the empirical risk function (2). It is customary to write
Rn(θ̂n, θ0) in place of Rn(f̂n, f0) for model (1) with fixed design points.
When (θ0)1 ≤ · · · ≤ (θ0)n (i.e. X1 ≤ · · · ≤ Xn), Zhang (2002) proved that
for d = 1 there exists a universal constant C > 0 such that

Rn(θ̂n, θ0) ≤ C
{(

(θ0)n − (θ0)1

n

)2/3

+
log n

n

}
,

which shows in particular that the risk of the least squares estimator is no
worse than O(n−2/3) for signals θ0 of bounded uniform norm. In recent years,
there has been considerable interest and progress in studying the automatic
rate-adaptation phenomenon of shape-constrained estimators. This line of
study was pioneered by Zhang (2002) in the context of univariate isotonic
regression, followed by Chatterjee, Guntuboyina and Sen (2015) and most
recently Bellec (2018), who proved that

(3) Rn(θ̂n, θ0) ≤ inf
θ∈M(GX)

{
‖θ − θ0‖22

n
+
k(θ)

n
log

(
en

k(θ)

)}
,

where k(θ) is the number of constant pieces in the isotonic vector θ. The
inequality (3) is often called a sharp oracle inequality, with the sharpness
referring to the fact that the approximation error term n−1‖θ − θ0‖22 has
leading constant 1. The bound (3) shows nearly parametric adaptation of
the least squares estimator in univariate isotonic regression when the un-
derlying signal has a bounded number of constant pieces. Other examples
of adaptation in univariate shape-constrained problems include the maxi-
mum likelihood estimator of a log-concave density (Kim, Guntuboyina and
Samworth, 2018), and the least squares estimator in unimodal regression
(Chatterjee and Lafferty, 2017).

Much less is known about the rate of convergence of the least squares
estimator in the model (1), or indeed the adaptation phenomenon in shape-
restricted problems more generally, in multivariate settings. The only work of
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which we are aware in the isotonic regression case is Chatterjee, Guntuboyina
and Sen (2018), which deals with the fixed, lattice design case when d = 2.
For a general dimension d, and for n1, . . . , nd ∈ N, we define this lattice by
Ld,n1,...,nd

:=
∏d
j=1{1/nj , 2/nj , . . . , 1}; when n1 = . . . = nd = n1/d for some

n ∈ N, we also write Ld,n := Ld,n1,...,nd
as shorthand. When {X1, . . . , Xn} =

L2,n1,n2 , Chatterjee, Guntuboyina and Sen (2018) showed that there exists
a universal constant C > 0 such that

Rn(θ̂n, θ0) ≤ C
{

((θ0)n1,n2 − (θ0)1,1) log4 n

n1/2
+

log8 n

n

}
,

with a corresponding minimax lower bound of order n−1/2 over classes of
uniformly bounded signals. They also provided a sharp oracle inequality of
the form

(4) Rn(θ̂n, θ0) ≤ inf
θ∈M(L2,n1,n2 )

(
‖θ − θ0‖22

n
+
Ck(θ) log8 n

n

)
,

where k(θ) is the minimal number of rectangular blocks into which L2,n1,n2

may be partitioned such that θ is constant on each rectangular block.
A separate line of work has generalised the univariate isotonic regression

problem to multivariate settings by assuming an additive structure (see e.g.
Bacchetti (1989); Morton-Jones et al. (2000); Mammen and Yu (2007); Chen
and Samworth (2016)). In the simplest setting, these works investigate the
regression problem (1), where the signal f0 belongs to

Fadd
d :=

{
f ∈ Fd : f(x1, . . . , xd) =

d∑
j=1

fj(xj), fj ∈ F1, ‖fj‖∞ ≤ 1

}
.

The additive structure greatly reduces the complexity of the class; indeed,
it can be shown that the least squares estimator over Fadd

d attains the uni-
variate risk n−2/3, up to multiplicative constants depending on d (e.g. van
de Geer, 2000, Theorem 9.1).

The main contribution of this paper is to provide risk bounds for the
isotonic least squares estimator when d ≥ 3, both from a worst-case per-
spective and an adaptation point of view. Specifically, we show that in the
fixed lattice design case, the least squares estimator satisfies

(5) sup
θ0∈M(Ld,n),‖θ0‖∞≤1

Rn(θ̂n, θ0) ≤ Cn−1/d log4 n,

for some universal constant C > 0. This rate turns out to be the minimax risk
up to poly-logarithmic factors in this problem. Furthermore, we establish a

imsart-aos ver. 2012/08/31 file: IsoReg_AoSFinal.tex date: July 21, 2018
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sharp oracle inequality: there exists a universal constant C > 0 such that
for every θ0 ∈ RLd,n ,

(6) Rn(θ̂n, θ0) ≤ inf
θ∈M(Ld,n)

{
‖θ − θ0‖22

n
+ C

(
k(θ)

n

)2/d

log8

(
en

k(θ)

)}
,

where k(θ) is the number of constant hyperrectangular pieces in θ. This
reveals an adaptation rate of nearly (k/n)2/d for signals that are close to
an element of M(Ld,n) that has at most k hyperrectangular blocks. A cor-
responding lower bound is also provided, showing that the least squares
estimator cannot adapt faster than the n−2/d rate implied by (6) even for
constant signal vectors. Some intuition for this rate is provided by the notion
of statistical dimension, which can be thought of as a measure of complex-
ity of the underlying parameter space; see (8) below for a formal definition.
A key step in the proof of (6) is to observe that for d ≥ 2, the statistical
dimension of M(Ld,n) is of order n1−2/d up to poly-logarithmic factors; see
Table 1. The adaptation rate in (6), at least in the constant signal case,
can therefore be understood as the ratio of the statistical dimension to the
sample size. This reasoning is developed and discussed in greater detail at
the end of Section 2.

We further demonstrate that analogues of the worst-case bounds and
oracle inequalities (5) and (6), with slightly different poly-logarithmic expo-
nents, remain valid for random design points X1, . . . , Xn sampled indepen-
dently from a distribution P on [0, 1]d with a Lebesgue density bounded away
from 0 and∞. Such random design settings arguably occur more frequently
in practice (cf. the examples given at the beginning of this introduction) and
are particularly natural in high dimensions, where sampling design points
on a fixed lattice is rarely feasible or even desirable. Nevertheless, we are
not aware of any previous works on isotonic regression with random design
even for d = 2; this is undoubtedly due to the increased technical challenges
(described in detail after the statement of Theorem 5 in Section 3) that arise
in handling the relevant empirical processes.

In addition to the risk Rn(f̂n, f0) in (2), for random designs we also study
the natural population squared risk

R(f̂n, f0) := E‖f̂n − f0‖2L2(P ) = E
[{
f̂n(X)− f0(X)

}2]
,

where (X,Y )
d
= (X1, Y1) and is independent of (X1, Y1), . . . , (Xn, Yn). We

note that the quantity E
[{
Y − f̂n(X)

}2]
, often referred to as the generalisa-

tion error for squared error loss in the machine learning literature, is simply
equal to 1 + R(f̂n, f0) in our context. Both our upper and lower bounds
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for the R(f̂n, f0) are broadly similar to the Rn(f̂n, f0) setting, though the
proofs are very different (and quite intricate), and we incur an additional
multiplicative factor of order log n for the approximation error term in the
oracle inequality.

Our results in both the fixed and random design settings are surprising
in particular with regard to the following two aspects:

1. The negative results of Birgé and Massart (1993) have spawned a
heuristic belief that one should not use global empirical risk minimi-
sation procedures1 when the entropy integral for the corresponding
function class diverges (e.g. van de Geer (2000, pp. 121–122), Rakhlin,
Sridharan and Tsybakov (2017)). It is therefore of particular interest
to see that in our isotonic regression function setting, the global least
squares estimator is still rate optimal (up to poly-logarithmic factors).
See also the discussion after Corollary 1.

2. Sharp adaptive behaviour for shape-constrained estimators has previ-
ously only been shown when the adaptive rate is nearly parametric
(see, e.g., Guntuboyina and Sen (2015); Chatterjee, Guntuboyina and
Sen (2015); Bellec (2018); Kim, Guntuboyina and Samworth (2018)).
On the other hand, our results here show that the least squares estima-
tor in the d-dimensional isotonic regression problem necessarily adapts
at a strictly nonparametric rate. Clearly, the minimax optimal rate for
constant functions is parametric. Hence, the least squares estimator in
this problem adapts at a strictly suboptimal rate while at the same
time being nearly rate optimal from a worst-case perspective.

In both the fixed lattice design and the more challenging random design
cases, our analyses are based on a novel combination of techniques from
empirical process theory, convex geometry and combinatorics. We hope these
methods can serve as a useful starting point towards understanding the
behaviour of estimators in other multivariate shape-restricted models.

The rest of the paper is organised as follows. In Section 2, we state the
main results for the fixed lattice design model. Section 3 describes corre-
sponding results in the random design case. Proofs of all main theoretical
results are contained in Sections 4 and 5, whereas proofs of ancillary results
are deferred until Appendix B in the online supplement (Han et al., 2018).

1.1. Notation. For a real-valued measurable function f defined on a
probability space (X ,A, P ) and for p ∈ [1,∞), we let ‖f‖Lp(P ) :=

(
P |f |p)1/p

1The term ‘global’ refers here to procedures that involve minimisation over the entire
function class, as opposed to only over a sieve; cf. van de Geer (2000).
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denote the usual Lp(P )-norm, and write ‖f‖∞ := supx∈X |f(x)|. Moreover,

for any Borel measurable R ⊆ X , we write ‖f‖Lp(P ;R) :=
(∫
R |f |

p dP
)1/p

.
For r ≥ 0, we write Bp(r, P ) := {f : X → R, ‖f‖Lp(P ) ≤ r} and B∞(r) :=
{f : X → R, ‖f‖∞ ≤ r}. We will abuse notation slightly and also write
Bp(r) := {v ∈ Rn : ‖v‖p ≤ r} for p ∈ [1,∞]. The Euclidean inner product
on Rd is denoted by 〈·, ·〉. For x, y ∈ Rd, we write x � y if xj ≤ yj for all
j = 1, . . . , d.

For ε > 0, the ε-covering number of a (semi-)normed space (F , ‖ · ‖),
denoted N

(
ε,F , ‖ · ‖

)
, is the smallest number of closed ε-balls whose union

covers F . The ε-bracketing number, denoted N[ ](ε,F , ‖ · ‖), is the smallest
number of ε-brackets, of the form [l, u] := {f ∈ F : l ≤ f ≤ u}, such that
‖u − l‖ ≤ ε, and whose union covers F . The metric/bracketing entropy is
the logarithm of the covering/bracketing number.

Throughout the article ε1, . . . , εn and {εw : w ∈ Ld,n1,...,nd
} denote inde-

pendent standard normal random variables and ξ1, . . . , ξn denote indepen-
dent Rademacher random variables, both independent of all other random
variables. For two probability measures P and Q defined on the same mea-
surable space (X ,A), we write dTV(P,Q) := supA∈A |P (A)−Q(A)| for their
total variation distance, and d2

KL(P,Q) :=
∫
X log dP

dQ dP for their Kullback–
Leibler divergence.

We use c, C to denote generic universal positive constants and use cx, Cx
to denote generic positive constants that depend only on x. Exact numeric
values of these constants may change from line to line unless otherwise spec-
ified. Also, a .x b and a &x b mean a ≤ Cxb and a ≥ cxb respectively, and
a �x b means a .x b and a &x b (a . b means a ≤ Cb for some universal
constant C > 0). Finally, we define log+(x) := log(x ∨ e).

2. Fixed lattice design. In this section, we focus on the model (1)
in the case where the set of design points forms a finite cubic lattice Ld,n,
defined in the introduction. In particular, we will assume in this section that
n = nd1 for some n1 ∈ N. We use the same notation Ld,n both for the set
of points and the directed acyclic graph on these points with edge structure
arising from the natural partial ordering induced by �. Thus, in the case
d = 1, the graph L1,n is simply a directed path, and this is the classical
univariate isotonic regression setting. The case d = 2 is studied in detail in
Chatterjee, Guntuboyina and Sen (2018). Our main interest lies in the cases
d ≥ 3.

2.1. Worst-case rate of the least squares estimator. Our first result pro-
vides an upper bound on the risk of the least squares estimator θ̂n =
θ̂n(Y1, . . . , Yn) of θ0 ∈M(Ld,n).
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Theorem 1. Let d ≥ 2. There exists a universal constant C > 0 such
that

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̂n, θ0) ≤ Cn−1/d log4 n.

Theorem 1 reveals that, up to a poly-logarithmic factor, the empirical
risk of the least squares estimator converges to zero at rate n−1/d. The
upper bound in Theorem 1 is matched, up to poly-logarithmic factors, by
the following minimax lower bound.

Proposition 1. There exists a constant cd > 0, depending only on d,
such that for d ≥ 2,

inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̃n, θ0) ≥ cdn−1/d,

where the infimum is taken over all estimators θ̃n = θ̃n(Y1, . . . , Yn) of θ0.

