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Abstract

Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo
(MCMC) algorithm to sample from an unnormalized probability distribution. A
leapfrog integrator is commonly used to implement HMC in practice, but its per-
formance can be sensitive to the choice of mass matrix used therein. We develop
a gradient-based algorithm that allows for the adaptation of the mass matrix by
encouraging the leapfrog integrator to have high acceptance rates while also ex-
ploring all dimensions jointly. In contrast to previous work that adapt the hyper-
parameters of HMC using some form of expected squared jumping distance, the
adaptation strategy suggested here aims to increase sampling efficiency by maxi-
mizing an approximation of the proposal entropy. We illustrate that using multiple
gradients in the HMC proposal can be beneficial compared to a single gradient-
step in Metropolis-adjusted Langevin proposals. Empirical evidence suggests that
the adaptation method can outperform different versions of HMC schemes by ad-
justing the mass matrix to the geometry of the target distribution and by providing
some control on the integration time.

1 Introduction

Consider the problem of sampling from a target density π on Rd of the form π(q) ∝ e−U(q), with
a potential energy U : Rd → R being twice continuously differentiable. HMC methods [20, 46, 9]
sample from a Boltzmann-Gibbs distribution µ(q, p) ∝ e−H(q,p) on the phase-space R2d based on
the (separable) Hamiltonian function

H(q, p) = U(q) +K(p) with K(p) =
1

2
p>M−1p.

The Hamiltonian represents the total energy that is split into a potential energy term U and a ki-
netic energy K which we assume is Gaussian for some symmetric positive definite mass matrix M .
Suppose that (q(t), p(t))t∈R evolve according to the differential equations

dq(t)

dt
=
∂H(q(t), p(t))

∂p
= M−1p(t) and

dp(t)

dt
= −∂H(q(t), p(t))

∂q
= −∇U(q(t)). (1)

Let (ϕt)t>0 denote the flow of the Hamiltonian system, that is for fixed t, ϕt maps each (q, p)
to the solution of (1) that takes value (q, p) at time t = 0. The exact HMC flow ϕ preserves
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volume and conserves the total energyi.e. H � ' t = H . Consequently, the Boltzmann-Gibbs
distribution � is invariant under the Hamiltonian �ow, that is� (' t (E )) = � (E ) for any Borel
set E � R2d. Furthermore, the �ow satis�es the generalizedreversibility condition F � ' t =
' � t � F with the �ip operatorF (q; p) = ( q;� p). Put differently, the Hamiltonian dynamics go
backward in time by negating the velocity. If an analytical expression for the exact �ow were
available, one could sample from� using the invariant Markov chain that at state(q; p) �rst draws
a new velocityp0 � N (0; M ) with the next state set to' T (q; p0) for someintegration timeT > 0.
Such a velocity refreshment is necessary as the HMC dynamics preserve the energy and so cannot
be ergodic. However, the Hamiltonian �ow cannot be computed exactly, except for very special
potential functions. Numerical approximations to the exact solution of Hamiltonian's equations are
thus routinely used, most commonly theleapfrogmethod, also known as (velocity) Verlet integrator
[28, 10]. For a step sizeh > 0 andL steps, such an algorithm updates the previous stateq0 and a
new velocityp0 � N (0; M ) by setting, for0 6 ` 6 L � 1,

p` + 1
2

= p` �
h
2

r U(q̀ ); q̀ +1 = q̀ + hM � 1p` + 1
2
; p` +1 = p` + 1

2
�

h
2

r U(q̀ +1 ): (2)

This scheme can be motivated by splitting the Hamiltonian wherein the kick mappings in the �rst
and third step update only the momentum, while the drift mapping in the second step advances only
the positionq with constant speed. ForT = Lh , the leapfrog integrator approximates' T (q0; p0)
by (qL ; pL ) while also preserving some geometric properties of' , namely volume preservation and
generalized reversibility. The leapfrog method is a second-order integrator, making anO(h2) energy
errorH (qL ; pL ) � H (q0; p0). A � -invariant Markov chain can be constructed using a Metropolis-
Hastings acceptance step. More concretely, the proposed state(qL ; pL ) is accepted with the ac-
ceptance ratea(q0; p0) = min f 1; exp [� (H (qL ; pL ) � H (q0; p0))]g, while the next state is set
to F (q0; p0) in case of rejection, although the velocity �ip is inconsequential for full refreshment
strategies.

