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Abstract

In this paper, we introduce a variant of Bayesian
online change point detection with a reduced-
rank Student-t process (TP) and dependent
Student-t noise, as a nonparametric time se-
ries model. Our method builds and improves
upon the state-of-the-art Gaussian process (GP)
change point model benchmark of Saatçi et al.
(2010). The Student-t process generalizes the
concept of a GP and hence yields a more flexible
alternative. Additionally, unlike a GP, the pre-
dictive variance explicitly depends on the train-
ing observations, while the use of an entan-
gled Student-t noise model preserves analytical
tractability. Our approach also uses a Hilbert
space reduced-rank representation of the TP ker-
nel, derived from an eigenfunction expansion of
the Laplace operator (Solin & Särkkä, 2020), to
alleviate its computational complexity. Improve-
ments in prediction and training time are demon-
strated with real-world data sets.

1. Introduction
Sequential data often exhibit instances of abrupt change
in generative parameters. Failing to detect these specific
change points at which the underlying distribution changes,
significantly alters predictive performance of stationary
parametric models. Change point detection (CPD) meth-
ods have proven useful in finance (Chib, 1998; Koop &
Potter, 2004; Kummerfeld & Danks, 2013), quality control
(Aroian & Levene, 1950), climate modelling (Manogaran
& Lopez, 2018), cybersecurity (Polunchenko et al., 2012),
genetics (Caron et al., 2012) and speech recognition (Panda
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& Nayak, 2016).

Bayesian Online change point Detection (BOCPD) was in-
troduced simultaneously by Adams & MacKay (2007) and
Fearnhead & Liu (2007). The first Bayesian approach to
CPD relied on retrospective inference mostly via segmen-
tation to generate samples from the posterior distribution
over change point location (Barry & Hartigan, 1993; Green,
1995; Xuan & Murphy, 2007). In contrast, BOCPD allows
online inference by generating a predictive distribution of
the next datum given the data already observed.

In BOCPD, we assume a sequence of observations x1:T =
{xi}Ti=1 that can be partitioned into sub-groups separated
by possible change points. We are concerned with estimat-
ing recursively for every t ∈ [1, T ] the predictive distri-
bution of the current run length rt, namely the time since
the last change point given the data observed so far i.e.
p(rt|x1:t) for rt ∈ [1, t] . We need to define an underly-
ing predictive model (UPM) to evaluate the posterior pre-
dictive distribution of the next datum given the possible
previous run length i.e p(xt|rt−1,x1:t−1). The UPM can
be seen as a base model, the parameters of which change
for every run length. BOCPD has received considerable
recent interest. Work has addressed performance improve-
ment (Saatçi et al., 2010), model selection (Knoblauch &
Damoulas, 2018), hyperparameter learning (Turner et al.,
2009; Wilson et al., 2010; Caron et al., 2012) and change
point prediction (Agudelo-España et al., 2019).

The original BOCPD algorithm makes the assumptions that
observations are i.i.d. within each run length. Saatçi et al.
(2010) extend BOCPD with a more flexible nonparametric
UPM based on Gaussian processes (GPs). They propose a
non-linear auto-regressive GP-based model (GPAR) and a
time-deterministic GP model (GPTS) with change points,
both of which improve predictive performance. The use
of a GP comes at a cost of a O(T 5) running complexity
for naive implementation, prohibitive in most applications.
Saatçi et al. (2010) introduce filtering techniques and com-
putational tricks to reduce computation complexity.

In this paper, we build on the GP-based approach of Saatçi
et al. (2010), introducing an alternative UPM based on a
Student-t process (TP) with Student-t noise (Shah et al.,
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2014) and Hilbert space reduced-rank kernel proposed by
Solin & Särkkä (2020). Benefiting from its fatter tails, a TP
offers inherent robustness against outliers, surpassing GPs
in this regard. Specifically, in the context of BOCPD, TPs
exhibit a lower propensity for generating false alarms when
detecting change points caused by outliers. Additionally,
TPs offer more adaptive predictive variance in comparison
to GPs, adjusting more effectively to the variance of past
observations. We will explore this aspect further in Section
2.3. Lastly, a TP introduces greater flexibility compared
to a GP, as it represents the most general elliptical process
with a tractable density (Shah et al., 2014)

The first mention of a TP can be found in Rasmussen &
Williams (2005) and early applications in Archambeau &
Bach (2011) and Yu et al. (2007). However, Rasmussen
& Williams (2005) concluded that a TP is not practica-
ble, due to the intractability of the posterior when adding
noise (since the Student-t distribution is not closed under
addition). TPs have received greater recent attention since
Shah et al. (2014) proposed a derivation from a Wishart
prior, and introduced a dependent Student-t noise preserv-
ing tractability. The benefit of a TP compared to a GP
has since been demonstrated for regression (Shah et al.,
2014; Tang et al., 2016; 2017; Li & Ma, 2021), state-space
models (Solin & Särkkä, 2015) and Bayesian optimization
(Tracey & Wolpert, 2018).

To overcome the GP computational complexity, several
schemes have been proposed in the literature. Reduced-
rank approximation methods which approximate the ker-
nel Gram matrix with another matrix of smaller rank
have been popular (see Chapter 8 Rasmussen & Williams,
2005). Common examples include the Nyström method
(see Williams & Seeger, 2001) and Random Fourier Fea-
tures (Rahimi & Recht, 2007). Solin & Särkkä (2020) in-
troduced an Hilbert space method for reduced-rank which
approximates the eigendecomposition of stationary kernels
in terms of an eigenfunction expansion of the Laplace op-
erator. In their original paper, Solin & Särkkä (2020) adapt
the method for a GP approximation referred as HSGPs, that
has been used in the context of GP regression (Solin &
Särkkä, 2020; Riutort-Mayol et al., 2022) and GP-based
state-space models (Svensson et al., 2016; Svensson &
Schön, 2017). The choice of an Hilbert space approach is
particularly convenient in a BOCPD context. In the approx-
imation, features vectors are independent of the covariance
function, yielding computational advantages detailed later.

Our method is referred to as HSSPAR, an abbreviation for
Hilbert Space t-Student Process Auto-Regressive Model,
maintaining consistency with previous naming convention.
Combining a Student-t process predictor model and Hilbert
space reduced-rank kernels, HSSPAR shows systematic
improvement in predictive performance and hyperparam-

eter learning time for real-world data sets presented in Sec-
tion 5.

2. Model
In this section, we first provide a brief reminder of the orig-
inal BOCPD algorithm for change point detection proposed
by Adams & MacKay (2007).