Recall that, given a directed acyclic graph G = (V,E), a chain in G of
cardinality L is a directed path of the form (i1, . . . , iL), where (ij , ij+1) ∈ E
for each j = 1, . . . , L − 1; an antichain in G of cardinality L is a subset
{i1, . . . , iL} of V such that for each distinct j, j′ ∈ {1, . . . , L} there is no
chain containing both ij and ij′ . A key observation in the proof of Proposi-
tion 1 is that Ld,n contains a large antichain of size L &d n

1−1/d. As design
points in the antichain are mutually incomparable, an intuitive explanation
for the lower bound in Proposition 1 comes from the fact that we have L
unconstrained parameters in [−1, 1] to estimate from n observations, which
translates to a rate at least of order L/n. From Theorem 1 and Proposi-
tion 1, together with existing results mentioned in the introduction for the
case d = 1, we see that the worst-case risk n−min{2/(d+2),1/d} (up to poly-
logarithmic factors) of the least squares estimator exhibits different rates
of convergence in dimension d = 1 and dimensions d ≥ 3, with d = 2 be-
ing a transitional case. From the proof of Proposition 1, we see that it is
the competition between the cardinality of the maximum chain in GX and
the cardinality of the maximum antichain in GX that explains the differ-
ent rates. Similar transitional behaviour was recently observed by Kim and
Samworth (2016) in the context of log-concave density estimation, though
there it is the tension between estimating the density in the interior of its
support and estimating the support itself that drives the transition.

The two results above can readily be translated into bounds for the
rate of convergence for estimation of a block monotonic function with a
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fixed lattice design. Recall that Fd is the class of block increasing func-
tions. Suppose that for some f0 ∈ Fd, and at each x ∈ Ld,n, we observe
Y (x) ∼ N(f0(x), 1) independently. Define Pn := n−1

∑
x∈Ld,n

δx and let

A denote the set of hypercubes of the form A =
∏d
j=1Aj , where either

Aj = [0, 1
n1

] or Aj = (
ij−1
n1

,
ij
n1

] for some ij ∈ {2, . . . , n1}. Now let H denote
the set of functions f ∈ Fd that are piecewise constant on each A ∈ A,
and set f̂n := argminf∈H

∑
x∈Ld,n

{Y (x) − f(x)}2. The following is a fairly
straightforward corollary of Theorem 1 and Proposition 1.

Corollary 1. There exist cd, Cd > 0, depending only on d, such that
for Q = Pn or Lebesgue measure on [0, 1]d, we have

cdn
−1/d ≤ inf

f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2L2(Q)

≤ sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2L2(Q) ≤ Cdn
−1/d log4 n,

where the infimum is over all measurable functions of {Y (x) : x ∈ Ld,n}.

This corollary is surprising for the following reason. Gao and Wellner
(2007, Theorem 1.1) proved that when d ≥ 3 and Q denotes Lebesgue mea-
sure on [0, 1]d,

(7) logN
(
ε,Fd ∩B∞(1), ‖ · ‖L2(Q)

)
�d ε−2(d−1).

In particular, for d ≥ 3, the classes Fd∩B∞(1) are massive in the sense that
the entropy integral

∫ 1
δ log1/2N(ε,Fd ∩ B∞(1), ‖ · ‖L2(Q)) dε diverges at a

polynomial rate in δ−1 as δ ↘ 0. To the best of our knowledge, this is the first
example of a setting where a global empirical risk minimisation procedure
has been proved to attain (nearly) the minimax rate of convergence over
such massive parameter spaces.

2.2. Sharp oracle inequality. In this subsection, we consider the adapta-
tion behaviour of the least squares estimator in dimensions d ≥ 2 (again,
the d = 2 case is covered in Chatterjee, Guntuboyina and Sen (2018)). Our
main result is the sharp oracle inequality in Theorem 2 below. We call a set
in Rd a hyperrectangle if it is of the form

∏d
j=1 Ij where Ij ⊆ R is an interval

for each j = 1, . . . , d. If A =
∏d
j=1[aj , bj ] where |{j : bj = aj}| ≥ d− 2, then

we say A is a two-dimensional sheet. A two-dimensional sheet is therefore
a special type of hyperrectangle whose intrinsic dimension is at most two.
For θ ∈M(Ld,n), let K(θ) denote the smallest K such that Ld,n ⊆ tK`=1A`,
where A1, . . . , AK are disjoint two-dimensional sheets and the restricted vec-
tor θA`∩Ld,n

is constant for each ` = 1, . . . ,K.
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Theorem 2. Let d ≥ 2. There exists a universal constant C > 0 such
that for every θ0 ∈ RLd,n,

Rn(θ̂n, θ0) ≤ inf
θ∈M(Ld,n)

{
‖θ − θ0‖22

n
+
CK(θ)

n
log8

+

(
n

K(θ)

)}
.

We remark that Theorem 2 does not imply (nearly) parametric adaptation
when d ≥ 3. This is because even when θ0 is constant on Ld,n for every
n, we have K(θ0) = n(d−2)/d → ∞ as n → ∞. The following corollary
of Theorem 2 gives an alternative (weaker) form of oracle inequality that
offers easier comparison to lower dimensional results given in (3) and (4).
Let M(k)(Ld,n) be the collection of all θ ∈ M(Ld,n) such that there exist
disjoint hyperrectangles R1, . . . ,Rk with the properties that Ld,n ⊆ tk`=1R`
and that for each `, the restricted vector θR`∩Ld,n

is constant.

Theorem 3. Let d ≥ 2. There exists a universal constant C > 0 such
that for every θ0 ∈ RLd,n,

Rn(θ̂n, θ0) ≤ inf
k∈N

{
inf

θ∈M(k)(Ld,n)

‖θ − θ0‖22
n

+ C

(
k

n

)2/d

log8
+

(
n

k

)}
.

It is important to note that both Theorems 2 and 3 allow for model
misspecification, as it is not assumed that θ0 ∈M(Ld,n). For signal vectors
θ0 that are piecewise constant on k hyperrectangles, Theorem 3 provides an
upper bound of the risk of order (k/n)2/d up to poly-logarithmic factors.
The following proposition shows that even for a constant signal vector, the
adaptation rate of n−2/d given in Theorem 3 cannot be improved.

Proposition 2. Let d ≥ 2. There exists a constant cd > 0, depending
only on d, such that for any θ0 ∈M(1)(Ld,n),

Rn(θ̂n, θ0) ≥ cd

{
n−1 log2 n if d = 2

n−2/d if d ≥ 3.

The case d = 2 of this result is new, and reveals both a difference with
the univariate situation, where the adaptation rate is of order n−1 log n
(Bellec, 2018), and that a poly-logarithmic penalty relative to the parametric
rate is unavoidable for the least squares estimator. Moreover, we see from
Proposition 2 that for d ≥ 3, although the least squares estimator achieves
a faster rate of convergence than the worst-case bound in Theorem 1 on
constant signal vectors, the rate is not parametric, as would have been the
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 11

case for a minimax optimal estimator over the set of constant vectors. This
is in stark contrast to the nearly parametric adaptation results established
in (3) and (4) for dimensions d ≤ 2.

Another interesting aspect of these results relates to the notion of statis-
tical dimension, defined for an arbitrary cone C in Rn by2

(8) δ(C) :=

∫
Rn

‖ΠC(x)‖22(2π)−n/2e−‖x‖
2
2/2 dx,

where ΠC is the projection onto the set C (Amelunxen et al., 2014). The
proofs of Theorem 3 and Proposition 2 reveal a type of phase transition
phenomenon for the statistical dimension δ(M(Ld,n)) = Rn(θ̂n, 0) of the
monotone cone (cf. Table 1).

Table 1
Bounds∗ for δ

(
M(Ld,n)

)
.

d upper bound lower bound

1
∑n

i=1 i
−1 † ∑n

i=1 i
−1 †

2 . log8 n ‡ & log2 n

≥ 3 . n1−2/d log8 n &d n
1−2/d

∗ Entries without a reference are proved in
this paper.
† Amelunxen et al. (2014)
‡ Chatterjee, Guntuboyina and Sen (2018)

The following corollary of Theorem 2 gives another example where dif-
ferent adaptation behaviour is observed in dimensions d ≥ 3, in the sense
that the n−2/d log8 n adaptive rate achieved for constant signal vectors is ac-
tually available for a much wider class of isotonic signals that depend only
on d − 2 of all d coordinates of Ld,n. For r = 0, 1, . . . , d, we say a vector
θ0 ∈ M(Ld,n) is a function of r variables, written θ0 ∈ Mr(Ld,n), if there
exists J ⊆ {1, . . . , d}, of cardinality r, such that (θ0)(x1,...,xd) = (θ0)(x′1,...,x

′
d)

whenever xj = x′j for all j ∈ J .

Corollary 2. For d ≥ 2, there exists constant Cd > 0, depending only
on d, such that

sup
θ0∈Mr(Ld,n)∩B∞(1)

Rn(θ̂n, θ0) ≤ Cd


n−2/d log8 n if r ≤ d− 2

n−4/(3d) log16/3 n if r = d− 1

n−1/d log4 n if r = d.
2Our reason for defining the statistical dimension via an integral rather than as

E‖ΠC(ε)‖22 is because, in the random design setting, the cone C is itself random, and
in that case δ(C) is a random quantity.
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If the signal vector θ0 belongs to Mr(Ld,n), then it is intrinsically an r-
dimensional isotonic signal. Corollary 2 demonstrates that the least squares
estimator exhibits three different levels of adaptation when the signal is a
function of d, d − 1, d − 2 variables respectively. However, viewed together
with Proposition 2, Corollary 2 shows that no further adaptation for the
least squares estimator is available when the intrinsic dimension of the signal
vector decreases further. Moreover, if we let ñ = n2/d denote the maximum
cardinality of the intersection of Ld,n with a two-dimensional sheet, then
the three levels of adaptive rates in Corollary 2 are ñ−1, ñ−2/3 and ñ−1/2

respectively, up to poly-logarithmic factors, matching the two-dimensional
‘automatic variable adaptation’ result described in Chatterjee, Guntuboyina
and Sen (2018, Theorem 2.4). In this sense, the adaptation of the isotonic
least squares estimator in general dimensions is essentially a two-dimensional
phenomenon.

3. Random design. In this section, we consider the setting where
the design points X1, . . . , Xn are independent and identically distributed
from some distribution P supported on the unit cube [0, 1]d. We will as-
sume throughout that P has Lebesgue density p0 such that 0 < m0 ≤
infx∈[0,1]d p0(x) ≤ supx∈[0,1]d p0(x) ≤ M0 < ∞. Since the least squares

estimator f̂n is only well-defined on X1, . . . , Xn, for definiteness, we ex-
tend f̂n to [0, 1]d by defining f̂n(x) := min

(
{f̂n(Xi) : 1 ≤ i ≤ n,Xi �

x}∪{maxi f̂n(Xi)}
)
. If we let Pn := n−1

∑n
i=1 δXi , then we can consider the

empirical and population risks Rn(f̂n, f0) = E‖f̂n−f0‖2L2(Pn) and R(f̂n, f0) =

E‖f̂n − f0‖2L2(P ).
The main results of this section are the following two theorems, establish-

ing respectively the worst-case performance and the adaptation behaviour

for the least squares estimator in the random design setting. We write F (k)
d

for the class of functions in Fd that are piecewise constant on k hyperrect-

angular pieces. In other words, if f ∈ F (k)
d , then there exists a partition

[0, 1]d = tk`=1R`, such that each R` is a hyperrectangle and f is a constant
function when restricted to each R`. Let γ2 := 9/2 and γd := (d2 + d+ 1)/2
for d ≥ 3.

Theorem 4. Let d ≥ 2. There exists Cd,m0,M0 > 0, depending only on
d,m0 and M0, such that

sup
f0∈Fd∩B∞(1)

max
{
R(f̂n, f0) , Rn(f̂n, f0)

}
≤ Cd,m0,M0n

−1/d logγd n.
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Theorem 5. Fix d ≥ 2, and a Borel measurable function f0 : [0, 1]d →
R. There exists Cd,m0,M0 > 0, depending only on d,m0 and M0, such that

Rn(f̂n, f0) ≤ inf
k∈N

{
inf

f∈F(k)
d

‖f − f0‖2L2(P ) + Cd,m0,M0

(
k

n

)2/d

log2γd
+

(
n

k

)}
.

On the other hand, if we also have ‖f0‖∞ ≤ 1, then there exists a universal
constant C > 0 such that

R(f̂n, f0) ≤ inf
k∈N

{
C log n inf

f∈F(k)
d

‖f − f0‖2L2(P ) + Cd,m0,M0

(
k

n

)2/d

log2γd n

}
.

To the best of our knowledge, the bound in L2(Pn) risk in Theorem 5 is
the first sharp oracle inequality in the shape-constrained regression literature
with random design. The different norms on the left- and right-hand sides
for the Rn(f̂n, f0) bound arise from the observation that E‖f − f0‖2L2(Pn) =

‖f−f0‖2L2(P ) for f ∈ F (k)
d . For the R(f̂n, f0) bound, the norms on both sides

are the same, but we pay a price of a multiplicative factor of order log n for
the approximation error.

The proofs of Theorems 4 and 5 are considerably more involved than those
of the corresponding Theorems 1 and 2 in Section 2. We briefly mention two
major technical difficulties:

1. The size of Fd, as measured by its entropy, is large when d ≥ 3, even
after L∞ truncation (cf. (7)). As rates obtained from the entropy in-
tegral (e.g. van de Geer, 2000, Theorem 9.1) do not match those from
Sudakov lower bounds for such classes, standard entropy methods re-
sult in a non-trivial gap between the minimax rates of convergence,
which typically match the Sudakov lower bounds (e.g. Yang and Bar-
ron, 1999, Proposition 1), and provable risk upper bounds for least
squares estimators when d ≥ 3.

2. In the fixed lattice design case, our analysis circumvents the difficulties
of standard entropy methods by using the fact that a d-dimensional
cubic lattice can be decomposed into a union of lower-dimensional
pieces. This crucial property is no longer valid when the design is
random.