We want to explore here further the generalised speed measure introduced in [54] for adapting RWM
or MALA that aim to achieve fast convergence by constructing proposals that (i) have a high average
log-acceptance rate and (ii) have a high entropy. Whereas the entropy of the proposal in RWM or
MALA algorithms can be evaluated ef�ciently, the multi-step nature of the HMC trajectories makes
this computation less tractable. The recent work in [41] consider the same adaptation objective by
learning a normalising �ow that is inspired by a leapfrog proposal with a more tractable entropy by
masking components in a leapfrog-style update via an af�ne coupling layer as used for RealNVPs
[19]. [60] sets the integration time by maximizing the proposal entropy for the exact HMC �ow in
Gaussian targets, while choosing the mass matrix to be the inverse of the sample covariance matrix.

2 Related work

The choice of the hyperparametersh; L andM can have a large impact on the ef�ciency of the
sampler. For �xedL andM , a popular approach for adaptingh is to target an acceptance rate of
around0:65which is optimal for iid Gaussian targets in the limitd ! 1 [8] for a given integration
time. HMC hyperparameters have been tuned using some form ofexpected squared jumping dis-
tance(ESJD) [49], using for instance Bayesian optimization [56] or a gradient-based approach [40].
A popular approach suggested in [32] tunesL based on the ESJD by doublingL until the path makes
a U-turn and retraces back towards the starting point, that is by stopping to increaseL when the dis-
tance to the proposed state reaches a stationary point [4]; see also [57] for a variation and [48] for a
version using sequential proposals. Modern probabilistic programming languages such as Stan [12],
PyMC3 [51], Turing [23, 58] or TFP [39] furthermore allow for an adaptation of a diagonal or dense
mass-matrix within NUTS based on the sample covariance matrix. The Riemann manifold HMC
algorithm from [25] has been suggested that uses a position dependent mass matrixM (x) based on
a non-separable Hamiltonian, but can be computationally expensive, requiringO(d3) operations in
general. An alternative to chooseM or more generally the kinetic energyK was proposed in [43]
by analysing the behaviour ofx 7! r K (r U(x)) . Different pre-conditioning approaches have been
compared for Gaussian targets in [38]. A popular route has also been to �rst transform the target
using tools from variational inference as in [31] and then run a HMC sampler with unit mass matrix
on the transformed density with a more favourable geometry.

2



A common setting to study the convergence of HMC assumes a log-concave target. In the case that
U is m1-strongly convex andm2-smooth, [45, 15] analyse the ideal HMC algorithm with unit mass
matrix where a higher condition number� = m2=m1 implies slower mixing: The relaxation time,
i.e. the inverse of the spectral gap, grows linear in� , assuming the integration time is set toT =

1
2

p
m 2

. [14] establish non-asymptotic upper bounds on the mixing time using a leap-frog integrator
where the step sizeh and the numberL of steps depends explicitly onm1 andm2. Convergence
guarantees are established using conductance pro�les by obtaining (i) a high probability lower bound
on the acceptance rate and (ii) an overlap bound, that is a lower bound on the KL-divergence between
the HMC proposal densities at the starting positionsq0 andq0

0, wheneverq0 is close toq0
0. While

such bounds for controlling the mixing time might share some similarity with the generalised speed
measure, they do not lend themselves easily to a gradient-based adaptation.