2.1. BOCPD Algorithm

Given a hazard function and a UPM, inference is done re-
cursively at every time step using

p(rt|x1:t) ∝
∑
rt−1

p(rt|rt−1)p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

∝
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
Hazard

p(xt|x(r)
t−1)︸ ︷︷ ︸

UPM

p(rt−1|x1:t−1)

(1)

where x(r)
t−1 indicates the last rt−1 observations prior to xt.

The normalizing constant of p(rt|x1:t) in Equation (1) is
obtained by summing up all its evaluation instances, since
rt is a discrete random variable.

The marginal predictive distribution is then obtained by

p(xt|x1:t−1) =
∑
rt−1

p(xt|x(r)
t−1)p(rt−1|x1:t−1). (2)

The conditional prior p(rt|rt−1) is defined as

p(rt|rt−1) =


H(rt−1) if rt = 0

1−H(rt−1) if rt = rt−1 + 1

0 otherwise

where the hazard function H(t) verifies

H(τ) =
Pchange(τ)∑∞
t=τ Pchange(t)

and Pchange denotes the probability distribution over the in-
terval between change points. A simple case arises where
Pchange(·) is a discrete exponential geometric distribution
with scale parameter 1/h, which yields H(τ) = h.

The original BOCPD algorithm (Adams & MacKay, 2007)
makes the assumptions that the observations are i.i.d within
each run length with respect to an exponential family dis-
tribution. In their experiments, the authors adopt Gaussian
i.i.d. assumptions with a Normal-Inverse-Gamma prior on
parameters (i.e. yielding a Student-t predictive). Saatçi
et al. (2010) used a GP UPM where the time index serves
as input (GPTS) and an auto-regressive GP UPM (GPAR)
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of order p which takes values xt−p:t−1 as input at time
t. GPTS effectively utilizes time as an index, enabling it
to accommodate irregular time intervals. Moreover, GPTS
has been shown to possess an equivalent linear autoregres-
sive (AR) representation (Murray-Smith & Girard, 2001).
In contrast, although GPAR imposes a uniform time step
constraint, it generalizes GPTS in its ability to handle non-
linearity. Consequently, GPAR is capable of modeling
more complex data dynamics.

2.2. Student-t Process (TP)

We review the properties of the Student-t distribution and
process, which serves in later sections as our predictive
model.

Definition 2.1. An n-dimensional vector y is multivariate
Student-t-distributed with ν degrees of freedom, mean vec-
tor µ ∈ Rn and covariance matrix K ∈ Rn×n, if its joint
probability density is given by

St(y|µ,K, ν) =
Γ((ν + n)/2)

Γ(ν/2)((ν − 2)π)n/2|K|1/2
×(

1 +
1

ν − 2
(y − µ)

⊤
K−1 (y − µ)

)− ν+n
2

. (3)

As for the Gaussian distribution, the conditional distribu-
tion for a multivariate Student-t has an analytical form. The
following result can be found in Kotz & Nadarajah (2004)
and Shah et al. (2014).

Lemma 2.2. Let y ∼ St(y|µ,K, ν) and partition y into
two sub-vectors y1 ∈ Rn1 and y2 ∈ Rn2 such that µp =
E [yp] and Kp|p = cov [yp,yp] for p = 1, 2. Then the con-
ditional density for y1|y2 has an analytical form y1|y2 ∼
St(µ1|2,K1|2, ν1|2) with µ1|2 = K1,2K

−1
2,2(y2−µ2)+µ1,

covariance K1|2 = ν−2+β
ν−2+n2

(K1,1 −K1,2K
−1
2,2K2,1), β =

(y2 − µ2)
⊤K−1

22 (y2 − µ2) and ν1|2 = ν + n2 degrees of
freedom.

As described in Shah et al. (2014), the Student-t process
(TP) can be derived by placing an inverse Wishart process
prior on the kernel function of a GP. We provide more in-
formation in Appendix A.

Definition 2.3. A random real-valued function f : X → R
is said to follow a Student-t process f ∼ T P(µ, k, ν), with
ν degrees of freedom, mean function µ ∈ X and covari-
ance function k : X × X → R, if any collection of func-
tion values has a joint multivariate Student-t distribution
such that

(f(x1), · · · , f(xn)) ∼ St(µ,K, ν) (4)

where K is a covariance matrix with entries Ki,j =
k(xi, xj) for i, j = 1, · · · , n.

Student-t Noise Model Unfortunately, with a TP, adding
Student-t noise removes analytical tractability. To over-
come this issue, Shah et al. (2014) and Zhang & Yeung
(2010) propose to add an uncorrelated but dependent noise
term, which preserves tractability.

We assume each observation in y = {yi}ni=1 is to be mod-
elled from a latent process f = {f(xi)}ni=1 and a noise
vector ε = {εi}ni=1 such that

yi = fi + εi for i = 1, · · · , n (5)

where [
f
ε

]
∼ St

(
02n,

(
K 0
0 σ2

nIn

)
, ν

)
. (6)

From the properties of the Student-t distribution, y =
f + ϵ ∼ T P(0n,K + σn

2In, ν). Therefore, we obtain a
tractable distribution for y, simply incorporating the noise
variance into the kernel. Note that f and ε in Equation (6)
are not independent since the scaling parameter ν has an
effect on both the covariances of f and ε.

Tang et al. (2016) gives a probabilistic interpretation to
this noise incorporation. Equation (6) can be shown to be
equivalent to a noise model following

p(ε|f) ∼ St

(
ε
∣∣∣0, σ2

n

ν + n

(
ν + f⊤K−1f

)
I, ν + n

)
.

(7)

Thus, the variance of the noise model adjusts to the data fit
term f⊤K−1f present in the noise-free model marginal log
likelihood. This means that when the noise-free model fits
the data well, the added noise will have a smaller variance,
and vice versa.

Relation to GPs A TP can be seen as a generalization
of a GP. As the parameter ν approaches infinity, the TP
converges to the GP in the following sense: If we have
f ∼ T P(µ, k, ν), where µ represents the mean function
and k denotes the covariance function, then the distribution
of f tends towards GP(µ, k) as ν tends to infinity (Shah
et al., 2014, Lemma 2). A TP is in fact the most general el-
liptical process with an analytically-representable density
(Shah et al., 2014). Furthermore, Tang et al. (2016) argue
that a TP with noise incorporated in the kernel as in Equa-
tions (6) and (7) tends to a GP with i.i.d Gaussian noise as
ν → ∞.