We do not claim any optimality of the power in the poly-logarithmic
factor in Theorems 4 and 5. On the other hand, similar to the fixed, lattice
design case, the worst-case rate of order n−1/d up to poly-logarithmic factors
cannot be improved, as can be seen from the proposition below.
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Proposition 3. Let d ≥ 2. There exists a constant cd,m0,M0 > 0, de-
pending only on d,m0 and M0, such that,

inf
f̃n

sup
f0∈Fd∩B∞(1)

min
{
R(f̃n, f0) , Rn(f̃n, f0)

}
≥ cd,m0,M0n

−1/d,

where the infimum is taken over all measurable functions f̃n of the data
(X1, Y1), . . . , (Xn, Yn).

We can also provide lower bounds on the adaptation rate risks for the
least squares estimator when f0 is constant.

Proposition 4. Let d ≥ 2. There exists a constant cd,M0 > 0, depending

only on d and M0, such that for any f0 ∈ F (1)
d ,

Rn(f̂n, f0) ≥ cd,M0n
−2/d.

On the other hand, when d ≥ 2, there exist a universal constant c2 > 0 and
cd,m0,M0 > 0 for d ≥ 3, depending only on d,m0 and M0, such that for any

f0 ∈ F (1)
d ,

R(f̂n, f0) ≥

{
c2n
−1 for d = 2

cd,m0,M0n
−2/d log−2γd n for d ≥ 3.

A key step in proving the first part of Proposition 4 is to establish that
with high probability, the cardinality of the maximum antichain in GX is at
least of order n1−1/d. When d = 2, the distribution of this maximum cardi-
nality is the same as the distribution of the length of the longest decreasing
subsequence of a uniform permutation of {1, . . . , n}, a famous object of study
in probability and combinatorics. See Romik (2014) and references therein.

4. Proofs of results in Section 2. Throughout this section, ε =
(εw)w∈Ld,n1,...,nd

denotes a vector of independent standard normal random
variables. It is now well understood that the risk of the least squares esti-
mator in the Gaussian sequence model is completely characterised by the
size of a localised Gaussian process; cf. Chatterjee (2014). The additional
cone property ofM(Ld,n) makes the reduction even simpler: we only need to
evaluate the Gaussian complexity of M(Ld,n) ∩ B2(1), where the Gaussian
complexity of T ⊆ RLd,n1,...,nd is defined as wT := E supθ∈T 〈ε, θ〉. Thus the
result in the following proposition constitutes a key ingredient in analysing
the risk of the least squares estimator.
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Proposition 5. There exists a universal constant C > 0 such that for
d ≥ 2 and every 1 ≤ n1 ≤ · · · ≤ nd with

∏d
j=1 nj = n, we have√

2/π

(d− 1)d−1
nd−1

1 n−1/2 ≤ E sup
θ∈M(Ld,n1,...,nd

)∩B2(1)
〈ε, θ〉 ≤ C

√
n

nd−1nd
log4 n.

We remark that in the case n1 = · · · = nd = n1/d, we have nd−1
1 n−1/2 =√

n
nd−1nd

= n1/2−1/d. Also, from the symmetry of the problem, we see that

the restriction that n1 ≤ · · · ≤ nd is not essential. In the general case, for the
lower bound, n1 should be replaced with minj nj , while in the upper bound,
nd−1nd should be replaced with the product of the two largest elements of
{n1, . . . , nd} (considered here as a multiset).

Proof. We first prove the lower bound. Consider W := {w ∈ Ld,n1,...,nd
:∑d

j=1 njwj = n1}, W+ := {w ∈ Ld,n1,...,nd
:
∑d

j=1 njwj > n1} and W− :=

{w ∈ Ld,n1,...,nd
:
∑d

j=1 njwj < n1}. For each realisation of the Gaussian
random vector ε = (εw)w∈Ld,n1,...,nd

, we define θ(ε) = (θw(ε))w∈Ld,n1,...,nd
∈

M(Ld,n1,...,nd
) by

θw :=


1 if w ∈W+

sgn(εw) if w ∈W
−1 if w ∈W−.

Since ‖θ(ε)‖22 = n, it follows that

E sup
θ∈M(Ld,n1,...,nd

)∩B2(1)
〈ε, θ〉 ≥ E

〈
ε,

θ(ε)

‖θ(ε)‖2

〉

=
1

n1/2
E
( ∑
w∈W+

εw −
∑

w∈W−
εw +

∑
w∈W

|εw|
)

=

√
2/π

n1/2
|W |.

The proof of the lower bound is now completed by noting that

(9) |W | =
(
n1 − 1

d− 1

)
≥
(
n1 − 1

d− 1

)d−1

.

We next prove the upper bound. For j = 1, . . . , d − 2 and for xj ∈
{1/nj , 2/nj , . . . , 1}, we define Ax1,...,xd−2

:= {w = (w1, . . . , wd) ∈ Ld,n1,...,nd
:

(w1, . . . , wd−2) = (x1, . . . , xd−2)}. Each Ax1,...,xd−2
can be viewed as a di-

rected acyclic graph with graph structure inherited from Ld,n1,...,nd
. Since

monotonicity is preserved on subgraphs, we have that M(Ld,n1,...,nd
) ⊆
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16 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH⊕
x1,...,xd−2

M(Ax1,...,xd−2
). Hence, by the Cauchy–Schwarz inequality and

Amelunxen et al. (2014, Proposition 3.1(5, 9, 10)), we obtain that(
E sup
θ∈M(Ld,n1,...,nd

)∩B2(1)
〈ε, θ〉

)2

≤ E
{(

sup
θ∈M(Ld,n1,...,nd

)∩B2(1)
〈ε, θ〉

)2}
= δ
(
M(Ld,n1,...,nd

)
)
≤

∑
x1,...,xd−2

δ
(
M(Ax1,...,xd−2

)
)

= δ
(
M(L2,nd−1,nd

)
) d−2∏
j=1

nj .
n

nd−1nd
log8

+(nd−1nd),

as desired. Here, the final inequality follows from Chatterjee, Guntuboyina
and Sen (2018, Theorem 2.1) by setting θ∗ = 0 (in their notation) and
observing that δ

(
M(L2,nd−1,nd

)
)

= nd−1ndRn(θ̂n, 0) . log8
+(nd−1nd).

Proof of Theorem 1. Fix θ0 ∈ M(Ld,n) ∩ B∞(1). We have by Chat-
terjee (2014, Theorem 1.1) that the function

t 7→ E sup
θ∈M(Ld,n),‖θ−θ0‖≤t

〈ε, θ − θ0〉 − t2/2

is strictly concave on [0,∞) with a unique maximum at, say, t0 ≥ 0. We
note that t0 ≤ t∗ for any t∗ satisfying

(10) E sup
θ∈M(Ld,n),‖θ−θ0‖≤t∗

〈ε, θ − θ0〉 ≤
t2∗
2
.

For a vector θ = (θx)x∈Ld,n
, define θ̄ := n−1

∑
x∈Ld,n

θx and write 1n ∈ RLd,n

for the all-one vector. Then

E sup
θ∈M(Ld,n),‖θ−θ0‖2≤t∗

〈ε, θ − θ0〉 = E sup
θ∈M(Ld,n),‖θ−θ0‖2≤t∗

〈ε, θ − θ̄01n〉

≤ E sup
θ∈M(Ld,n),‖θ−θ̄01n‖2≤t∗+n1/2

〈ε, θ − θ̄01n〉

= E sup
θ∈M(Ld,n)∩B2(t∗+n1/2)

〈ε, θ〉 =
{
t∗ + n1/2

}
wM(Ld,n)∩B2(1),

where we recall that wM(Ld,n)∩B2(1) = E supθ∈M(Ld,n)∩B2(1)〈ε, θ〉. Therefore,
to satisfy (10), it suffices to choose

t∗ = wM(Ld,n)∩B2(1) +
{
w2
M(Ld,n)∩B2(1) + 2n1/2wM(Ld,n)∩B2(1)

}1/2

. max
{
wM(Ld,n)∩B2(1), n

1/4w
1/2
M(Ld,n)∩B2(1)

}
.(11)
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Consequently, by Chatterjee (2014, Corollary 1.2) and Proposition 5, we
have that

Rn(θ̂n, θ0) . n−1 max(1, t20) . n−1t2∗ . n−1/d log4 n,

which completes the proof.

The following proposition is the main ingredient of the proof of the min-
imax lower bound in Proposition 1. It exhibits a combinatorial obstacle,
namely the existence of a large antichain, that prevents any estimator from
achieving a faster rate of convergence. We state the result in the more general
and natural setting of least squares isotonic regression on directed acyclic
graphs. Recall that the isotonic regression problem on a directed acyclic
graph G = (V (G), E(G)) is of the form Yv = θv+εv, where θ = (θv)v∈V (G) ∈
M(G) and ε = (εv)v∈V (G) is a vector of independent N(0, 1) random vari-
ables.

Proposition 6. If G = (V (G), E(G)) is a directed acyclic graph with
|V (G)| = n and W ⊆ V (G) is an antichain of G, then

inf
θ̃n

sup
θ0∈M(G)∩B∞(1)

Rn(θ̃n, θ0) ≥ 4|W |
27n

,

where the infimum is taken over all measurable functions θ̃n of {Yv : v ∈
V (G)}.

Proof. Let W0 be a maximal antichain of G containing W . If v /∈ W0,
then by the maximality of W0, there exists u0 ∈W0 such that either u0 ≤ v
or u0 ≥ v. Suppose without loss of generality that it is the former. Then v 6≤
u for any u ∈ W0, because otherwise we would have u0 ≤ u, contradicting
the fact that W0 is an antichain. It follows that we can write V (G) = W+

0 t
W0 tW−0 , where for all v ∈ W+

0 , u ∈ W0, we have u 6≥ v, and similarly for
all v ∈W−0 , u ∈W0, we have v 6≥ u.

For τ = (τw) ∈ {0, 1}W0 =: T , we define θτ = (θτv ) ∈M(G) ∩B∞(1) by

θτv =


−1 if v ∈W−0
ρ(2τv − 1) if v ∈W0

1 if v ∈W+
0 ,

where ρ ∈ (0, 1) is a constant to be chosen later. Let Pτ denote the distribu-
tion of {Yv : v ∈ V (G)} when the isotonic signal is θτ . Then, for τ, τ ′ ∈ T ,
by Pinsker’s inequality (e.g. Pollard, 2002, p. 62), we have

d2
TV(Pτ , Pτ ′) ≤

1

2
d2

KL(Pτ , Pτ ′) =
1

4
‖θτ − θτ ′‖22 = ρ2‖τ − τ ′‖0.
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Thus, setting ρ = 2/3, by Assouad’s Lemma (cf. Yu, 1997, Lemma 2), we
have that

inf
θ̃n

sup
θ0∈M(G)∩B∞(1)

Rn(θ̃n, θ0) ≥ inf
θ̃n

sup
τ∈T

Rn(θ̃n, θ
τ )

≥ ρ2|W0|
n

(1− ρ) ≥ 4|W |
27n

,

as desired.

Proof of Proposition 1. Recall that n1 = n1/d. We note that the set

W :=

{
v = (v1, . . . , vd)

> ∈ Ld,n :
d∑
j=1

vj = 1

}

is an antichain in Ld,n of cardinality
(
n1−1
d−1

)
≥
(
n1−1
d−1

)d−1
. The desired result

therefore follows from Proposition 6.

Proof of Corollary 1. For Q = Pn, the result is an immediate con-
sequence of Theorem 1 and Proposition 1, together with the facts that

inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̃n, θ0) = inf
f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2L2(Pn)

and

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̂n, θ0) = sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2L2(Pn).

Now suppose that Q is Lebesgue measure on [0, 1]d. For any f : [0, 1]d → R,
we may define θ(f) := f

∣∣
Ld,n

. On the other hand, for any θ : Ld,n → R, we

can also define f(θ) : [0, 1]d → R by

f(θ)(x1, . . . , xd) := θ(n−1
1 bn1x1c, . . . , n−1

1 bn1xdc).

We first prove the upper bound by observing from Lemma 1 and Theorem 1
that

sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2L2(Q)

≤ 2 sup
f0∈Fd∩B∞(1)

{
n−1E‖θ(f̂n)− θ(f0)‖22 + ‖f0 − f(θ(f0))‖2L2(Q)

}
≤ 2 sup

θ0∈M(Ld,n)∩B∞(1)

1

n
E‖θ̂n − θ0‖22 + 8dn−1/d ≤ Cdn−1/d log4 n,
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as desired. Then by convexity of H and Proposition 1, we have

inf
f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2L2(Q) ≥ inf
f̃n

sup
θ0∈M(Ld,n)∩B∞(1)

E‖f̃n − f(θ0)‖2L2(Q)

= inf
f̃n

sup
θ0∈M(Ld,n)∩B∞(1)

E‖f(θ(f̃n))− f(θ0)‖2L2(Q)

= inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

1

n
E‖θ̃n − θ0‖22 ≥ cdn−1/d,

which completes the proof.

Proof of Theorem 2. Recall that the tangent cone at a point x in a
closed, convex set K is defined as T (x,K) := {t(y − x) : y ∈ K, t ≥ 0}. By
Bellec (2018, Proposition 2.1) (see also Chatterjee, Guntuboyina and Sen
(2018, Lemma 4.1)), we have

(12) Rn(θ̂n, θ0) ≤ 1

n
inf

θ∈M(Ld,n)

{
‖θ − θ0‖22 + δ

(
T (θ,M(Ld,n))

)}
.

For a fixed θ ∈ M(Ld,n) such that K(θ) = K, let Ld,n = tK`=1A` be the
partition of Ld,n into two-dimensional sheets A` such that θ is constant on
each A`. Define m` := |A`|. Then any u ∈ T (θ,M(Ld,n)) must be isotonic
when restricted to each of the two-dimensional sheets; in other words

T (θ,M(Ld,n)) ⊆
K⊕
`=1

T (0,M(A`)) =

K⊕
`=1

M(A`).