3 Entropy-based adaptation scheme

We derive a novel method to approximate the entropy of the proposed position afterL leapfrog
steps. Our approximation is based on the assumption that the Hessian of the target is locally constant
around the mid-point of the HMC trajectory. This allows for a fast stochastic trace estimator of the
marginal proposal entropy. We then develop a penalised loss function that can be minimized using
stochastic gradient descent while sampling from the Markov chain in order to optimize a generalised
speed measure.

3.1 Marginal proposal entropy

Suppose thatCC> = M � 1, whereC is de�ned by some parameters� and can be a diagonal
matrix, a full Cholesky factor, etc. Without loss of generality, the step sizeh > 0 can be �xed. We
can reparameterize the momentum resampling stepp0 � N (0; M ) by samplingv � N (0; I) and
settingp0 = C �> v. One can show by induction that theL-th step positionqL and momentumpL
of the leapfrog integrator can be represented as a function ofv via

qL = TL (v) = q0 �
Lh 2

2
M � 1r U(q0) + LhCv � h2M � 1� L (v); (3)

and

pL = WL (v) = C �> v �
h
2

[r U(q0) + r U � T L (v)] � h
L � 1X

i =1

r U � T i (v) (4)

where

� L (v) =
L � 1X

i =1

(L � i )r U � T i (v); (5)

see also [42, 21, 14] for the special case with an identity mass matrix. Observe that forL = 1
leap-frog steps, this reduces to a MALA proposal with preconditioning matrixM � 1.

Under regularity conditions, see for instance [21], the transformationTL : Rd ! Rd is a C1-
diffeomorphism. With� denoting the standard Gaussian density, the densityr L of the HMC proposal
for the positionqL afterL leapfrog steps is the pushforward density of� via the mapTL so that1

log r L (TL (v)) = log � (v) � log j det DTL (v)j: (6)

Observe that the density depends on the Jacobian of the transformationTL : v 7! qL . We would like
to avoid computinglog j det DTL (v)j exactly. De�ne the residual transformation

SL : Rd ! Rd; v 7!
1

Lh
C � 1TL (v) � v: (7)

ThenDTL (v) = LhC (I + DSL (v)) and consequently

log j det DTL (v)j = d log(Lh ) + log j det Cj + log j det(I + DSL (v)) j: (8)

Combining (6) and (8) yields the log-probability of the HMC proposal

log r L (TL (v)) = log � (v) � d log(Lh ) � log j det Cj � log j det(I + DSL (v)) j: (9)

1We denote the Jacobian matrix of a functionf : Rd ! Rd at the pointx asDf (x).
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Comparing the equations (3) and (7), one sees thatSL (v) = c � h
L C> � L (v) for some constant

c 2 Rd that depends on� but is independent ofv and consequently,DSL (v) = � h
L C> D� L (v). We

next show a recursive expression forDSL with a proof given in Appendix B.
Lemma 1(Jacobian representation). It holds thatDS1 = 0 and for anỳ 2 f 2; : : : ; Lg, v 2 Rd,

DS` (v) = � h2
` � 1X

i =1

(` � i )
i
`
C> r 2U (Ti (v)) C (I + DSi (v)) : (10)

In particular,DS` (v) is a symmetric matrix. Suppose further thatL 2h2 < supq2 Rd
1

4kC > r 2 U (q)C k 2
.

Then for anỳ 2 f 1; : : : ; Lg andv 2 Rd, we havekDS` (v)k2 < 1
8 :

Notice that the recursive formula (10) requires computing1
2 L(L � 1) terms, each involving the Hes-

sian, in order to compute the Jacobian afterL leapfrog steps. Consider for the moment a Gaussian
target with potential functionU(q) = 1

2 (q � q?)> � � 1(q � q?) for q? 2 Rd and positive de�nite
� 2 Rd� d. Then, due to (10), for anyq 2 Rd, v 2 Rd,

DSL (v) = � h2
L � 1X

i =1

(L � i )
i
L

C> � � 1C(I + DSi (v)) = DL + RL (v);

where

DL = � h2C> � � 1C

 
L � 1X

i =1

(L � i )
i
L

!