2.3. BOCPD with TP-based UPM

We propose a BOCPD extension where the UPM is based
on a TP process with Student-t noise. We first introduce
a TP auto-regressive model of order p where at time t, the
past p values xt−p:t−1 are taken as input and xt as the ob-
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Algorithm 1 BOCPD run length estimation

1: (Ξ0,∇hΞ0,∇θΞ0)← (1, 0, 0) ▷ Initialize the recursion, set
hazard and UPM derivatives to 0.

2: Compute the eigenfunctions evaluation Φ
3: Define Ξ̃t as Ξt[2 : t+ 1]
4: for t = 1 to T do
5: (πt,∇θπt)← UPM predictive(xt, t,Φ)
6: h← H(1 : t)

Update growth probabilities:
7: Ξ̃t ← Ξt−1 ⊙ πt ⊙ (1− h)

8: ∇θΞ̃t ← (1− h)⊙ (∇θΞt−1 ⊙ πt +∇θπt ⊙ Ξt−1)

9: ∇hΞ̃t ← πt ⊙ (∇hΞt−1 ⊙ (1− h)− Ξt−1 ⊙∇hh)
Update change point probabilities:

10: Ξt[1]←
∑

Ξt−1 ⊙ πt ⊙ h
11: ∇θΞt[1]←

∑
h⊙ (∇θΞt−1 ⊙ πt +∇θπt ⊙ Ξt−1)

12: ∇hΞt[1]←
∑

πt ⊙ (∇hΞt−1 ⊙ h+ Ξt−1 ⊙∇hh)
Perform prediction:

13: p(rt|x1:t−1)← normalized Ξt

14: end for
15: p(x1:T ) =

∑
ΞT ▷ Compute the evidence

16: ∇p(x1:T ) = (
∑
∇hΞT ,∇θΞT )

17: return (p(x1:T ),∇p(x1:T ))

servation, i.e.

xt = f(xt−p:t−1) + εt (8)

where f ∼ T P(0, k, ν) and ε is a dependent Student-t
noise with scale parameter σn described in Equation (6).

Interestingly, by Lemma 2.2, we can marginalize out the
latent f , to yield an marginal predictive distribution. This
yields an auto-regressive TP-based UPM of the form

p(xt|xt−r:t−1) ∼ St(xt|mt,r, vt,r, ν + r − 1) (9)

where

mt,r = k⊤
∗ K̃

−1xt,r

vt,r = αt,r

(
k(xt, xt)− k⊤

∗ K̃
−1k∗

)
(10)

αt,r =
v − 2 + βt,r

v − 3 + r

βt,r = x⊤
t,rK̃

−1xt,r.

Here xt,r = xt−r+1:t−1, K̃i,j = k(xi−p+1:i,xj−p+1:j) +
σ2
nδi,j for i, j = t−r, · · · , t−2, δi,j denotes the Kronecker

delta and k∗ is an (r − 1)-dimensional vector with the ith
entry being k(xt−p:t−1,xi−p+1:i) for i = t− r, · · · , t− 2.

The predictive mean mt,r has the same form as for a GP
(assuming the same kernel and hyperparameters). How-
ever, due to the differing marginal likelihood between TP
and GP, the predictive mean differs after learning the hy-
perparameters. Unlike a GP, the TP model exhibits more
adaptive predictive volatility based on the training observa-
tions. The parameter βt,r explicitly depends on xt,r. When
βt,r exceeds (r − 1), TP’s predictive variance surpasses

that of a GP, and vice versa. In fact, assuming xt,r is drawn
from a GP prior N (0, K̃), βt,r follows a Chi-squared dis-
tribution with mean (r − 1). Consequently, if observations
have similar variance as expected under a GP prior, TP’s
covariance is comparable to that of a GP. However, signifi-
cantly larger or smaller variability in the observations leads
to higher or lower posterior uncertainty in TP, respectively.

2.4. Hilbert Space Approximate Student-t Process

The TP UPM in Equation (9) inherits the same cubic com-
putational cost of GPs, which is prohibitive for most appli-
cations. We propose a reduced-rank implementation of the
Student-t Process UPM based on the novel Hilbert space
method for reduced-rank kernel approximation (Solin &
Särkkä, 2020). Solin & Särkkä (2020) obtain approximate
eigendecompositions of stationary covariance functions in
terms of an eigenfunction expansion of the Laplace opera-
tor in a compact subset of Rd.

The Hilbert space reduced-rank method provides a differ-
ent advantage in our case compared to other reduced-rank
approximations :

(i) The Laplace-based feature vectors are independent of
the particular choice of kernel, including the kernel
hyperparameters. Gradient computation is thus facili-
tated, which in turn speeds up the learning phase. We
refer to Section 4 for more details.

(ii) The decay of the expansion coordinates is fast. Hence,
a good approximation can be obtained with relatively
few basis points. As an example, Solin & Särkkä
(2020) obtains a good approximation to univariate
RBF kernels with only 12 eigenfunctions. They argue
that adding more eigenfunctions has negligible effect
on the approximation accuracy.

Hilbert Space Reduced-Rank Kernel For the univari-
ate case with observations within a closed interval Ω =
[−L,L] ⊂ R, where L is some positive real number, we
can approximate k with hyperparameters θ with a kernel
representation

kθ(x, x
′) =

∞∑
j=1

Sθ(
√
λj)ϕj(x)ϕj(x

′) ∀x, x′ ∈ Ω (11)

where S is the spectral density of the stationary kernel k,
{ϕj}∞j=1 and {λj}∞j=1 are the sets of eigenfunctions and
eigenvalues of the Laplace operator ∇2 in Ω. A short re-
view of the technical details surrounding the approximation
derivation is provided in Appendix B.

In particular, for a Gaussian kernel k(x − x′) =
σ2 exp

(
−(x− x′)2/2 ℓ

)
with scaling parameter σ and
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length-scale parameter ℓ, the corresponding spectral den-
sity is defined as Sθ(w) = σ

√
2πℓ2 exp(−π2ℓ2w3

2 ).

The eigenvalues {λj}∞j=1 and eigenfunctions {ϕj}∞j=1 fol-
low

λj =

(
πj

2L

)2

, (12)

ϕj(x) =
1√
L
sin
(√

λj(x+ L)
)
. (13)

The multivariate formulation of the decomposition is pro-
vided in Appendix B. Note that the total number of ba-
sis function grows exponentially with the number of ba-
sis functions per dimension, a problem inherent in most
choices of basis-function expansion.