By Amelunxen et al. (2014, Proposition 3.1(9, 10)), we have

(13) δ
(
T (θ,M(Ld,n))

)
≤ δ
( K⊕
`=1

M(A`)

)
=

K∑
`=1

δ
(
M(A`)

)
.

By a consequence of the Gaussian Poincaré inequality (cf. Boucheron, Lu-
gosi and Massart, 2013, p. 73) and Proposition 5, we have

(14) δ
(
M(A`)

)
≤
(
E sup
θ∈M(A`)∩B2(1)

〈εA`
, θ〉
)2

+ 1 . log8
+m`.

Thus, by (13), (14) and Lemma 2 applied to x 7→ log8
+ x, we have

δ
(
T (θ,M(Ld,n))

)
.

K∑
`=1

log8
+m` . K log8

+

(
n

K

)
,

which together with (12) proves the desired result.
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Proof of Theorem 3. For a fixed θ ∈ M(k)(Ld,n), let Ld,n ⊆ tk`=1R`
be a covering of Ld,n by disjoint hyperrectangles such that θ is constant on
each hyperrectangle R`. Suppose R` ∩ Ld,n has side lengths m1, . . . ,md (so

|R`∩Ld,n| =
∏d
j=1mj). Then it can be covered by the union of |R`|

mjmj′
parallel

two-dimensional sheets, where mj and mj′ are the largest two elements of
the multiset {m1, . . . ,md}. By Jensen’s inequality (noting that x 7→ x1−2/d

is concave when d ≥ 2), we obtain

(15) K(θ) ≤
k∑
`=1

|R` ∩ Ld,n|1−2/d ≤ k
(
n

k

)1−2/d

.

This, combined with the oracle inequality in Theorem 2, gives the desired
result.

Proof of Proposition 2. Since the convex cone M(Ld,n) is invariant
under translation by any θ0 ∈ M(1)(Ld,n), we may assume without loss of
generality that θ0 = 0. By the Cauchy–Schwarz inequality, we have

(16) Rn(θ̂n, 0) =
1

n
δ
(
M(Ld,n)

)
≥ 1

n

(
E sup
θ∈M(Ld,n)∩B2(1)

〈ε, θ〉
)2

,

which, together with Proposition 5, establishes the desired lower bound when
d ≥ 3. For the d = 2 case, by Sudakov minorisation for Gaussian processes
(e.g. Pisier, 1999, Theorem 5.6 and the remark following it) and Lemma 3,
there exists a universal constant ε0 > 0 such that

E sup
θ∈M(L2,n)∩B2(1)

〈ε, θ〉 & ε0 log1/2N
(
ε0,M(L2,n) ∩B2(1), ‖ · ‖2

)
& log n.

This, together with (16), establishes the desired conclusion when d = 2.

Proof of Corollary 2. Without loss of generality, we may assume
that θ0 ∈ Mr(Ld,n) is a function of the final r variables. For x3, . . . , xd ∈
{1/n1, 2/n1, . . . , 1}, we define Ax3,...,xd :=

{
(x1, . . . , xd) : x1, x2 ∈ [0, 1]

}
.

When r ≤ d− 2, we have that θ0 is constant on each Ax3,...,xd ∩Ld,n. Hence,
by Theorem 2,

Rn(θ̂n, θ0) .
K(θ0) log8

+

(
n/K(θ0)

)
n

. n−2/d log8 n.

Now suppose that θ0 ∈Md−1(Ld,n). Let m be a positive integer to be chosen

later. Then Ax3,...,xd ∩ Ld,n = tm`=−mA
(`)
x3,...,xd , where

A(`)
x3,...,xd

:= Ax3,...,xd ∩
{
v ∈ Ld,n :

`− 1

m
< (θ0)v ≤

`

m

}
.
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Let θ(m) ∈ M(Ld,n) be the vector that takes the constant value `/m on

A
(`)
x3,...,xd for each ` = −m, . . . ,m. Then setting m � n2/(3d) log−8/3 n, we

have by Theorem 2 that

Rn(θ̂n, θ0) .
‖θ(m) − θ0‖22

n
+
K(θ(m)) log8

+

(
n/K(θ(m))

)
n

≤ 1

m2
+

m

n2/d
log8 n . n−4/(3d) log16/3 n.

as desired.
Finally, the r = d case is covered in Theorem 1.

5. Proof of results in Section 3. From now on we write Gn :=
n1/2(Pn − P ). Recall that γ2 = 9/2 and γd = (d2 + d+ 1)/2 for d ≥ 3.

In our empirical process theory arguments, we frequently need to consider
suprema over subsets of Fd. In order to avoid measurability digressions, and
since our least squares estimator f̂n is defined to be lower semi-continuous,
we always assume implicitly that such suprema are in fact taken over the
intersection of the relevant subset of Fd with L, the class of real-valued lower
semi-continuous functions on [0, 1]d. Then F ′d := {f ∈ Fd ∩L : f |(Q∩[0,1])d ⊆
Q} is a countable, uniformly dense3 subset of Fd ∩ L so that, for example,
supf∈Fd∩LGnf = supf∈F ′d

Gnf , which ensures measurability.

5.1. Preparatory results. We first state a few intermediate results that
will be used in the proofs of Theorems 4 and 5. The proofs of propositions
in this subsection are contained Section A in the online supplementary ma-
terial.

The following proposition controls the tail probability of ‖f̂n − f0‖L2(P )

on the event {‖f̂n − f0‖∞ ≤ 6 log1/2 n} by two multiplier empirical pro-
cesses (18) and (19). For f0 ∈ Fd, r, a > 0, define

(17) G(f0, r, a) :=
{
f ∈ Fd : f − f0 ∈ B2(r, P ) ∩B∞(a)

}
.

Proposition 7. Suppose that f0 ∈ Fd ∩ B∞(1) and that for each n ≥
2 there exist both a function φn : [0,∞) → [0,∞) and a sequence rn ≥
n−1/2 log1/2 n such that φn(rn) ≤ n1/2r2

n. Moreover, assume that for all r ≥
3Here ‘uniformly dense’ means that for any f ∈ Fd ∩L, we can find a sequence (fm) in

F ′d such that ‖fm − f‖∞ → 0. This can be done by defining, e.g., fm(x) := m−1dmf(x)e.
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rn the map r 7→ φn(r)/r is non-increasing and

E sup
f∈G(f0,r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣ ≤ Kφn(r),(18)

E sup
f∈G(f0,r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

ξi{f(Xi)− f0(Xi)}2
∣∣∣∣ ≤ Kφn(r),(19)

for some K ≥ 1 that does not depend on r and n. Then, there exist universal
constants C,C ′ > 0 such that for all r ≥ C ′Krn, we have

P
({
‖f̂n − f0‖L2(P ) ≥ r

}
∩
{
‖f̂n − f0‖∞ ≤ 6 log1/2 n

})
≤ C exp

(
− nr2

C log n

)
.

Consequently,

E
{
‖f̂n − f0‖2L2(P )1{‖f̂n−f0‖∞≤6 log1/2 n}

}
. K2r2

n.

By means of Lemmas 5 and 6, the control of the empirical processes (18)
and (19) in turn reduces to the study of the symmetrised local empirical
process

(20) E sup
f∈G(0,r,1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣,
for a suitable L2(P ) radius r. To obtain a sharp bound on the empirical
process in (20), which constitutes the main technical challenge of the proof,
we slice [0, 1]d into strips of the form [0, 1]d−1 × [ `−1

n1
, `
n1

], for ` = 1, . . . , n1,
and decompose

∑n
i=1 ξif(Xi) into sums of smaller empirical processes over

these strips. Each of these smaller empirical processes is then controlled via
a bracketing entropy chaining argument (Lemma 7). The advantage of this
decomposition is that the block monotonicity permits good control of the
L2(P ) norm of the envelope function in each strip (Lemma 9). This leads to
the following conclusion:

Proposition 8. Let d ≥ 2. There exists Cd,m0,M0 > 0, depending only
on d,m0 and M0, such that if r ≥ n−1/2(log+ log n)2 when d = 2 and r ≥
n−(1−2/d) logγd−1/2 n when d ≥ 3, then

E sup
f∈G(0,r,1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣ ≤ Cd,m0,M0rn
1/2−1/d logγd−1/2 n.
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On the other hand, there exists cd,m0 > 0, depending only on d and m0, such
that if r ≤ 1, then

E sup
f∈G(0,r,1)

1

n1/2

n∑
i=1

ξif(Xi) ≥ cd,m0rn
1/2−1/d.

Our next proposition controls the discrepancy between the L2(P ) and
L2(Pn) risks for the truncated estimator, f̃n := f̂n1{‖f̂n‖∞≤6 log1/2 n}, when
the true signal f0 = 0.

Proposition 9. Fix d ≥ 2 and suppose that f0 = 0. There exists
Cd,m0,M0 > 0, depending only on d, m0 and M0, such that

E
∥∥f̃n∥∥2

L2(Pn)
≤ Cd,m0,M0

{
n−2/d log2γd n+ E

∥∥f̃n∥∥2

L2(P )

}
.

Propositions 7, 8 and 9 allow us to control the risk of the least squares
estimator when the true signal f0 = 0.

Proposition 10. Let d ≥ 2. There exists a constant Cd,m0,M0 > 0,
depending only on d,m0 and M0, such that

max
{
R(f̂n, 0), Rn(f̂n, 0)

}
≤ Cd,m0,M0n

−2/d log2γd n.

5.2. Proofs of Theorems 4 and 5 and Propositions 3 and 4. The risk
bounds in L2(P ) loss and L2(Pn) loss are proved with different arguments
and hence presented separately below.

Proof of Theorem 4 in L2(P ) loss. Recall the definition of the func-
tion class G(f0, r, a) in (17). Let rn := n−1/(2d) logγd/2 n. For any r, a > 0, by
the triangle inequality, Lemma 5 and Proposition 8, we have that for r ≥ rn,

E sup
f∈G(f0,r,4 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣

≤ E sup
f∈G(0,r+1,6 log1/2 n)

∣∣∣∣2 log1/2 n

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣+ 1

.d,m0,M0 (r + 1)n1/2−1/d logγd n . n1/2rrn.
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Similarly, by Lemma 6 and Proposition 8, we have that for r ≥ rn,

E sup
f∈G(f0,r,4 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

ξi{f(Xi)− f0(Xi)}2
∣∣∣∣

. E sup
f∈G(0,r+1,6 log1/2 n)

∣∣∣∣ log1/2 n

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣+ log1/2 n .d,m0,M0 n
1/2rrn.

Thus, conditions (18) and (19) in Proposition 7 are satisfied with φn(r) =
n1/2rrn and 1 ≤ K .d,m0,M0 1. Let Ω0 := {‖f̂n − f0‖∞ ≤ 6 log1/2 n}. It
follows from Proposition 7 and Lemma 10 that

R(f̂n, f0) = E
{
‖f̂n − f0‖2L2(P )1Ω0

}
+ E

{
‖f̂n − f0‖2L2(P )1Ωc

0

}
.d,m0,M0 r

2
n + n−1 . n−1/d logγd n,

as desired.

Proof of Theorem 4 in L2(Pn) loss. Since the argument used in the
proof of Theorem 1, up to (11), does not depend on the design, we deduce
from Chatterjee (2014, Corollary 1.2), Amelunxen et al. (2014, Proposi-
tion 3.1(5)) and the Cauchy–Schwarz inequality that

(21) Rn(f̂n, f0) .
1

n
Emax

{
1, δ(M(GX)), n1/2δ(M(GX))1/2

}
.

On the other hand, by Proposition 10, we have

(22) E δ
(
M(GX)

)
.d,m0,M0 n

1−2/d log2γd n.

We obtain the desired result by combining (21) and (22).

Proof of Theorem 5 in L2(Pn) loss. For any f ∈ Fd, we can define
a random vector θf,X := (f(X1), . . . , f(Xn))>. By Bellec (2018, Proposi-
tion 2.1), we have

Rn(f̂n, f0) ≤ 1

n
E
[

inf
f∈Fd

{
‖θf,X − θf0,X‖22 + δ

(
T (θf,X ,M(GX))

)}]
≤ 1

n
inf
k∈N

inf
f∈F(k)

d

{
E‖θf,X − θf0,X‖22 + E δ

(
T (θf,X ,M(GX))

)}
.(23)

Now, for a fixed f ∈ F (k)
d , let R1, . . . ,Rk be the corresponding hyperrect-

angles such that f is constant when restricted to each R`. Define X` :=
R` ∩ {X1, . . . , Xn} and N` := |X`|. Then for fixed X1, . . . , Xn, we have
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T (θf,X ,M(GX)) ⊆
⊕k

`=1 T
(
0,M(GX`

)
)

=
⊕k

`=1M(GX`
). Therefore, by

Amelunxen et al. (2014, Proposition 3.1(9, 10)) and (22), we have that

E δ
(
T (θf,X ,M(GX))

)
= E

[
E
{
δ
(
T (θf,X ,M(GX))

) ∣∣∣ N1, . . . , Nk

}]
≤ E

[ ∑
`:N`≥1

E
{
δ
(
M(GX`

)
) ∣∣∣ N`

}]
.d,m0,M0 E

{ ∑
`:N`≥1

N
1−2/d
` log2γd

+ N`

}

.d n(k/n)2/d log2γd
+ (n/k),

(24)

where the final bound follows from applying Lemma 2 to the function x 7→
x1−2/d log2γd

+ x. We complete the proof by substituting (24) into (23) and
observing that

1

n
inf

f∈F(k)
d

E‖θf,X − θf0,X‖22 = inf
f∈F(k)

d

E‖f − f0‖2L2(Pn) = inf
f∈F(k)

d

‖f − f0‖2L2(P ),

as desired.