= � h2 L 2 � 1
6

C> � � 1C (11)

and a remainder termRL (v) = � h2C> � � 1C
� P L � 1

i =1 (L � i ) i
L DSi (v)

�
. From Lemma 1, we see

that if



 C> � � 1C






2 6 1
4h2 L 2 , thenI + DSL (v) and� DSL (v) are positive de�nite. ThenRL is

also positive de�nite andlog det(I + DL ) 6 log j det(I + DSL (v)) j and we can maximize the lower
bound instead. Put differently, for Gaussian targets,DSL can be decomposed into a component
DL that contains all terms that are linear inh2C> � � 1C and that does not require a recursion; plus
a componentRL that contains terms that are higher than linear inh2C> � � 1C and that needs to
be solved recursively. Our suggestion is to ignore this second term. Notice thatR2 = 0 and an

extension can be to include higher order termsO
� �

h2C> � � 1C
� k

�
, k > 1, in the approximation

DL .

For an arbitrary potential energyU, equation (10) shows that evaluatingDSL leads to a non-linear
function of the Hessians evaluated along the different points of the leapfrog-trajectory. We suggest
to replace it with a �rst order term with one Hessian evaluation which is however scaled accordingly.
Concretely, we maximize

L (� ) = log j det(I + DL )j with DL = � h2 L 2 � 1
6

C> r 2U(qbL= 2c)C (12)

as an approximation oflog j det(I + DSL )j. The intuition is that we assume that the target density
can be approximated locally by a Gaussian one with precision matrix� � 1 in (11) given by the Hes-
sian ofU at the mid-pointqbL= 2c of the trajectory. We want to optimizeL (� ) given in (12) even
if we do not have access to the Hessianr 2U explicitly, but only through Hessian-vector products
r 2U(q)w for some vectorw 2 Rd. Vector-Jacobian productsvjp (f; x; w ) = w> Df (x) for dif-
ferentiablef : Rd ! Rd can be computed ef�ciently via reverse-mode automatic differentiation, so
thatr 2U(q)w = vjp (r U; q; w)> can be evaluated with complexity linear ind.

Suppose the multiplication withDL is a contraction so that all eigenvalues ofDL have abso-
lute values smaller than one. Then one can apply a Hutchinson stochastic trace estimator of
log j det(I d + D ;L )j with a Taylor approximation, truncated and re-weighted using a Russian-roulette
estimator [44], see also [29, 5, 13] for similar approaches in different settings. More concretely, let
N be a positive random variable with support onN and letpk = P(N > k). Then,

L (� ) = log det(I + DL ) = EN;"

"
NX

k=1

(� 1)k+1

kpk
"> (DL )k "

#

; (13)
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where" is drawn from a Rademacher distribution. While this yields an unbiased estimator forL (� )
and its gradient as shown in Appendix A.1 ifDL is contractive, it can be computationally expensive
if N has a large mean or have a high variance ifDL has an eigenvalue that is close to1 or � 1, see
[44, 17]. Since both the �rst order Gaussian approximation as well as the Russian Roulette estimator
hinges onDL having small absolute eigenvalues, we consider a constrained optimisation approach
that penalises such large eigenvalues. For the random variableN that determines the truncation level
in the Taylor series, we computebN = ( DL )N "=




 (DL )N "






2 and� N = b>
N DL bN . Note that this

corresponds to applyingN times the power iteration algorithm and withj� 1j > j� 2j > : : : > j� d j
denoting the eigenvalues of the symmetric matrixDL , almost surely� n ! � 1 for n ! 1 , see
[26]. For some� 2 (0; 1), we choose some differentiable monotone increasing penalty function
h : R ! R such thath(x) > 0 for x > � andh(x) = 0 for x 6 � and we add the term
h (j� N j) for

 > 0 to the loss function that we introduce below, see Appendix A.2 for an example ofh.