The eigenvalues λj are monotonically increasing with j,
and for a bounded kernel, the spectral density S(·) tends to
zero quickly at higher frequencies. Thus, a good approxi-
mation is obtained by truncating the expansion in Equation
(11) to the first m terms. We can form an approximate
eigendecomposition of the covariance matrix

K ≈ Φ⊤ΛΦ (14)

where Λ is a diagonal matrix with entries {Sθ(
√
λj)}mj=1

and Φ is a matrix of eigenfunction evaluations such that
Φi,j = ϕi(xj). The quality on the approximation also
relies on the choice of closed interval [−L,L]. Solin &
Särkkä (2020) simply normalized the data and adjust L ac-
cordingly.

2.5. BOCPD with Hilbert Space Approximate TP UPM

Using the reduced-rank Hilbert method, the predictive
distribution of Equation (9) becomes p(xt|xt−r:t−1) ∼
St(xt|mt,r, vt,r, ν + r − 1). Further, using the Woodbury
matrix inversion formula

mt,r = ϕ(xt−1)
⊤Qt,rΦt,rxt,r

vt,r = αt,r

(
ϕ(xt−1)

⊤Qt,rϕ(xt−1)
)

(15)

αt,r =
(ν − 2)σ2

n + βt,r

ν − 3 + r

βt,r = ||xt,r||22 − xt,rΦ
⊤
t,rQt,rΦt,rxt,r

with xt,r = xt−r+1:t−1. Here, Φt,r is a m×(r−1) matrix
of eigenfunctions with i, j entry ϕi(xj) for i = 1, · · · ,m
and j = t− r, · · · , t− 2, and Qt,r is the m×m precision
matrix such that

Qt,r =
(
Φt,rΦ

⊤
t,r + σ2

nΛ
−1
)−1

. (16)

Algorithm 2 HSSPAR-CP UPM implementation

1: Function UPM predictive(xt, t,Φ):
2: Inputs(from previous iteration): rmax = |rt−1|, Qt−1,rmax ,

ut−1 := Φt−1,rmaxxt−1,rmax

3: Q← h update(Qt−1,rmax , ϕ(xt−2)) ▷ Eq.(19)
4: u← ut−1 + xt−1ϕ(xt−2)
5: if rmax + 1 > Rmax then
6: Q← h downdate(Q, ϕ(xt−rmax)) ▷ Eq.(20)
7: u← u− xt−rmaxϕ(xt−rmax−1)
8: end if
9: rmax ← min(Rmax, rmax + 1)

10: Qt,rmax ← Q
11: ut ← u
12: for r = rmax to t = 1 do
13: mt,r ← ϕ(xt−1)

⊤Qu
14: βt,r ← ||xt,r||22 − u⊤Qu
15: Compute αt,r and vt,r ▷ Eq (15)
16: πt,r ← p(xt|xt−r:t−1) ▷ Eq.(9)
17: Compute∇mt,r,∇βt,r,∇αt,r and∇vt,r
18: Compute∇πt,r with chain rule
19: Q← v update(Q, ϕ(xt−r)) ▷ Eq.(18)
20: u← u− xt−rϕ(xt−r−1)
21: end for
22: return (πt,∇πt).

3. Implementation Details
As noted in Equation (12), the basis function in the
reduced-rank approximation does not depend on covari-
ance function hyperparameters. Thus the eigenfunctions
can be evaluated once and stored in a cached T × m ma-
trix Φ through the learning process, with O(Tm) space
complexity. If the number of observations T is so large
that storing is not feasible, evaluation can be carried out in
blocks or only when necessary.

Pruning the run length distribution In a naive imple-
mentation, all the run lengths are retained and the posterior
p(rt|x1:t) for rt = {1, · · · , t} forms a vector of size t at
every update step. In practice the run length distribution
is highly peaked. A modification of the algorithm is to p
rune out the run length probability estimates with a total
mass below a certain threshold, i.e ≤ 1/Rmax; or to only
consider the Rmax most probable values, i.e |rt| ≤ Rmax
(Adams & MacKay, 2007; Saatçi et al., 2010; Knoblauch
& Damoulas, 2018). This yields a running complexity of
O(TR2

maxm
2) for the reduced-rank TP-based UPM.

Vertical Rank-One Update We can improve the imple-
mentation further, by performing a rank-one update of the
precision matrix Qt,r across run lengths. Indeed, at time
t, the product Φt,rΦ

⊤
t,r in Equation (16) can be updated

across run lengths as

Φt,rΦ
⊤
t,r = Φt,r−1Φ

⊤
t,r−1 + ϕ(xt−r)ϕ(xt−r)

⊤. (17)

Thus, knowing Qt,rmax , where rmax stands for the maximum
run length size at time t, we can use the Sherman-Morrison
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inversion formula to obtain the following recursion

Qt,r−1 =

(
Im +

Qt,rϕ(xt−r)ϕ(xt−r)
⊤

1− ϕ(xt−r)⊤Qt,rϕ(xt−r)

)
Qt,r.

(18)
Equation (18) can be implemented as an outer product of
two matrix-vector products. To make the evaluation fast,
we used the specialized BLAS routines for rank-one update
(i.e. the scipy method linalg.blas.dger for Python).
This rank-one update of Qt,r, together with an efficient up-
date of the product Φt,rxt,r in Equation (15) yields a run-
ning complexity of O(TRmaxm

2).

Horizontal Rank-One Update We can also perform a
horizontal update of the precision matrices across time t.
Let Qt,rmax denote the precision matrix associated with the
largest run length at time t (i.e. for rt = |rt|). Using Equa-
tion (17), we obtain

Qt,rmax =(
Im − Qt−1,rmaxϕ(xt−2)ϕ(xt−2)

⊤

1 + ϕ(xt−2)⊤Qt−1,rmaxϕ(xt−2)

)
Qt−1,rmax .

(19)

To maintain consistency with pruning, an additional rank-
one downdate is necessary when |rt−1| + 1 > Rmax, to
remove the information carried by ϕ(xt−|rt−1|), as given
below

Qt,rmax =(
Im +

Qt,rmaxϕ(xt−|rt−1|)ϕ(xt−|rt−1|)
⊤

1− ϕ(xt−|rt−1|)
⊤Qt,rmaxϕ(xt−|rt−1|)

)
Qt,rmax .

(20)

Maximum A-Posteriori (MAP) Segmentation For the
identification of change points, we used a variation of the
MAP segmentation algorithm proposed by Knoblauch &
Damoulas (2018). We compute MAPt, an estimator of the
density of the run length MAP estimate before t with the
recursion

MAPt = max
r

{p(rt = r|x1:t)MAPt−r−1}. (21)

For r∗t , the maximizer of Equation (21) at time t, the MAP
segmentation is St = St−r∗t −1∪{(t−r∗t )}, S0 = ∅, where
t′ ∈ St means a CP occurs at t′ ≥ t.