Proof of Theorem 5 in L2(P ) loss. Fix k ∈ N, fk ∈ F
(k)
d ∩ B∞(1)

and let R1, . . . ,Rk be the corresponding hyperrectangles such that fk is
constant when restricted to each R`. Define N` := |{X1, . . . , Xn} ∩ R`|.

We let Pf0 and Pfk denote the probability with respect to the data gen-
erating mechanisms Yi = f0(Xi) + εi and Yi = fk(Xi) + εi respectively,
and write Ef0 and Efk for the respective expectations. For any t ≥ 0, write

Ω′t :=
{
‖f̂n − f0‖L2(P ) > ‖fk − f0‖L2(P ) + t

}
∩
{
‖f̂n − f0‖∞ ≤ 3 log1/2 n

}
.

We have that

Pf0(Ω′t) ≤ Pf0
(
{‖f̂n − fk‖L2(P ) > t} ∩ {‖f̂n − fk‖∞ ≤ 6 log1/2 n}

)
= Efk

{
e
−n

2
‖fk−f0‖2L2(Pn)

−
∑n

i=1 εi(fk−f0)(Xi)
1{f̂n−fk∈B2(t,P )c∩B∞(6 log1/2 n)}

}
≤ Pfk

{
f̂n − fk ∈ B2(t, P )c ∩B∞(6 log1/2 n)

}1/2{Een‖fk−f0‖2L2(Pn)
}1/2

,

(25)

where the equality follows from a change of measure (the Radon–Nikodym
theorem), and the final step uses the Cauchy–Schwarz inequality. We control
the two factors on the right-hand side separately. For the second factor, since
‖fk − f0‖∞ ≤ 2, we have by Lemma 12 that

(26) Een‖fk−f0‖
2
L2(Pn) ≤ e14n‖fk−f0‖2L2(P ) .
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For the first factor, for all r ≥ (k/n)1/d logγd n =: rn,k, we have that

Efk sup
f∈G(fk,r,1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣
≤ Efk

∑
`:N`≥1

N
1/2
`

n1/2
Efk

{
sup

f∈Fd,‖f−fk‖∞≤1
‖f−fk‖L2(P ;R`)

≤r

∣∣∣∣ 1

N
1/2
`

∑
i:Xi∈R`

ξif(Xi)

∣∣∣∣
∣∣∣∣∣ N`

}

.d,m0,M0

r logγd−1/2 n

n1/2
Efk

∑
`:N`≥1

N
1−1/d
`

. rn1/2

(
k

n

)1/d

logγd−1/2 n,

where the penultimate inequality follows from Proposition 8 and the final
step uses Jensen’s inequality. Using the above bound together with Lem-
mas 5 and 6 as in the proof of Theorem 4, we see that (18) and (19)
(with f0 replaced with fk there) are satisfied with 1 ≤ K .d,m0,M0 1
and φn(r) = n1/2rn,kr, so by Proposition 7, there exist universal constants
C,C ′ > 1 such that for t ≥ C ′Krn,k,

(27) Pfk
{
f̂n − fk ∈ B2(t, P )c ∩B∞(6 log1/2 n)

}
≤ Ce−nt2/(C logn).

Substituting (27) and (26) into (25) and writing t0 := (28C log n)1/2‖fk −
f0‖L2(P ), we have for all t ≥ t0 + C ′Krn,k that

Pf0(Ω′t) . e
7n‖fk−f0‖2L2(P )

−nt2/(2C logn) ≤ e−nt2/(4C logn).

Combining the above probability bound with Lemma 10, we obtain that

R(f̂n, f0) . Ef0
{
‖f̂n − f0‖2L2(P )1{‖f̂n−f0‖∞≤3 log1/2 n}

}
+

1

n

. ‖fk − f0‖2L2(P ) log n+K2r2
n,k +

∫ ∞
t0/2+C′Krn,k

(t+ t0)Pf0(Ω′t) dt

. ‖fk − f0‖2L2(P ) log n+K2r2
n,k

. ‖fk − f0‖2L2(P ) log n+ Cd,m0,M0

(k
n

)2/d
log2γd n,

where Cd,m0,M0 > 0 depends only on d,m0 and M0. The desired result

follows since the above inequality holds for all k ∈ N and fk ∈ F
(k)
d ∩B∞(1),

and inf
f∈F(k)

d ∩B∞(1)
‖f − f0‖L2(P ) = inf

f∈F(k)
d

‖f − f0‖L2(P ).
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Proof of Proposition 3 in L2(P ) loss. By Gao and Wellner (2007,
Theorem 1.1), we have

logN
(
ε,Fd ∩B∞(1), ‖ · ‖L2(P )

)
&m0,d ε

−2(d−1).

The desired lower bound in L2(P ) risk then follows from Yang and Barron
(1999, Proposition 1).

Proof of Proposition 3 in L2(Pn) loss. Without loss of generality,
we may assume that n = nd1 for some n1 ∈ N. Let W := {w ∈ Ld,n :∑d

j=1wj = 1}. For any w = (w1, . . . , wd)
> ∈W , we define Cw :=

∏d
j=1(wj−

1/n1, wj ]. Note that x = (x1, . . . , xd)
> ∈ ∪w∈WCw if and only if dn1x1e +

· · ·+ dn1xde = n1. For any τ = (τw) ∈ {0, 1}|W | =: T , we define fτ ∈ Fd by

fτ (x) :=


0 if dn1x1e+ · · ·+ dn1xde ≤ n1 − 1

1 if dn1x1e+ · · ·+ dn1xde ≥ n1 + 1

ρτ(dn1x1e,...,dn1xde) if x ∈ ∪w∈WCw,

where ρ ∈ [0, 1] is to be specified later. Moreover, let τw be the binary vector
differing from τ in only the w coordinate. We write Eτ for the expectation
over (X1, Y1), . . . , (Xn, Yn), where Yi = fτ (Xi) + εi for i = 1, . . . , n. We let
EX be the expectation over (Xi)

n
i=1 alone and EY |X,τ be the conditional

expectation of (Yi)
n
i=1 given (Xi)

n
i=1. Given any estimator f̃n, we have

max
τ∈T

Eτ
∥∥f̃n − fτ∥∥2

L2(Pn)
≥ 1

2|W |

∑
w∈W

∑
τ∈T

Eτ
∫
Cw

(f̃n − fτ )2 dPn

=
1

2|W |+1

∑
w∈W

∑
τ∈T

{
Eτ
∫
Cw

(f̃n − fτ )2 dPn + Eτw
∫
Cw

(f̃n − fτw)2 dPn
}

≥ 1

2|W |+3

∑
w∈W

∑
τ∈T

EX
{∫
Cw

(fτ − fτw)2 dPn
[
1− dTV

(
PY |X,τ , PY |X,τw

)]}
,

(28)

where PY |X,τ (respectively PY |X,τw) is the conditional distribution of (Yi)
n
i=1

given (Xi)
n
i=1 when the true signal is fτ (respectively fτw). The final inequal-

ity in the above display follows because for ∆ :=
(∫
Cw(fτ − fτw)2 dPn

)1/2
and A :=

{∫
Cw(f̃n − fτ )2 dPn ≥ ∆2/4

}
, we have

EY |X,τ
∫
Cw

(f̃n − fτ )2 dPn + EY |X,τw
∫
Cw

(f̃n − fτw)2 dPn

≥ ∆2

4

{
PY |X,τ (A) + PY |X,τw(Ac)

}
≥ ∆2

4

{
1− dTV

(
PY |X,τ , PY |X,τw

)}
.
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By Pinsker’s inequality (cf. Pollard, 2002, p. 62), we obtain that

(29) d2
TV

(
PY |X,τ , PY |X,τw

)
≤ 1

2
d2

KL(PY |X,τ , PY |X,τw) =
n

4
‖fτ −fτw‖2L2(Pn).

Writing Nw :=
∑n

i=1 1{Xi∈Cw}, we have Nw ∼ Bin(n, P (Cw)), so EXNw ≥
m0 and EXN

3/2
w ≤ (EXN2

w EXNw)1/2 ≤ 21/2M
3/2
0 . Thus, together with (29),

we have

EX
{∫
Cw

(fτ − fτw)2 dPn
[
1− dTV

(
PY |X,τ , PY |X,τw

)]}
≥ EX

{
‖fτ − fτw‖2L2(Pn)

(
1− n1/2

2
‖fτ − fτw‖L2(Pn)

)}
=
ρ2

n
EXNw −

ρ3

2n
EXN3/2

w ≥ ρ2

n

(
m0 −

ρ

21/2
M

3/2
0

)
.(30)

Substituting (30) into (28), we obtain that for ρ = 23/2m0/(3M
3/2
0 ),

max
τ∈T

Eτ
∥∥f̃n − fτ∥∥2

L2(Pn)
≥ |W |

27n

m3
0

M3
0

≥ cd,m0,M0n
−1/d,

where the final inequality follows from a counting argument as in (9). This
completes the proof.

Proof of Proposition 4 in L2(P ) loss. Case d = 2. First note that,

by translation invariance, R(f̂n, f0) is constant for f0 ∈ F (1)
d . We then ob-

serve that, given any estimator f̃n = f̃n(X1, Y1, . . . , Xn, Yn) of f0 ∈ F (1)
d , we

can construct a new estimator f̃ ′n by setting f̃ ′n(x) := P f̃n for all x ∈ [0, 1]d.
Then

R(f̃n, f0) = R(f̃ ′n, f0) +

∫
[0,1]d

(f̃n − f̃ ′n)2 dP ≥ R(f̃ ′n, f0),

so in seeking to minimise sup
f∈F(1)

d

R(f̃n, f), we may restrict attention to

estimators that are constant on [0, 1]d. It follows that for any f0 ∈ F (1)
d ,

R(f̃n, f0) = sup
f∈F(1)

d

R(f̂n, f) ≥ inf
f̃n

sup
f∈F(1)

d

R(f̃n, f) = inf
µ̃n

sup
µ∈R

E{(µ̃n−µ)2} & 1

n
,

where the second infimum is taken over all estimators µ̃n = µ̃n(Y1, . . . , Yn)
of µ = f0(0).

imsart-aos ver. 2012/08/31 file: IsoReg_AoSFinal.tex date: July 21, 2018



ISOTONIC REGRESSION IN GENERAL DIMENSIONS 29

Case d ≥ 3. It suffices to only consider the case when f0 = 0. For i =
1, . . . , n, let ε̃i := εi1{|εi|≤2 log1/2 n} and for r, b ≥ 0, define

En(r, b) := sup
f∈Fd∩B2(r,P )∩B∞(b)

1

n

n∑
i=1

{
2ε̃if(Xi)− f2(Xi) + ‖f‖2L2(P )

}
.

Observe that for r ≥ n−1/2 log n, b ∈ [0, 6 log1/2 n] and any f ∈ Fd ∩
B2(r, P ) ∩B∞(b), we have

Var
{

2ε̃1f(X1)− f2(X1)
}
≤ r2(8 + 2b2) . r2 log n,

‖2ε̃1f − f2‖∞ ≤ 4b log1/2 n+ b2 . log n.

It follows by Talagrand’s concentration inequality (Talagrand, 1996) in the
form given by (Massart, 2000, Theorem 3), that for each r ≥ n−1/2 log n and
b ∈ [0, 6 log1/2 n], there is a universal constant C0 > 0 and an event Ωr,b,
with probability at least 1− n−1, such that on Ωr,b,

1

2
EEn(r, b)− C0r

2 ≤ En(r, b) ≤ 2EEn(r, b) + C0r
2.(31)

Let Fn(r) := En(r, 6 log1/2 n)− r2 and choose

f̃n ∈ argmin
f∈Fd∩B∞(6 log1/2 n)

n∑
i=1

{ε̃i − f(Xi)}2

such that f̃n = f̂n on the event Ω0 := {‖f̂n‖∞ ≤ 6 log1/2 n} ∩ ∩ni=1{|εi| ≤
2 log1/2 n}. Then for any r ≥ 0, we have

Fn(r) ≤ sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

1

n

n∑
i=1

{
2ε̃if(Xi)− f2(Xi)

}
≤ 1

n

n∑
i=1

{
2ε̃if̃n(Xi)− f̃2

n(Xi)
}

= Fn(‖f̃n‖L2(P )).

In other words, ‖f̃n‖L2(P ) ∈ argmaxr≥0 Fn(r).
If we can find 0 < r1 < r2 such that

(32) En(r1, 6 log1/2 n) < Fn(r2),

then for all r ∈ [0, r1], we have Fn(r) ≤ En(r1, 6 log1/2 n) < Fn(r2). This
means that r1 is a lower bound for argmaxr≥0 Fn(r) and therefore

(33) ‖f̂n‖2L2(P ) ≥ r
2
11Ω0 .
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It remains to choose suitable r1 and r2 that satisfy (32).
By (31), the symmetrisation inequality (van der Vaart and Wellner, 1996,

Lemma 2.3.1), Lemmas 5 and 6 and Proposition 8, we have that for r1 ≥
n−1/2 log n and on Ωr1,6 log1/2 n,

En(r1, 6 log1/2 n)

≤ 2E sup
f∈Fd∩B2(r1,P )∩B∞(6 log1/2 n)

{
2

n

n∑
i=1

ε̃if(Xi)−
1

n1/2
Gnf

2

}
+ C0r

2
1

≤ 104 log1/2 nE sup
f∈Fd∩B2(r1,P )∩B∞(6 log1/2 n)

∣∣∣∣ 1n
n∑
i=1

ξif(Xi)

∣∣∣∣+ C0r
2
1

≤ Cd,m0,M0r1n
−1/d logγd n+ C0r

2
1,

for some Cd,m0,M0 > 0 depending only on d,m0 and M0. Similarly, for r2 ∈
[n−1/2 log n, 1], b ∈ [r2, 6 log1/2 n] and on Ωr2,b,

Fn(r2) = En(r2, 6 log1/2 n)− r2
2

≥ 1

2
E sup
f∈Fd∩B2(r2,P )∩B∞(b)

{
2

n

n∑
i=1

ε̃if(Xi)−
1

n1/2
Gnf

2

}
− (C0 + 1)r2

2

≥ (E|ε̃1| − 4b)E sup
f∈Fd∩B2(r2,P )∩B∞(b)

1

n

n∑
i=1

ξif(Xi)− (C0 + 1)r2
2

≥ (1/2− 4b)cd,m0r2n
−1/d − (C0 + 1)r2

2,

for some cd,m0 > 0 depending only on d and m0. Hence, when d ≥ 3,
we can choose b = 1/10, r2 = (2C0 + 2)−1(1/2 − 4b)cd,m0n

−1/d and r1 =
c′d,m0,M0

n−1/d log−γd n, where c′d,m0,M0
> 0 is chosen such that

Cd,m0,M0r1n
−1/d logγd n+ C0r

2
1 <

1

2

(
1

2
− 4b

)
cd,m0r2n

−1/d.