3.2 Adaptation with a generalised speed measure

Extending the objective from [54] to adapt the HMC proposal, we aim to solve

arg min
�

Z Z
� (q0)� (v)

h
� loga ((q0; v); (TL (v); WL (v))) + � log r L (TL (v))

i
dvdq0; (14)

whereTL , WL , r L as well as the acceptance ratea depend onq0 and the parameters� we want to
adapt. Also, the hyper-parameter� > 0 can be adapted online by increasing� if the acceptance rate
is above a target acceptance rate� ? and decreasing� otherwise. We choose� ? = 0 :67, which is
optimal for increasingd under independence assumptions [8]. One part of the objective constitutes
minimizing the energy error�( q0; v) = H (TL (v); WL (v)) � H (q0; C �> v) that determines the
log-acceptance rate vialoga(q0; C �> v) = min f 0; � �( q0; v)g. Unbiased gradients of the energy
error can be obtained without stopping any gradient calculations in the backward pass. However,
we found that a multi-step extension of the biased fast MALA approximation from [54] tends to
improve the adaptation by stopping gradients throughr U as shown in Appendix A.3.

Suppose that the current state of the Markov chain isq. We resample the momentumv � N (0; I)
and aim to solve (14) by taking gradients of the penalised loss function

� minf 0; � �( q; v)g � � (d logh + log j det Cj + L (� ) � 
h (j� N j)) ;

as illustrated in Algorithm 1, which also shows how we update the hyperparameters� and
 . The
adaptation scheme in Algorithm 1 requires to choose learning rates� � , � � , � 
 and can be viewed
within a stochastic approximation framework of controlled Markov chains, see for instance [2, 1, 3].
Different conditions have been established so that in�nite adaptive schemes still converge to the
correct invariant distribution, such as diminishing adaptation and containment [50]. We have used
Adam [37] with a constant step size to adapt the mass matrix, but have stopped the adaptation after
some �xed steps so that any convergence is preserved and we leave an investigation of convergence
properties of an in�nite adaptive scheme for future work.

4 Numerical experiments

This section illustrates the mixing performance of the entropy-based sampler for a variety of target
densities. First, we consider Gaussian targets either in high dimensions or with a high condition
number. Our results con�rm (i) that HMC scales better than MALA for high-dimensional Gaussian
targets and (ii) that the adaptation scheme learns a mass matrix that is adjusted to the geometry of the
target. This is in contrast to adaptation schemes trying to optimize the ESJD [49] or variants thereof
[40] that can lead to good mixing in a few components only. Next, we apply the novel adaptation
scheme to Bayesian logistic regression models and �nd that it often outperforms NUTS, except in a
few data sets where some components might mix less ef�ciently. We also compare the entropy-based
adaptation with Riemann-Manifold based samplers for a Log-Gaussian Cox point process models.
We �nd that both schemes mix similarly, which indicates that the gradient-based adaptation scheme
can learn a suitable mass matrix without having access to the expected Fisher information matrix.
Then, we consider a high-dimensional stochastic volatility model where the entropy-based scheme
performs favourably compared to alternatives and illustrate that ef�cient sparsity assumptions can be
accommodated when learning the mass matrix. Finally, we show in a toy example how the suggested
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Algorithm 1 Sample the next stateq0 and adapt� , 
 and� .

1: Sample velocityv � N (0; I) and setp = C �> v.
2: Apply integratorLF to obtain(q̀ ; p` ; r U(q̀ ))06 ` 6 L = LF(q; p).
3: Stop gradientsr U(q̀ ) = stop grad(r U(q̀ )) for 0 6 ` 6 L .
4: Compute� L (v) using (5).
5: Compute�( q0; v) using (16) and seta = min f 1; e� �( q0 ;v ) g.
6: Compute�� N ; y = RADEMACHER() .
7: SetL (� ) = stop grad(y)> DL " .

8: SetbN = stop grad
�

�� N

k �� N k2
2

�
and� N = b>

N DL bN .