4. Hyperparameter Learning
Following Saatçi et al. (2010), the hyperparameters Θ :=
(θ, ν, σn) where θ refers to the kernel hyperparameters, are

learned by minimizing the marginal negative log likelihood

log p(x1:T |Θ) = −
T∑

i=1

log p(xt|x1:t−1,Θ). (22)

Saatçi et al. (2010) optimize the hyperparameters on a test
subset {x1:T ′} by running the BOCPD multiple times to
find Θ̃ = argminΘ{log p(x1:T ′ |Θ)}. The gradient of the
log likelihood is obtained from the gradient of the one-
step-ahead predictor gradients ∇p(xt|x1:t−1). The terms
∇p(xt|x1:t−1) are themselves computed by iteratively cal-
culating the gradient of the UPM, ∇p(xt|xt−r:t−1), the
gradient of the hazard rate ∇p(rt|rt−1) and then propagat-
ing forward using the chain rule (Saatçi et al., 2010). These
computations are consistent with hyperparameter learning
in other on-line GP methods (Ranganathan et al., 2011).

For GP-based UPM, the computation and forward propaga-
tion of the gradient is particularly expensive and accounts
for most of the training time. In our case, computation of
the UPM gradient is easier since the feature vectors Φt,r

are independent of the hyperparameters Θ. We are left from
Equation (15) with

∇Θmt,r = ϕ(xt−1)
⊤∇ΘQt,rΦt,rxt,r

∇Θvt,r =
vt,r
αt,r

∇αt,r + αt,r

(
ϕ(xt−1)

⊤∇ΘQt,rϕ(xt−1)
)

∇Θβt,r = −xt,rΦ
⊤
t,r∇ΘQt,rΦt,rxt,r (23)

where

∇θQt,r = σ2
nQt,r

(
Λ−2∇θΛ

)
Qt,r

∇νQt,r = 0 (24)

∇σn
Qt,r =

1

2σn
Qt,rΛ

−1Qt,r.

The term Λ−2∇θΛ in Equation (24) is independent of the
observations and thus can be computed once at the begin-
ning of each optimizing step and reused throughout the
BOCPD iterations. Equation (23) and (24) provide a simple
computational routine for the gradient, once the precision
matrix Qt,r update is obtained. The gradient of the UPM,
∇p(xt|xt−r:t−1) is then derived from the gradient of UPM
parameters.

5. Experiments
We compare our scheme to the two GP-based UPM vari-
ants introduced in Saatçi et al. (2010), namely ARGP
and GPTS. We also include as baseline the normal i.i.d
UMP (TIM) of Adams & MacKay (2007). We use
the acronyms HSSPAR-CP to refer to our reduced-rank
Student-t process-based UPM as in Equation (15), and
HSGPAR-CP for an equivalent reduced-rank GP-based
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Table 1: Results of predictive performance on Nile Data, Well Log Data, Bee Waggle Data and Whistler Snowfall Data.
The results are provided with 95% error bars1and the p-value testing the null hypothesis that methods are equivalent to the
best performing method, according to NLL, using one sided t-test. (·)-CP refers to the BOCPD variant of the respective
method.

Method Negative Log Likelihood p-value MSE p-value time(s)

Nile Data (200 training points, 463 Test points)

HSGPAR-CP 1.1480 (± 0.0564) 0.072 0.5756 (±0.0977) 0.480 43.18
HSSPAR-CP 1.0984 (± 0.0653) N/A 0.5783 (±0.0995) N/A 44.52
GPTS 1.2313 (±0.0449) < 0.001 0.6050 (±0.0942) 0.301 2.74
GPTS-CP 1.1468 (±0.0533) 0.067 0.5381 (±0.0890) 0.208 5.20
GPAR 1.1729 (±0.0527) 0.020 0.5587 (±0.0978) 0.355 142.66
GPAR-CP 1.1481 (±0.0587) 0.079 0.5792 (±0.0964) 0.493 267.17
TIM 1.1769 (±0.0852) 0.065 0.6644 (±0.1029) 0.081 N/A

Well Log Data (1000 training points, 3047 Test points)

HSGPAR-CP 0.1927 (±0.0343) 0.390 0.1165 (±0.0109) 0.312 528.75
HSSPAR-CP 0.1875 (±0.0321) N/A 0.1194 (±0.0123) N/A 659.20
GPTS 0.5557 (±0.0480) < 0.001 0.1575 (±0.0199) 0.007 17.88
GPTS-CP 0.2489 (±0.0446) < 0.001 0.1201 (± 0.0115) 0.460 78.24
GPAR 0.3001 (±0.0383) < 0.001 0.1704 (±0.0380) 0.023 11,596.64
GPAR-CP 0.1926 (±0.0342) 0.392 0.1166 (±0.0110) 0.316 13,610.75
TIM 0.2562 (±0.0287) 0.003 0.1921 (±0.0275) 0.002 N/A

Bee Waggle Data (250 training points, 806 Test points)

HSGPAR-CP -0.9249 (±0.1574) 0.006 0.8623 (±0.1670) 0.034 225.63
HSSPAR-CP -1.2291 (±0.1099) N/A 0.6646 (±0.1071) N/A 315.41
GPTS 1.2786 (±0.2440) < 0.001 1.6688 (±0.2321) < 0.001 13.58
GPTS-CP 0.0766 (±0.1737) < 0.001 1.1911 (±0.1856) < 0.001 20.91
GPAR -0.4948 (±0.2976) < 0.001 0.7757 (±0.1115) 0.054 412.66
GPAR-CP -1.0430 (±0.1175) 0.013 0.7238 (±0.1275) 0.202 485.46
TIM 1.3853 (±0.1106) < 0.001 1.3670 (±0.1943) < 0.001 N/A

Whistler Snowfall Data (1000 training points, 13380 Test points)

HSGPAR-CP -0.0278 (±0.0531) < 0.001 1.3040 (±0.0962) < 0.001 605.64
HSSPAR-CP -0.52425 (±0.0393) N/A 0.9785 (±0.0900) N/A 591.06
GPTS 1.2965 (±0.0495) < 0.001 1.1828 (±0.0774) 0.002 18.15
GPTS-CP 0.6143 (±0.0693) < 0.001 1.1701 (±0.0807) 0.003 59.10
GPAR 1.1708 (±0.1453) < 0.001 1.1195 (±0.1013) 0.021 12,150.95
GPAR-CP -0.1890 (±0.0433) < 0.001 1.1959 (±0.0994) 0.004 14,493.47
TIM 0.3374 (±0.0264) < 0.001 0.9912 (±0.0769) 0.381 N/A

UPM. We test the algorithms on four real data sets (3 in
1D and 1 in 2D). The average one-step-ahead negative log
likelihood (NLL) and the mean squared error relative to the
predictive mean (MSE) are used as evaluation metrics. Re-
sults are presented in Table 1.