We then see that for all n larger than some integer depending on d,m0,M0

only, (32) is satisfied. We therefore conclude from (33), Lemma 10 and the
fact that P(|ε1| > 2 log1/2 n) ≤ n−2 that

R(f̂n, 0) ≥ E
{
‖f̂n‖2L2(P )1Ω0∩Ω

r1,6 log1/2 n
∩Ωr2,b

}
&d,m0,M0 n

−2/d log−2γd n,

as desired.

Proof of Proposition 4 in L2(Pn) loss. Due to translation invari-
ance we only need to establish the claim for f0 = 0. By Lemma 4, there
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is an event E with probability at least 1 − e−ed−1(M0n)1/d log(M0n) on which
the data points X1, . . . , Xn contain an antichain WX of cardinality at least

n1−1/d/(2eM
1/d
0 ). Write W+

X := {Xi : ∃w ∈ WX , Xi � w} and W−X := {Xi :
∃w ∈ WX , Xi ≺ w}. For each realisation of the n-dimensional Gaussian
random vector ε, we define θX = θX(ε) = ((θX)w) by

(θX)w :=


1 if w ∈W+

X

sgn(εw) if w ∈WX

−1 if w ∈W−X ,

so θX ∈ M(GX). By Chatterjee (2014, Theorem 1.1), for f0 = 0, we have
that

n1/2
∥∥f̂n∥∥L2(Pn)

= argmax
t≥0

(
sup

θ∈M(GX)∩B2(t)
〈ε, θ〉 − t2

2

)
= sup

θ∈M(GX)∩B2(1)
〈ε, θ〉.

Hence

E
∥∥f̂n∥∥L2(Pn)

=
1

n1/2
E sup
θ∈M(GX)∩B2(1)

〈ε, θ〉 ≥ 1

n1/2
E
(〈

ε,
θX(ε)

‖θX(ε)‖2

〉
1E

)
=

1

n
E
( ∑
i:Xi∈W+

X

εi1E −
∑

i:Xi∈W−X

εi1E +
∑

i:Xi∈WX

|εi|1E
)
.(34)

The first two terms in the bracket are seen to be zero by computing the
expectation conditionally on X1, . . . , Xn. For the third term, we have that

E
( ∑
i:Xi∈WX

|εi|1E
)

= E
∑

i:Xi∈WX

E
(
|εi|1E

∣∣ X1, . . . , Xn

)
≥ (2/π)1/2E

(
|WX |1E

)
&d,M0 n

1−1/d.(35)

By (34), (35) and the Cauchy–Schwarz inequality, we have that

E
∥∥f̂n∥∥2

L2(Pn)
≥
{
E
∥∥f̂n∥∥L2(Pn)

}2
&d,M0 n

−2/d,

as desired.
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APPENDIX A: PROOFS OF PREPARATORY PROPOSITIONS

Proof of Proposition 7. For any f : [0, 1]d → R, define Mnf :=
2
∑n

i=1 εi{f(Xi) − f0(Xi)} −
∑n

i=1{f(Xi) − f0(Xi)}2 and Mf := EMnf =

−n‖f − f0‖2L2(P ). By the definition of f̂n, we have that
∑n

i=1(f̂n(Xi) −
f0(Xi) − εi)2 ≤

∑n
i=1 ε

2
i , which implies that Mnf̂n ≥ 0. We therefore have

that for any r > 0,

P
(
{‖f̂n − f0‖L2(P ) ≥ r} ∩ {‖f̂n − f0‖∞ ≤ 6 log1/2 n}

)
≤
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)\G(f0,2`−1r,6 log1/2 n)

(Mn −M)f ≥ n22`−2r2

)

≤
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi(f − f0)(Xi)

∣∣∣∣ ≥ 22`−4n1/2r2

)

+
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣Gn(f − f0)2
∣∣∣ ≥ 22`−3n1/2r2

)
.(1)

By a moment inequality for empirical processes (Giné, Lata la and Zinn,
2000, Proposition 3.1) and (18) in the main text, we have for all p ≥ 1 that

E
[

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣p]1/p

. Kφn(2`r) + 2`rp1/2 + n−1/2p log n.(2)

For any C ′ > 0 and r ≥ C ′Krn, we have φn(2`r) ≤ 2`(r/rn)φn(rn) ≤
2`n1/2rnr ≤ (C ′K)−12`n1/2r2. It therefore follows from (2) and Lemma 11
that there exist universal constants C,C ′ > 0 such that for all ` ∈ N and

1
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r ≥ C ′Krn,

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣ ≥ 22`−4n1/2r2

)
≤ C exp

(
− 22`nr2

C log n

)
.(3)

Similarly, by a symmetrisation inequality (cf. van der Vaart and Wellner
(1996, Lemma 2.3.1)), (19) in the main text and the same argument as
above, and by increasing C,C ′ if necessary, we have that for all ` ∈ N and
r ≥ C ′Krn,

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣Gn(f − f0)2
∣∣∣ ≥ 22`−3n1/2r2

)
≤ C exp

(
− 22`nr2

C log n

)
.

(4)

Substituting (3) and (4) into (1), we obtain that for all r ≥ C ′Krn,

P
({
‖f̂n − f0‖L2(P ) ≥ r

}
∩
{
‖f̂n − f0‖∞ ≤ 6 log1/2 n

})
.
∞∑
`=1

exp

(
− 22`nr2

C log n

)
. exp

(
− nr2

C log n

)
.

It follows that

E
(
‖f̂n − f0‖2L2(P )1{‖f̂n−f0‖∞≤6 log1/2 n}

)
=

∫ ∞
0

2tP
({∥∥f̂n − f0

∥∥
L2(P )

≥ t
}
∩
{
‖f̂n − f0‖∞ ≤ 6 log1/2 n

})
dt

. K2r2
n +

∫ ∞
C′Krn

2t exp

(
− t2

Cr2
n

)
dt . K2r2

n,

as desired, where we have used r2
n ≥ n−1 log n in the penultimate inequality.

Proof of Proposition 8. [Upper bound] It is convenient here to work
with the class of block decreasing functions Fd,↓ := {f : [0, 1]d → R : −f ∈
Fd} instead. We write F+

d := {f ∈ Fd : f ≥ 0} and F+
d,↓ := {f ∈ Fd,↓ :

f ≥ 0}. By replacing f with −f and decomposing any function f into its
positive and negative parts, it suffices to prove the result with G+

↓ (0, r, 1) :=

F+
d,↓ ∩B2(r, P ) ∩B∞(1) in place of G(0, r, 1). Since G+

↓ (0, r, 1) = G+
↓ (0, 1, 1)

for r ≥ 1, we may also assume without loss of generality that r ≤ 1. We
handle the cases d = 2 and d ≥ 3 separately.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 3

Case d = 2. We apply Lemma 7 with η = r/(2n) and Lemma 8 to obtain

E sup
f∈F+

2,↓∩B2(r,P )∩B∞(1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 n

1/2η + log3 n

∫ r

η

r

ε
dε+

(log4 n)(log logn)2

n1/2
. r log4 n,

as desired.

Case d ≥ 3. We assume without loss of generality that n = nd1 for some
n1 ∈ N. We define strips I` := [0, 1]d−1 × [ `−1

n1
, `
n1

] for ` = 1, . . . , n1, so that

[0, 1]d = ∪n1
`=1I`. Our strategy is to analyse the expected supremum of the

symmetrised empirical process when restricted to each strip. To this end,
define S` := {X1, . . . , Xn}∩ I` and N` := |S`|, and let Ω0 := {m0n

1−1/d/2 ≤
min`N` ≤ max`N` ≤ 2M0n

1−1/d}. Then by Hoeffding’s inequality,

P(Ωc
0) ≤

n1∑
`=1

P
(∣∣∣N` − EN`

∣∣∣ > m0n

2n1

)
≤ 2n1 exp

(
−m2

0n
1−2/d/8

)
.

Hence we have

E sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)
∣∣∣

≤ E
( ∑
`:N`≥1

N
1/2
`

n1/2
E` 1Ω0

)
+ C exp

(
−m2

0n
1−2/d/16

)
,(5)

where

E` := E
{

sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣ 1

N
1/2
`

∑
i:Xi∈S`

ξif(Xi)
∣∣∣ ∣∣∣∣ N1, . . . , Nn1

}
.

By Lemma 9, for any f ∈ F+
d,↓ ∩ B2(r, P ) ∩ B∞(1) and ` ∈ {1, . . . , n1}, we

have
∫
I`
f2 dP ≤ 7(M0/m0)`−1r2 logd n =: r2

n,`. Consequently, we have by
Lemma 7 that for any η ∈ [0, rn,`/3),

(6) E` . N
1/2
` η +

∫ rn,`

η
H

1/2
[ ],` (ε) dε+

H[ ],`(rn,`)

N
1/2
`

,

where H[ ],`(ε) := logN[ ]

(
ε,F+

d,↓(I`)∩B2(rn,`, P ; I`)∩B∞(1; I`), ‖ ·‖L2(P ;I`)

)
.

Here, the set F+
d,↓(I`) is the class of non-negative functions on I` that are
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4 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

block decreasing, B∞(1; I`) is the class of functions on I` that are bounded
by 1 and B2(rn,`, P ; I`) is the class of measurable functions f on I` with
‖f‖L2(P ;I`) ≤ rn,`. Note that any g ∈ F+

d,↓(I`)∩B2(rn,`, P ; I`)∩B∞(1; I`) can

be rescaled into a function fg ∈ F+
d,↓ ∩ B2

(
n

1/2
1 (M0/m0)1/2rn,`, P

)
∩ B∞(1)

via the invertible map fg(x1, . . . , xd−1, xd) := g(x1, . . . , xd−1, (xd+`−1)/n1).
Moreover, we have

∫
[0,1]d(fg − fg′)2 dP ≥ n1(m0/M0)

∫
I`

(g − g′)2 dP . Thus,

by Lemma 8, for ε ∈ [η, rn,`],

H[ ],`(ε) ≤ logN[ ]

(
n1/(2d)(m0/M0)1/2ε,

F+
d,↓ ∩B2

(
n1/(2d)(M0/m0)1/2rn,`, P

)
∩B∞(1), ‖ · ‖L2(P )

)
.d,m0,M0

(
rn,`
ε

)2(d−1)

logd
2

+ (1/ε).

Substituting the above bound into (6), and choosing η = n−1/(2d)rn,`, we
obtain

E` .d,m0,M0 N
1/2
` η + logd

2/2 n

∫ rn,`

η

(
rn,`
ε

)d−1

dε+
logd

2
n

N
1/2
`

. N
1/2
` η +

rd−1
n,` logd

2/2 n

ηd−2
+

logd
2
n

N
1/2
`

.

Hence

E`1Ω0 .d,m0,M0 rn,` n
1/2−1/d logd

2/2 n+ n−1/2+1/(2d) logd
2
n

.m0,M0 rn,` n
1/2−1/d logd

2/2 n,(7)

where in the final inequality we used the conditions that d ≥ 3 and r ≥
n−(1−2/d) log(d2−d)/2 n. Combining (5) and (7), we have that

E sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 rn

1/2−3/(2d) log(d2+d)/2 n

n1∑
`=1

`−1/2 . rn1/2−1/d log(d2+d)/2 n,

which completes the proof.
[Lower bound] Assume without of loss of generality that n = nd1 for some

n1 ∈ N. For a multi-index w = (w1, . . . , wd) ∈ Ld,n, let Lw :=
∏d
j=1(wj −

1/n1, wj ] and Nw := |{X1, . . . , Xn} ∩ Lw|. We define W := {(w1, . . . , wd) :

imsart-aos ver. 2012/08/31 file: IsoRegSupp_AoSFinal.tex date: July 21, 2018



ISOTONIC REGRESSION IN GENERAL DIMENSIONS 5∑d
j=1wj = 1} to be indices of a mutually incomparable collection of cubelets

and define W̃ := {w ∈ W : Nw ≥ 1} to be the (random) set of indices of
cubelets in this collection that contain at least one design point. For each
w ∈ W̃ , associate iw := min{i : Xi ∈ Lw}. For each realisation of the
Rademacher random variables ξ = (ξi)

n
i=1 and design points X = {Xi}ni=1,

define fξ,X : [0, 1]d → [−1, 1] to be the function such that

fξ,X(x) :=


r ξiw if x ∈ Lw, w ∈ W̃
r if x ∈ Lw with

∑d
j=1wj > n1

−r otherwise.