9: E(� ) = � minf 0; � �( q0; v)g � � (d logh + log j det Cj + L (� ) � 
h (j� N j)) :
10: Adapt�  � � � � r � E(� ):
11: Adapt�  � � [� (1 + � � (a � � ?)]. #� � projects onto a compact set; default value[10� 2; 102].
12: Adapt
  � 
 [
 + � 
 h(j� N j)]. #� 
 projects onto a compact set; default value[103; 105].
13: Sampleu � U (0; 1) and setq0 = 1f u6 ag qL + 1f u>a g q.

14: function DL (w):
15: #DL (w) = DL w computes Hessian-vector products ef�ciently
16: z = vjp (r U;stop grad(qbL= 2c); Cw)>

17: return � h2 L 2 � 1
6 C> z

18: end function

19: function RADEMACHER:
20: Sample Rademacher random variable" and truncation levelN .
21: Initialisey  � 0 and�� 0 = ".
22: for k = 1 :::N do
23: #Apply a spectral normalisation for stability ifDL is not a contraction;� 0 2 (0; 1).

24: Set�� k = DL �� k � 1 � min f 1; � 0k�� k � 1k2 =kDL �� k � 1k2g andy  y + ( � 1) k

pk
�� k .

25: end for
26: return �� N ; y
27: end function

approach might be modi�ed to sample from highly non-convex potentials. Our implementation2

builds up on tensor�ow probability [39] with some target densities taken from [53]. We used10
parallel chains throughout our experiments to adapt the mass matrix.

4.1 Gaussian targets

Anisotropic Gaussian distributions. We consider sampling from a multivariate Gaussian distri-
butionN (0; �) with strictly convex potentialU(q) = 1

2 q> � � 1q for different covariance matrices
� . Forc > 0, assume a covariance matrix given by� ij = � ij exp (c(i � 1)=(d � 1) log 10). We set
(i) c = 3 andd 2 f 103; 104g and (ii) c = 6 andd = 100, as considered in [52]. The eigenvalues
of the covariance matrix are thus distributed between1 to 100 in setting (i), while they vary from
1 and106 in setting (ii). The preconditioning factorC is assumed to be diagonal. We adapt the
sampler for4 � 104 steps in case (i) and for105 steps in case (ii). We compared it with a NUTS
implementation in tensor�ow probability (TFP) [39] with a default maximum tree depth of10 and
step sizes adapted using dual averaging [32, 47] that we denote by N in the �gures below. Addition-
ally, we consider a further adaptation of NUTS by adapting a diagonal mass matrix using an online
variance estimate of the accepted samples as implemented in TFP and denoted AN subsequently.
We also consider two objectives as a replacement of the generalised speed measure (GSM): (a) the
ESJD and (b) a weighted combination of the ESJD and its inverse as suggested in Levy et al. [40],
without any burn-in component, which we denote L2HMC, see Appendix D for a precise de�nition.
We compute the minimum and mean effective sample size (minESS and meanESS) of all functions
q 7! qi over i 2 f 1; : : : ; dg as shown in Figure 1a-1b ford = 103 in case (i) with leapfrog steps
ranging fromL = 1 to 10. It can be observed that HMC adapted with the GSM objective performs

2https://github.com/marcelah/entropy_adaptive_hmc
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well in terms of minESS/sec forL > 1, whereas the ESJD or L2HMC objectives yield poor mixing
as measured in terms of the minESS/sec. The meanESS/sec statistics are more similar for the differ-
ent objectives. These observations provide some empirical evidence that the ESJD can be high even
when some components mix poorly, which has been a major motivation for the GSM objective in
[54]. The mass matrix learned using the GSM adapts to the target covariance as can be seen from the
the condition numbers ofC> � � 1C in Figure 1c becoming relatively close to1. The GSM objective
also yields acceptance rates approaching1 for increasing leap-frog steps and multiplication with
DL becomes a contraction as shown in Appendix F.1, Figure 7. Results ford = 104 can be found
in Figure 8 in Appendix F.1 which indicate that as the dimension increases, using more leap-frog
steps becomes more advantageous. For the case (ii) of a very ill-conditioned target, results in Table
1 show that the GSM objective leads to better minESS/sec values, while further statistics shown in
Figure 9 illustrate that the GSM also yields to higher minESS/sec values compared to NUTS with
an adapted mass matrix. We want to emphasize that for �xedL , high acceptance rates for HMC
need not be disadvantageous. This is illustrated in Figure 11 in Appendix F.4 for a Gaussian target
N (0; I) in dimensiond = 10, where tuning just the step-size to achieve a target acceptance rate can
lead to slow mixing for someL, because the proposal can make a U-turn.