5.1. Settings

We use a hazard function with a trainable constant haz-
ard rate h initialized at 100, which yields a conditional
prior p(rt|rt−1) with probability of a change point equal
to 0.01. Following Saatçi et al. (2010), we used a rational
quadratic kernel for GPTS and a Gaussian kernel for the
auto-regressive variants. The GPTS execution time is im-
proved by assuming uniform discrete observation time and
exploiting the Toeplitz structure of the covariance function
(Saatçi et al., 2010). For the implementation of GPAR and
GAPRCP algorithms, we adopt the approach outlined by
Saatçi et al. (2010), incorporating horizontal and vertical
rank-one Cholesky updates and pruning techniques. The

computational complexity of GAPRCP, denoted using our
notation, is O(TR3

max). In addition, we also incorporate the
original time-independent CP model (TIM) introduced by
Adams & MacKay (2007) as a baseline, which assumes the
data to be i.i.d. normal.

For HSSPAR, the trainable hyperparameters consist of the
UPM parameters Θ := (θ, ν, σn) where θ refers to the
kernel hyperparameters. Our implementations of HSS-
PAR and HSGPAR use the Hilbert space reduced-rank ker-
nel derived from Gaussian kernels with the number of ba-
sis functions m ranging from 5 to 15. For auto-regressive
UPM (GPAR and HSSPAR variants), we use lag parameter
p = 1, 2, 3. We observed that for larger p, the compu-
tational advantage of HSSPAR reduces, since as discussed
earlier, the number of multivariate basis functions increases
exponentially with dimension. Other authors make simi-
lar observations for multivariate HSGP regression (Riutort-
Mayol et al., 2022).

1Here error bars are ±1.96× standard error.
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Figure 1: Results for the Nile record data with HSSPAR-CP. Top: The vertical dashed red line represents the boundary
between train and test sets. The vertical dashed black line marks the installation of the nilometer in 715. The small red
crosses represents alert locations obtained from MAP segmentation. Bottom: The run length CDF (black) and its median
(red).

Figure 2: Results for the Bee Waggle Dance data with HSSPAR-CP. Top: The time-series are the bee’s x-location (blue),
y-location (orange) and angular difference (green). The vertical dashed red line represents the boundary between train
and test sets. The small red crosses represents alert locations obtained from MAP segmentation. The small blue crosses
represents the known true change point. Bottom: The run length CDF (black) and its median (red).

5.2. Nile Data

The Nile data set records the lowest annual water levels
of the Nile river during the period 622-1284. The data
has been used for change point detection in Garnett et al.
(2009) and Saatçi et al. (2010). Following Saatçi et al.
(2010), we learn the hyperparameters on the first 200 en-
tries and evaluate the performance on the remaining pe-
riod 822-1284. A structural change in the data is known
to occur in year 715 due to an upgrade in ancient sensor
technology to the nilometer. Results are given in Table 1.
The run length posterior for HSSPAR is displayed in Fig-
ure 2. We can see by comparing HSGPAR-CP to GPAR-
CP that the reduced-rank approximation does not alter the
performance significantly. HSSPAR-CP outperforms both
GPTS-CP and GSPAR-CP in terms of NLL. The error bars
tend to be larger than desired, but this is something that was
also observed in Saatçi et al. (2010), and attributable to the
small test size (463 points). In Figure 2 we can also see that

HSSPAR correctly captures the known change point at the
year 715. While Saatçi et al. (2010) identified 18 CPs, our
algorithm is more robust in that it only detects 9 CPs.

5.3. Well Log Data

The Well Log data set contains 4050 measurements of ra-
dioactivity taken during the drilling of a well. These data
have been studied in the context of change point detection
by Ruanaidh & Fitzgerald (2012) and by Fearnhead & Clif-
ford (2003). The data set contains many outliers. Some
authors, e.g. (Adams & MacKay, 2007; Levy-Leduc &
Harchaoui, 2007) remove these before running the change
point algorithms; however, outliers are retained by other
authors, e.g. Fearnhead & Rigaill (2019) and Knoblauch
et al. (2018). In our case, we use the data unfiltered. Results
in Table 1 show slightly better performance for HSSPAR-
CP compared to HSGPAR-CP and GPAR-CP even though
this advantage might lack statistical significance. For this
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data set, we see the effectiveness of the reduced-rank for-
mulation when the training set becomes relatively large
(≥ 1000). The fitting of HSSPAR-CP and HSGPAR-CP
is > 20× faster than that of GPAR-CP in our experiment.
In terms of alerted change points, on the unfiltered data,
HSSPAR-CP identifies 25 CPs compared to 44 for GPAR-
CP in Saatçi et al. (2010). Notably, when the data is filtered,
the number of CPs reduces to 22 for HSSPAR-CP, indicat-
ing that applying filtering results in only 3 additional CPs.
In Appendix C, we provide visualizations of the run length
posterior for HSSPAR-CP on both filtered and unfiltered
data.

5.4. Bee Waggle Dance Data

The waggle dance is bees’ method of communicating the
location of forage (direction, distance and profitability of
food source) to each other. Entomologists have been in-
terested in identifying change points in different stages in
the bee dance. The Bee Waggle Dance data set contains
the bee’s x-coordinate position, y-coordinate position and
head angle at each frame of 6 video sequences of bee wag-
gle dances. Following Saatçi et al. (2010), we examine the
first video sequence only, and consider angle differences
for the angle sequence. HSSPAR-CP outperforms in terms
of NLL and MSE. Figure 1 shows the run length posterior
and change point alerts for HSSPAR-CP. The HSSPAR-CP
model correctly identifies 16 of the 19 known CPs.

5.5. Snowfall Data

The Snowfall data report the historical daily snowfall level
in Whistler BC (Canada) from 1972 to 2008. We train the
model on the first 1000 entries of the data (corresponding to
approximately three years) and test on the 12,880 remain-
ing points. The HSSPAR-CP model performs significantly
better in terms of both NLL and MSE compared to its com-
petitors. Fitting of HSSPAR-CP is also > 20× faster than
that of GPAR-CP.