For r ≤ 1, we have fξ,X ∈ Fd ∩B2(r, P ) ∩B∞(1). Therefore,

E sup
f∈Fd∩B2(r,P )∩B∞(1)

n∑
i=1

ξif(Xi) ≥ E
n∑
i=1

ξifξ,X(Xi)

≥ E
[
E
{ n∑
i=1

ξifξ,X(Xi)

∣∣∣∣ X1, . . . , Xn, {ξiw : w ∈ W̃}
}]

= E
∑
w∈W̃

ξiwfξ,X(Xiw) = rE|W̃ |.

The desired lower bound follows since E|W̃ | ≥ {1 − (1 − m0/n)n}|W | ≥
(1 − e−m0)|W | &d,m0 n

1−1/d, where the final bound follows as in the proof
of Proposition 5.

Proof of Proposition 9. Let rn := n−1/d logγd n. We write
(8)

E
∥∥f̃n∥∥2

L2(Pn)
= E

{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )≤rn}

}
+E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

}
and control the two terms on the right hand side of (8) separately. For the
first term, we have

E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )≤rn}

}
≤ E sup

f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

1

n

n∑
i=1

f2(Xi)

. r2
n +

1

n
E sup
f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣
. r2

n +
log1/2 n

n
E sup
f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 r

2
n + rnn

−1/d logγd n . r2
n,(9)
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6 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

where the second line uses the symmetrisation inequality (cf. van der Vaart
and Wellner, 1996, Lemma 2.3.1), the third inequality follows from Lemma 6
and the penultimate inequality follows from Proposition 8. For the second
term on the right-hand side of (8), we first claim that there exists C ′d,m0,M0

>
0, depending only on d,m0 and M0, such that

(10) P(Ec) ≤ 2

n2
,

where

E :=

{
sup

f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ ≤ C ′d,m0,M0

}
.

To see this, we adopt a peeling argument as follows. Let Fd,` := {f ∈
Fd∩B∞(6 log1/2 n) : 2`−1r2

n < Pf2 ≤ 2`r2
n} and let m be the largest integer

such that 2mr2
n < 32 log n (so that m � log n). We have that

sup
f∈Fd∩B∞(6 log1/2 n)
‖f‖L2(P )>rn

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ ≤ 2

n1/2
max

`=1,...,m

{
(2`r2

n)−1 sup
f∈Fd,`

|Gnf
2|
}
.

By Talagrand’s concentration inequality for empirical processes (Talagrand,
1996), in the form given by Massart (2000, Theorem 3), applied to the class
{f2 : f ∈ Fd,`}, we have that for any s` > 0,

P
{

sup
f∈Fd,`

|Gnf
2| > 2E sup

f∈Fd,`

|Gnf
2|+ 12

√
2
(
2`s` log n

)1/2
rn +

1242s` log n

n1/2

}
≤ e−s` .

Here we have used the fact that supf∈Fd,`
VarP f

2 ≤ supf∈Fd,`
Pf2‖f‖2∞ ≤

36 · 2`r2
n log n. Further, by the symmetrisation inequality again, Lemma 6

and Proposition 8, we have that

E sup
f∈Fd,`

|Gnf
2| ≤ 2

n1/2
E sup
f∈Fd,`

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ ≤ 48 log1/2 n

n1/2
E sup
f∈Fd,`

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 2`/2rnn

1/2−1/d logγd n.

By a union bound, we have that with probability at least 1−
∑m

`=1 e
−s` ,

sup
f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣
.d,m0,M0 max

`=1,...,m

{
n1/2−1/d logγd n+ s

1/2
` log1/2 n

2`/2n1/2rn
+
s` log n

2`nr2
n

}
.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 7

By choosing s` := 2` log n, we see that on an event of probability at least
1−

∑m
`=1 e

−s` ≥ 1−
∑∞

`=1 n
−`−1 ≥ 1− 2n−2, we have

sup
f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ .d,m0,M0 1,

which verifies (10). Thus

E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

}
≤ E

{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

1E
}

+
72 log n

n2

≤ (C ′d,m0,M0
+ 1)E

∥∥f̃n∥∥2

L2(P )
+

72 log n

n2
.(11)

Combining (8), (9) and (11), we obtain

E
∥∥f̃n∥∥2

L2(Pn)
.d,m0,M0 r

2
n + E

∥∥f̃n∥∥2

L2(P )
,

as desired.

Proof of Proposition 10. Let rn := n−1/d logγd n and observe that
by Lemma 5 and Proposition 8, we have that for r ≥ rn,

E sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εif(Xi)

∣∣∣∣ .d,m0,M0 rn
1/2−1/d logγd n.

On the other hand, by Lemma 6 and Proposition 8, for r ≥ rn,

E sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif
2(Xi)

∣∣∣∣ .d,m0,M0 rn
1/2−1/d logγd n.

It follows that the conditions of Proposition 7 are satisfied for this choice
of rn with φn(r) := rn1/2−1/d logγd n and K .d,m0,M0 1. By Lemma 10,
Propositions 9 and 7, we have that

Rn(f̂n, 0) ≤ E‖f̃n‖2L2(Pn) + n−1

.d,m0,M0 n
−2/d log2γd n+ E‖f̃n‖2L2(P ) .d,m0,M0 n

−2/d log2γd n,

as desired.
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APPENDIX B: AUXILIARY LEMMAS

We collect here various auxiliary results used in the proofs in the main
document (Han et al., 2018).

The proof of Corollary 1 in the main document requires the following
lemma on Riemann approximation of block increasing functions.

Lemma 1. Suppose n1 = n1/d is a positive integer. For any f ∈ Fd, de-
fine fL(x1, . . . , xd) := f

(
n−1

1 bn1x1c, . . . , n−1
1 bn1xdc

)
and fU (x1, . . . , xd) :=

f
(
n−1

1 dn1x1e, . . . , n−1
1 dn1xde

)
. Then∫

[0,1]d
(fU − fL)2 ≤ 4dn−1/d‖f‖2∞.

Proof. For x = (x1, . . . , xd)
> and x′ = (x′1, . . . , x

′
d)
> in Ld,n, we say

x and x′ are equivalent if and only if xj − x1 = x′j − x′1 for j = 1, . . . , d.

Let Ld,n =
⊔N
r=1 Pr be the partition of Ld,n into equivalence classes. Since

each Pr has non-empty intersection with a different element of the set
{(x1, . . . , xd) ∈ Ld,n : maxj xj = 1}, we must have N ≤ dn1−1/d. There-
fore, we have∫

[0,1]d
(fU − fL)2 =

N∑
r=1

∫
Pr+n−1

1 (−1,0]d
(fU − fL)2

≤ 2

n
‖f‖∞

N∑
r=1

∑
x=(x1,...,xd)>∈Pr

{
f(x1, . . . , xd)− f

(
x1 − n−1

1 , . . . , xd − n−1
1

)}
≤ 2N

n
‖f‖∞

(
f(1, . . . , 1)− f(0, . . . , 0)

)
≤ 4dn−1/d‖f‖2∞,

as desired.

The following is a simple generalisation of Jensen’s inequality.

Lemma 2. Suppose h : [0,∞) → (0,∞) is a non-decreasing function
satisfying the following:

(i) There exists x0 ≥ 0 such that h is concave on [x0,∞).
(ii) There exists some x1 > x0 such that h(x1)− x1h

′
+(x1) ≥ h(x0), where

h′+ is the right derivative of h.

Then there exists Ch > 0, depending only on h, such that for any nonnegative
random variable X with EX <∞, we have

Eh(X) ≤ Chh(EX).
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 9

Proof. Define H : [0,∞)→ [h(0),∞) by

H(x) :=

{
h(x1)− x1h

′
+(x1) + xh′+(x1) if x ∈ [0, x1)

h(x) if x ∈ [x1,∞).

Then H is a concave majorant of h. Moreover, we have H ≤ (h(x1)/h(0))h.
Hence, by Jensen’s inequality, we have

Eh(X) ≤ EH(X) ≤ H(EX) ≤ h(x1)

h(0)
h(EX),

as desired.

We need the following lower bound on the metric entropy of M(L2,n) ∩
B2(1) for the proof of Proposition 2.

Lemma 3. There exist universal constants c > 0 and ε0 > 0 such that

logN
(
ε0,M(L2,n) ∩B2(1), ‖ · ‖2

)
≥ c log2 n.

Proof. It suffices to prove the equivalent result that there exist universal
constants c, ε0 > 0 such that the packing number D

(
ε0,M(L2,n)∩B2(1), ‖ ·

‖2
)

(i.e. the maximum number of disjoint open Euclidean balls of radius ε0

that can be fitted into M(L2,n) ∩ B2(1)) is at least exp(c log2 n). Without
loss of generality, we may also assume that n1 := n1/2 = 2` − 1 for some
` ∈ N, so that ` � log n. Now, for r = 1, . . . , `, let Ir := n−1

1 {2r−1, . . . , 2r−1}
and consider the set

M̄ :=

{
θ ∈ RL2,n : θIr×Is ∈

{ −1Ir×Is√
2r+s+1 log n

,
−1Ir×Is√
2r+s log n

}}
⊆M(L2,n) ∩B2(1),

where 1Ir×Is denotes the all-one vector on Ir × Is. Define a bijection ψ :
M̄ → {0, 1}`2 by

ψ(θ) :=
(
1{

θIr×Is=−1Ir×Is/
√

2r+s+1 logn
})`

r,s=1
.

Then, for θ, θ′ ∈ M̄,

‖θ − θ′‖22 =
dH(ψ(θ), ψ(θ′))

log2 n

1

4

(
1− 1

21/2

)2

,
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where dH(·, ·) denotes the Hamming distance. On the other hand, by the
Gilbert–Varshamov inequality (e.g. Massart, 2007, Lemma 4.7), there exists
a subset I ⊆ {0, 1}`2 such that |I| ≥ exp(`2/8) and dH(v, v′) ≥ `2/4 for
any distinct v, v′ ∈ I. Then the set ψ−1(I) ⊆ M̄ has cardinality at least
exp(`2/8) ≥ exp(log2 n/32), and each pair of distinct elements have squared

`2 distance at least ε0 := `2/4

log2 n
1
4(1− 1

21/2
)2 & 1, as desired.

Lemma 4 below gives a lower bound on the size of the maximal antichain
(with respect to the natural partial ordering on Rd) among independent and
identically distributed X1, . . . , Xn.

Lemma 4. Let d ≥ 2. Let X1, . . . , Xn
iid∼ P , where P is a distribution

on [0, 1]d with Lebesgue density bounded above by M0 ∈ [1,∞). Then with

probability at least 1 − e−ed−1(M0n)1/d log(M0n), there is an antichain in GX
with cardinality at least n1−1/d/(2eM

1/d
0 ).

Proof. By Dilworth’s Theorem (Dilworth, 1950), for each realisation of
the directed acyclic graph GX , there exists a covering of V (GX) by chains
C1, . . . , CM , where M denotes the cardinality of a maximum antichain of
GX . Thus, it suffices to show that with the given probability, the maximum
chain length of GX is at most k := de(M0n)1/de ≤ 2e(M0n)1/d. By a union
bound, we have that

P(∃ a chain of length k in GX) ≤ n!

(n− k)!
P(X1 � · · · � Xk)

≤
(
n

k

)
(k!)−(d−1)Mk

0 ≤
(
en

k

)k(k
e

)−k(d−1)

Mk
0

≤ (M0n)−k/d ≤ e−ed−1(M0n)1/d log(M0n),

as desired.

The following two lemmas control the empirical processes in (18) and (19)
in the main text by the symmetrised empirical process in (20) in the main
text.

Lemma 5. Let n ≥ 2, and suppose that X1, . . . , Xn, ε̃1, . . . , ε̃n are inde-
pendent, with X1, . . . , Xn identically distributed on X and ε̃1, . . . , ε̃n iden-
tically distributed, with |ε̃1| stochastically dominated by |ε1|. Then for any
countable class F of measurable, real-valued functions defined on X , we have

E sup
f∈F

∣∣∣∣ n∑
i=1

ε̃if(Xi)

∣∣∣∣ ≤ 2 log1/2 nE sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 11

Proof. Let α0 := 0, and for k = 1, . . . , n, let αk := E|ε̃(k)|, where |ε̃(1)| ≤
· · · ≤ |ε̃(n)| are the order statistics of {|ε̃1|, . . . , |ε̃n|}, so that αn ≤ (2 log n)1/2.
Observe that for any k = 1, . . . , n,

E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi)

∣∣∣∣ = E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi) + E
n∑

i=k+1

ξif(Xi)

∣∣∣∣
≤ E sup

f∈F
E
{∣∣∣∣ n∑

i=1

ξif(Xi)

∣∣∣∣ ∣∣∣∣ X1, . . . , Xk, ξ1, . . . , ξk

}

≤ E sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.(12)

We deduce from Han and Wellner (2017, Proposition 5) and (12) that

E sup
f∈F

∣∣∣∣ n∑
i=1

ε̃if(Xi)

∣∣∣∣ ≤ 21/2
n∑
k=1

(αn+1−k − αn−k)E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi)

∣∣∣∣
≤ 21/2αnE sup

f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣,
as required.

Lemma 6. Let X1, . . . , Xn be random variables taking values in X and
F be a countable class of measurable functions f : X → [−1, 1]. Then

E sup
f∈F

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ ≤ 4E sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.
Proof. By Ledoux and Talagrand (2013, Theorem 4.12), applied to

φi(y) = y2/2 for i = 1, . . . , n (note that y 7→ y2/2 is a contraction on
[0, 1]), we have

E sup
f∈F

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ = E
{
E sup
f∈F

∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣ ∣∣∣∣ X1, . . . , Xn

}

≤ 4E
{
E sup
f∈F

∣∣∣ n∑
i=1

ξif(Xi)
∣∣∣ ∣∣∣∣ X1, . . . , Xn

}
= 4E sup

f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣,
as required.
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12 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

The following is a local maximal inequality for empirical processes un-
der bracketing entropy conditions. This result is well known for η = 0 in
the literature, but we provide a proof for the general case η ≥ 0 for the
convenience of the reader.

Lemma 7. Let X1, . . . , Xn
iid∼ P on X with empirical distribution Pn,

and, for some r > 0, let G ⊆ B2(r, P ) ∩ B∞(1) be a countable class of
measurable functions. Then for any η ∈ [0, r/3), we have

E sup
f∈G
|Gnf | . n1/2η +

∫ r

η
log

1/2
+ N[ ](ε,G, ‖ · ‖L2(P )) dε

+
1

n1/2
log+N[ ](r,G, ‖ · ‖L2(P )).

The above inequality also holds if we replace Gnf with the symmetrised em-
pirical process n−1/2

∑n
i=1 ξif(Xi).

Proof. Writing Nr := N[ ](r,G, ‖ · ‖L2(P )), there exists {(fL` , fU` ) : ` =
1, . . . , Nr} that form an r-bracketing set for G in the L2(P ) norm. Letting
G1 := {f ∈ G : fL1 ≤ f ≤ fU1 } and G` := {f ∈ G : fL` ≤ f ≤ fU` } \ ∪

`−1
j=1Gj for

` = 2, . . . , Nr, we see that {G`}Nr
`=1 is a partition of G such that the L2(P )-

diameter of each G` is at most r. It follows by van der Vaart and Wellner
(1996, Lemma 2.14.3) that for any choice of f` ∈ G`, we have that

E sup
f∈G
|Gnf | . n1/2η +

∫ r

η
log

1/2
+ N[ ](ε,G, ‖ · ‖L2(P )) dε

+ E max
`=1,...,Nr

|Gnf`|+ E max
`=1,...,Nr

∣∣∣Gn

(
sup
f∈G`
|f − f`|

)∣∣∣.(13)

The third and fourth terms of (13) can be controlled by Bernstein’s inequal-
ity (in the form of (2.5.5) in van der Vaart and Wellner (1996)):

E max
`=1,...,Nr

|Gnf`| ∨ E max
`=1,...,Nr

∣∣∣Gn

(
sup
f∈G`
|f − f`|

)∣∣∣ . log+Nr

n1/2
+ r log

1/2
+ Nr.

Since η < r/3, the last term r log
1/2
+ Nr in the above display can be as-

similated into the entropy integral in (13), which establishes the claim for
E supf∈G |Gnf |.

We now study the symmetrised empirical process. For f ∈ G, we define
e ⊗ f : {−1, 1} × X → R by (e ⊗ f)(t, x) := tf(x), and apply the previous
result to the function class e ⊗ G := {e ⊗ f : f ∈ G} ⊆ B2(r, Pξ ⊗ P ) ∩
B∞(1), where Pξ denotes the Rademacher distribution on {−1, 1}. Here the
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 13

randomness is induced by the independently and identically distributed pairs
(ξi, Xi)

n
i=1. For any f ∈ G and any ε-bracket [f, f̄ ] containing f , we have that

[e+⊗ f − e−⊗ f̄ , e+⊗ f̄ − e−⊗ f ] is an ε-bracket for e⊗ f in the L2(Pξ⊗P )
metric, where e+(t) := max{e(t), 0} = max(t, 0) and e−(t) := max(−t, 0). It
follows that for every ε > 0,

N[ ](ε, e⊗ G, L2(Pξ ⊗ P )) ≤ N[ ](ε,G, L2(P )),

which proves the claim for the symmetrised empirical process.

In the next two lemmas, we assume, as in the main text, that P is a
distribution on [0, 1]d with Lebesgue density bounded above and below by
M0 ∈ [1,∞) and m0 ∈ (0, 1] respectively. As in the proof of Proposition 8,
let F+

d,↓ = {f : −f ∈ Fd, f ≥ 0}. The following result is used to control the
bracketing entropy terms that appear in Lemma 7 when we apply it in the
proof of Proposition 8.

Lemma 8. There exists a constant Cd > 0, depending only on d, such
that for any r, ε > 0,

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ) ∩B∞(1), ‖ · ‖L2(P )

)
≤ Cd

{
(r/ε)2M0

m0
log2(M0

m0
) log4

+(1/ε) log2
+

( r log+(1/ε)

ε

)
if d = 2,

(r/ε)2(d−1)(M0
m0

)d−1 logd
2

+ (1/ε) if d ≥ 3.

Proof. We first claim that for any η ∈ (0, 1/4],

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ), ‖ · ‖L2(P ;[η,1]d)

)
.d

{
( rε)2M0

m0
log2(M0

m0
) log4(1/η) log2

+

( r log(1/η)
ε

)
if d = 2,

( rε)2(d−1)(M0
m0

)d−1 logd
2
(1/η) if d ≥ 3.

(14)

By the cone property of F+
d,↓, it suffices to establish the above claim when r =

1. We denote by vol(S) the d-dimensional Lebesgue measure of a measurable
set S ⊆ [0, 1]d. By Gao and Wellner (2007, Theorem 1.1) and a scaling
argument, we have for any δ,M > 0 and any hyperrectangle A ⊆ [0, 1]d that
(15)

logN[ ]

(
δ,F+

d,↓ ∩B∞(M), ‖ · ‖L2(P ;A)

)
.d

{
(γ/δ)2 log2

+(γ/δ) if d = 2,

(γ/δ)2(d−1) if d ≥ 3,

where γ := M
1/2
0 Mvol1/2(A). We define m := blog2(1/η)c and set I` :=

[2`η, 2`+1η] ∩ [0, 1] for each ` = 0, . . . ,m. Then for `1, . . . , `d ∈ {0, . . . ,m},
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14 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

any f ∈ F+
d,↓ ∩ B2(1, P ) is uniformly bounded by

{
m0
∏d
j=1(2`jη)

}−1/2
on

the hyperrectangle
∏d
j=1 I`j . Then by (15) we see that for any δ > 0,

logN[ ]

(
δ,F+

d,↓∩B2(1, P ), ‖ · ‖L2(P ;
∏d

j=1 I`j )

)
.d

{
δ−2(M0/m0) log2(M0

m0
) log2

+(1/δ) if d = 2,

δ−2(d−1)(M0/m0)d−1 if d ≥ 3,

where we have used the fact that log+(ax) ≤ 2 log+(a) log+(x) for any a, x >
0. Note that these bounds do not depend on η, since the dependence of M
and vol(A) on η is such that it cancels in the expression for γ. Global brackets
for F+

d,↓ ∩ B2(1) on [η, 1]d can then be constructed by taking all possible
combinations of local brackets on I`1 × · · · × I`d for `1, . . . , `d ∈ {0, . . . ,m}.
Overall, for any ε > 0, setting δ = (m + 1)−d/2ε establishes the claim (14)
in the case r = 1.

We conclude that if we fix any ε > 0, take η = ε2/(4d) ∧ 1/4 and take a
single bracket consisting of the constant functions 0 and 1 on [0, 1]d \ [η, 1]d,
we have

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ) ∩B∞(1), ‖ · ‖L2(P )

)
≤ logN[ ]

(
ε/2,F+

d,↓ ∩B2(r, P ), ‖ · ‖L2(P ;[η,1]d)

)
.d

{
(r/ε)2M0

m0
log2(M0

m0
) log4

+(1/ε) log2
+

( r log+(1/ε)

ε

)
if d = 2,

(r/ε)2(d−1)(M0
m0

)d−1 logd
2

+ (1/ε) if d ≥ 3,

completing the proof.

For 0 < r < 1, let Fr be the envelope function of F+
d,↓ ∩B2(r, P )∩B∞(1).

The lemma below controls the L2(P ) norm of Fr when restricted to strips
of the form I` := [0, 1]d−1 × [ `−1

n1
, `
n1

] for ` = 1, . . . , n1.

Lemma 9. For any r ∈ (0, 1] and ` = 1, . . . , n1, we have∫
I`

F 2
r dP ≤

7M0r
2 logd+(1/r2)

m0`
.

Proof. By monotonicity and the L2(P ) and L∞ constraints, we have

F 2
r (x1, . . . , xd) ≤ r2

m0x1···xd ∧ 1. We first claim that for any d ∈ N,∫
[0,1]d

(
t

x1 · · ·xd
∧ 1

)
dx1 · · · dxd ≤ 5t logd+(1/t).
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 15

To see this, we define Sd :=
{

(x1, . . . , xd) :
∏d
j=1 xj ≥ t

}
and set ad :=∫

Sd

t
x1···xd dx1 · · · dxd and bd :=

∫
Sd

dx1 · · · dxd. By integrating out the last
coordinate, we obtain the following relation

(16) bd =

∫
Sd−1

(
1− t

x1 · · ·xd−1

)
dx1 · · · dxd−1 = bd−1 − ad−1.

On the other hand, we have by direct computation that

ad =

∫ 1

t
· · ·
∫ 1

t
x1···xd−1

t

x1 · · ·xd
dxd · · · dx1

≤ ad−1 log(1/t) ≤ · · · ≤ a1 logd−1(1/t) = t logd(1/t).(17)

Combining (16) and (17), we have∫
[0,1]d

(
t

x1 · · ·xd
∧ 1

)
dx1 · · · dxd = ad + 1− bd

≤ min{ad + 1, ad + ad−1 + · · ·+ a1 + 1− b1}

≤ min

{
t logd(1/t) + 1,

t logd+1(1/t)

log(1/t)− 1

}
≤ 5t logd+(1/t),

as claimed, where the final inequality follows by considering the cases t ∈
[1/e, 1], t ∈ [1/4, 1/e) and t ∈ [0, 1/4) separately. Consequently, for ` =
2, . . . , n1, we have that∫

I`

F 2
r dP ≤ M0

m0

∫ `/n1

(`−1)/n1

∫
[0,1]d−1

(
r2/xd

x1 · · ·xd−1
∧ 1

)
dx1 · · · dxd−1dxd

≤ M0

m0

∫ `/n1

(`−1)/n1

5(r2/xd) logd−1
+ (xd/r

2) dxd

≤ M0

m0
5r2 logd−1

+ (1/r2) log
(
`/(`− 1)

)
≤

7M0r
2 logd−1

+ (1/r2)

m0`
,

as desired. For the remaining case ` = 1, we have∫
I1

F 2
r dP ≤M0

∫
[0,1]d

F 2
r dx1 · · · dxd ≤

5M0

m0
r2 logd+(1/r2),

which is also of the correct form.

Lemma 10. For any Borel measurable f0 : [0, 1]d → [−1, 1] and any
a > 2, we have P(‖f̂n − f0‖∞ > a) ≤ ne−(a−2)2/2. Consequently,

E
(
‖f̂n − f0‖2∞1{‖f̂n−f0‖∞>a}

)
≤ n

(
a2 + 2 + 2

√
2π
)
e−(a−2)2/2.
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16 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

Proof. Recall that we say U ⊆ Rd is an upper set if whenever x ∈ U and
x � y, we have y ∈ U ; we say, L ⊆ Rd is a lower set if −L is an upper set.
We write U and L respectively for the collections of upper and lower sets in
[0, 1]d. The least squares estimator f̂n over Fd then has a well-known min-
max representation (Robertson, Wright and Dykstra, 1988, Theorem 1.4.4):

f̂n(Xi) = min
L∈L,L3Xi

max
U∈U ,U3Xi

YL∩U ,

where YL∩U denotes the average value of the elements of {Yi : Xi ∈ L∩U}.
Thus we have

‖f̂n‖∞ = max
1≤i≤n

|f̂n(Xi)| ≤ max
1≤i≤n

|Yi|.

Since Yi = f0(Xi) + εi and ‖f0‖∞ ≤ 1, we have by a union bound that

P
(
‖f̂n − f0‖∞ ≥ t

)
≤ nP(|ε1| ≥ t− 2).

The first claim follows using the fact that P(ε1 ≥ t) ≤ 1
2e
−t2/2 for any t ≥ 0.

Moreover, for any a > 2,

E
(
‖f̂n − f0‖2∞1{‖f̂n−f0‖∞>a}

)
=

∫ ∞
0

2tP
(
‖f̂n − f0‖∞ ≥ max{a, t}

)
dt

≤ na2P(|ε1| ≥ a− 2) + n

∫ ∞
a

2tP(|ε1| ≥ t− 2) dt

≤ n
(
a2 + 2 + 2

√
2π
)
e−(a−2)2/2,

as desired.

Lemma 11. If Y is a non-negative random variable such that (EY p)1/p ≤
A1p+A2p

1/2 +A3 for all p ∈ [1,∞) and some A1, A2 > 0, A3 ≥ 0, then for
every t ≥ 0,

P(Y ≥ t+ eA3) ≤ e exp

(
−min

{
t

2eA1
,

t2

4e2A2
2

})
.

Proof. Let s := min{t/(2eA1), t2/(2eA2)2}. For values of t such that
s ≥ 1, we have by Markov’s inequality that

P(Y ≥ t+ eA3) ≤
(
A1s+A2s

1/2 +A3

t+ eA3

)s
≤ e−s ≤ e1−s.

For values of t such that s < 1, we trivially have P(Y ≥ t + eA3) ≤ P(Y ≥
t) ≤ e1−s, as desired.
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Lemma 12. Let X be a non-negative random variable satisfying X ≤ b
almost surely. Then

EeX ≤ exp

{
eb − 1

b
EX
}
.

Proof. We have

EeX =
∞∑
r=0

E(Xr)

r!
≤ 1 +

∞∑
r=1

br−1EX
r!

= 1 +
EX
b

(eb− 1) ≤ exp

{
eb − 1

b
EX
}
,

as required.
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