The Student-t UPM outperforms other GP-based CP algo-
rithms in terms of NLL in all experiments. We attribute
this performance to the generalization property (compared
to a GP) and to the fatter predictive distribution of a TP.
The reduced-rank approximation yields significantly faster
training while maintaining good performance for applica-
tions with larger training sets, i.e. Well Log and Snowfall.

6. Conclusion
We introduce a Bayesian online change point detection
framework that combines a Student-t process with depen-
dent Student-t noise as a time-series model, and Hilbert
space reduced-rank kernel approximation for mitigating
computation complexity. We illustrate the use of our

scheme on a diverse set of real world examples. Our
method compares favorably to other GP-based alternatives
in terms of both prediction and hyperparameter learning
time.
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Solin, A. and Särkkä, S. State-space methods for efficient
inference in Student-t process regression. In Proceed-
ings of the Eighteenth International Conference on Arti-
ficial Intelligence and Statistics, ICML’15, pp. 885–893,
2015.

Svensson, A. and Schön, T. B. A flexible state–space model
for learning nonlinear dynamical systems. Automatica,
80:189–199, 2017.

Svensson, A., Solin, A., Särkkä, S., and Schön, T. B.
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A. Student-t Process Construction Details
In this section, we present a summary of the Student-t process derivation introduced by Shah et al. (2014).

We can construct a Student-t process by placing an inverse Wishart process prior on the kernel of a Gaussian process.
The Wishart distribution is a probability distribution over Π(n), the set of real-valued, n× n, symmetric, positive definite
matrices.

Definition A.1. A random matrix Σ ∈ Π(n) is inverse Wishart distributed with parameters ν ∈ R+, K ∈ Π(n) and we
write Σ ∼ IW(ν,K) if its density is given by

p(Σ|v,K) ∝ |Σ|−
v+2n

2 exp

(
−1

2
tr(KΣ−1)

)
. (25)

Dawid (1981) shows that the inverse Wishart distribution is consistent under marginalization. Thus we can defined a
Wishart process for some input space X and a positive definite function k : X × X → R.

Definition A.2. The process σ is a inverse Wishart process (IWP) on X with parameter v and kernel function k : X ×X →
R if for any finite collection x1, · · · , xn ∈ X , σ(x1, · · · , xn) ∼ IW(ν,K) where K ∈ Π(n) is the Gram matrix with i, j
entries k(xi, xj) for i, j = 1, . . . , n. We write σ ∼ IWP(ν, k).

For some kernel function k parametrized by θ and a mean function µ : X → R, Shah et al. (2014) propose deriving the
Student-t process f as a hierarchical model such that

σ ∼ IWP(ν, kθ)

f |σ ∼ GP(µ, (ν − 2)σ). (26)

For any collection f = (f(x1), · · · , f(xn))
⊤ with µ = (µ(x1), · · · , µ(xn))

⊤ and Σ = σ(x1, · · · , xn), we see that

p(f |µ,K, v) =

∫
p(f |Σ)p(Σ|v,K)dΣ

∝
exp

(
− 1

2 tr
(
K + (f−µ)(f−µ)⊤

ν−2

))
|Σ|(ν+2n+1)/2

∝
(
1 +

1

v − 2
(y − µ)⊤K−1(y − µ)

)− v+n
2

(27)

which is a multivariate Student-t distribution St(µ,K, ν). Since the multivariate Student-t distribution is consistent under
marginalisation, Shah et al. (2014) conclude that Equation (27) is the finite-dimensional distribution of a well defined
stochastic process f . We write f ∼ T P(ν, k).
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B. Hilbert Space Methods for Reduced-Rank Kernels
In this section, we present a summary of the mathematical details of the Hilbert space based reduced-rank kernels intro-
duced by Solin & Särkkä (2020).

Bochner representation Hilbert space methods for reduced-rank kernels are constructed via the Bochner’s theorem
(Bochner, 1932; Rudin, 2017), which states that any bounded, continuous and shift-invariant kernel k(x,x′) := k(τ ) with
τ = x− x′, is the inverse Fourier transform of a bounded positive measure.
Theorem B.1. (Bochner) An integrable function k : Rd → R is the covariance function of a weakly stationary mean
square continuous random process on Rd if and only if it can be represented as

k(τ ) =

∫
Rd

exp(iw⊤τ )dµ(w) (28)

where µ(w) is a positive definite measure.

If the measure µ(w) admits a spectral density S(w), we can furthermore express the following Fourier identities

k(τ ) =
1

(2π)d

∫
exp(iw⊤τ )S(w)dw

S(w) =

∫
k(τ ) exp(−iw⊤τ )dτ . (29)

In the isotropic case where the covariance function only depends on the Euclidian norm ||τ || such that k(τ ) = k(||τ ||),
the spectral density is also only dependent on the norm of w i.e. S(w) = S(||w||).

Covariance operator as a pseudo-differential operator We can define a covariance operator K associated with each
covariance function k as

Kf =

∫
k(·,x′)f(x′)dx′ (30)

for any regular functions f . When k is stationary then K is translation invariant. Thus, we can express the Fourier transform
of K as a transfer function, which is the spectral density S(·) itself. Indeed, one can verify that F [Kf ](w) = S(w)F [f ](w)
where F [·] denotes the Fourier transform of its argument.

We consider the isotropic case S(w) = S(||w||). We further assume that S(·) is regular enough to be represented as a
polynomial expansion i.e.

S(||w||) = a0 + a1||w||2 + a2(||w||2)2 + a3(||w||2)3 + · · · (31)

Recall that the transfer function of the Laplace operator ∇2 is −||w||2 i.e. F [∇2f ](w) = −||w||2F [f ](w). Thus from
Equation (31), we have

F [Kf ](w) = S(||w||)F [f ](w)

=
[
a0 + a1||w||2 + a2(||w||2)2 + a3(||w||2)3 + · · ·

]
F [f ](w)

= a0F [f ](w)− a1F [∇2f ](w)− a2F [(∇2)2f ](w)− a3F [(∇2)3f ](w) + · · ·
= F [a0 − a1∇2f − a2(∇2)2f − a3(∇2)3f + · · · ](w). (32)

From the equality (32), we get the following representation of K, which defines a pseudo-differential operator as a series
of Laplace operator

K = a0 − a1∇2 − a2(∇2)2 − a3(∇2)3 + · · · . (33)

Hilbert space approximation of K We now form a Hilbert space approximation for the pseudo-differential operator
defined in Equation (33). Consider the eigenvalue problem for the Laplace operator ∇2 in the compact subset Ω ⊂ Rd and
with Dirichlet boundary conditions

−∇2ϕj(x) = λjϕj(x) if x ∈ Ω,

ϕj(x) = 0 if x ∈ ∂Ω (34)

13
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where {ϕj}∞j=1 and {λj}∞j=1 are the set of eigenvalues and eigenfunctions of the Laplacian operator. Because −∇2 is a
positive definite Hermitian operator, the set of eigenfunction {ϕj}∞j=1 is orthonormal with respect to the inner product

⟨f, g⟩ =
∫
Ω

f(x)g(x)dx (35)

that is ∫
Ω

ϕi(x)ϕj(x)dx = δi,j (36)

and all eigenvalues {λj} are real and positive.

The Laplace operator can be assigned a formal kernel

l(x,x′) =
∑
j

λjϕj(x)ϕj(x
′) (37)

in a sense that

−∇2f(x) =
∑
j

λj⟨f, ϕj⟩ϕj(x) (spectral decomposition)

=

∫
Ω

l(x,x′)f(x′)dx′.

Similarly, we can define the kernel of the power representation the Laplace operator as

ls(x,x′) =
∑
j

λs
jϕj(x)ϕj(x

′) (38)

for s = 1, 2, · · · , in a sense that due the orthonormality of the basis

−(∇2)sf(x) =

∫
Ω

ls(x,x′)f(x′)dx′.

This implies that we also have [
a0 + a1(−∇2) + a2(−∇2)2 + · · ·

]
f(x)

=

∫
Ω

[
a0 + l1∇2 + l2(∇2)2 + · · ·

]
f(x′)dx′. (39)

The left hand side is Kf as defined in Equation (33). Thus from Equation (30), we conclude that

k(x,x′) ≈ a0 + a1l
1(x,x′) + a2l

2(x,x′) + · · ·

=
∑
j

[
a0 + a1λj + a2λ

2
j + · · ·

]
ϕj(x)ϕj(x

′). (40)

By letting ||w||2 = λj the spectral density in Equation (31) becomes

S(||w||) = a0 + a1λj + a2λ
2
j + a3λ

3
j + · · · .

and substituting in Equation (40) leads to the final approximation

k(x,x′) =

∞∑
j=1

S(
√
λj)ϕj(x)ϕj(x

′) (41)

As discussed in the main text, the eigenvalues λj are monotonically increasing with j and for bounded kernel the spectral
density goes to zero with higher frequencies. If we truncate the sum to the first m terms, the approximate covariance
becomes

k(x,x′) ≈
m∑
j=1

S(
√

λj)ϕj(x)ϕj(x
′). (42)
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In one dimension For one dimension within a closed interval Ω = [−L,L] ⊂ R where L is some positive real number,
the solution to the Laplacian eigenvalue problem in Equation (34) is independent of the specific choice of covariance
function and is given by

ϕj(x) =
1√
L
sin

(
πj(x+ L)

2L

)
,

λj =

(
πj

2L

)2

. (43)

for j = 1, · · · ,m where m denotes the number of basis functions.

In d dimensions In the d-dimensional case, we consider rectangular domain Ω = [−L1, L1] × · · · × [−Ld, Ld] with
Dirichlet boundary conditions. The number of eigenfunctions and eigenvalues in the approximation is equal to the number
of d-tuples, that is, possible combinations of univariate eigenfunctions over all dimensions.

Every k-th dimension has a number of univariate basis functions equal to mk with indices ranging from 1, · · · ,mk. Let
S ∈ Nm∗×d be the matrix of all these d-tuples indices with m∗ =

∏d
k=1 mk.

Each multivariate eigenfunction ϕ∗
j : Ω → R corresponds to the product of the univariate eigenfunctions whose indices

corresponds to the j-th element of the d-tuples Sj,·, and each multivariate eigenvalue λ∗
j is a d-vector with elements that are

the univariate eigenvalues whose indices corresponds to the j-th elements of the d-tuples Sj,·. Thus for x = (x1, · · · , xd) ∈
Ω and j = 1, · · · ,m∗, we have

ϕ∗
j (x) =

d∏
k=1

ϕSj,k
(xk) =

d∏
k=1

1√
Lk

sin

(
πj(Sj,k + Lk)

2Lk

)
,

λ∗
j = {λSj,k

}dk=1 =

{(
πSj,d

2L

)2
}d

k=1

(44)

for j = 1, · · · ,m∗.

The approximate covariance function is then

k(x,x′) ≈
m∑
j=1

S
(√

λ∗
j

)
ϕ∗
j (x)ϕ

∗
j (x

′) (45)

where S denotes the d-dimensional spectral density of the covariance functions with argument
√
λ∗
j that denotes the

element-wise square root of the vector λ∗
j .
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C. Supplementary Figure for the Well Log Data Set
The figures below depict the run length posterior and change point alerts for HSSPAR-CP on the Well Log data set. Figure
3 presents results obtained using unfiltered data, similar to the experiment described in Table 1 of the main text. To explore
the effects of outlier processing, Figure 4 showcases results obtained from a filtered version of the Well Log data set.

Furthermore, Figure 5 and Figure 6 display similar outcomes as Figure 3, but with a reduced measurement range of 400
to 1200 and 1600 to 2700 (time units), respectively. Consequently, Figure 3 allows for a direct comparison to Figure 2 in
Adams & MacKay (2007).

Figure 3: Results for the unfiltered Well Log data with HSSPAR-CP. Top: The vertical dashed red line represents the
boundary between train and test sets. The small red crosses represents alert locations obtained from MAP segmentation.
Bottom: The run length CDF (black) and its median (red).

Figure 4: Results for the filtered Well Log data with HSSPAR-CP. Top: The vertical dashed red line represents the boundary
between train and test sets. The small red crosses represents alert locations obtained from MAP segmentation. Bottom:
The run length CDF (black) and its median (red).
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Figure 5: Results for the unfiltered Well Log data with HSSPAR-CP, considering measurements ranging from 400 to 1200
(in time units). Top: Alert locations obtained from MAP segmentation are represented by small red crosses. The horizontal
dashed black line indicates the mean of observations between change points. Bottom: The run length CDF (black) and its
median (red).

Figure 6: Results for the unfiltered Well Log data with HSSPAR-CP, considering measurements ranging from 1600 to 2700
(in time units). Top: Alert locations obtained from MAP segmentation are represented by small red crosses. The horizontal
dashed black line indicates the mean of observations between change points. Bottom: The run length CDF (black) and its
median (red).
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