(a) (b) (c)

Figure 1: Minimum (1a) and mean (1b) effective sample size ofq 7! qi per second after adaptation
for an anisotropic Gaussian target (d = 1000). The condition number of the transformed Hessian
C> � � 1C are shown in (1c).

Correlated Gaussian distribution. We sample from a51-dimensional Gaussian target with co-
variance matrix given by the squared exponential kernel plus small white noise as in [54], with
k(x i ; x j ) = exp

�
� 1

2 (x i � x j )2=0:42
�

+ :01� ij on the regular grid[0; 4]. We consider a general
Cholesky factorC. The adaptation is performed over105 steps. Results over10 runs are shown in
Figure 10 in Appendix F.3 and summarized in Table 2.

Table 1: MinESS/sec for gradient-
based adaptation schemes targeting an
ill-conditioned Gaussian density (d = 100).

Steps GSM ESJD L2HMC

1 122.3 (15.5) 0.1 (0.01) 0.1 (0.01)
5 753.8 (22.2) 0.1 (0.02) 0.1 (0.02)
10 570.0 (37.4) 0.6 (395.2) 0.1 (0.05)

Table 2: MinESS/sec for gradient-based
adaptation schemes targeting a correlated
Gaussian density (d = 51).

Steps GSM ESJD L2HMC

1 63.8 (3.9) 0.8 (1.6) 0.3 (0.1)
5 390.0 (5.0) 2.0 (5.4) 2.7 (2.3)
10 282.7 (7.8) 0.9 (3.7) 0.4 (0.9)

4.2 Logistic regression

Consider a Bayesian logistic regression model withn data pointsyi 2 f 0; 1g andd-dimensional
covariatesx i 2 Rd for i 2 f 1; : : : ; ng. Assuming a Gaussian prior with covariance matrix� 0 im-

plies a potential functionU(q) =
P n

i =1

h
� yi x>

i q + log
�

1 + ex >
i q

�i
+ 1

2 q> � � 1
0 q: We considered

six datasets (Australian Credit, Heart, Pima Indian, Ripley, German Credit and Caravan) that are
commonly used for benchmarking inference methods, cf. [16]. The state dimension ranges from
d = 3 to d = 87. We choose� 0 = I and parameterizeC via a Cholesky matrix. We adapt over
104 steps. HMC with a moderate number of leap-frog steps tends to perform better for four out of
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six data sets, with subpar performance for the Australian and Caravan data in terms of minESS/sec,
albeit with higher mean ESS/sec across dimensions. The adaptive HMC algorithm tends to perform
well if DL is contractive during iterations of the Markov chain such as for the German Credit data
set as shown in Figure 2, where the eigenvalues ofDL are estimated using a power iteration. If this
is not the case as for the Caravan data in Figure 3, the adapted HMC algorithm can perform worse
than MALA or NUTS. More detailed diagnostics for all data sets can be found in Appendix G.

(a) (b) (c)

Figure 2: Minimum (2a) and mean (2b) effective sample size for a Bayesian logistic regression
model for German credit data set (d = 25) after adaptation. Estimates of the eigenvalues ofDL 2c.

(a) (b) (c)

Figure 3: Minimum (3a) and mean (3b) effective sample size for a Bayesian logistic regression
model for caravan data set (d = 87) after adaptation. Estimates of the eigenvalues ofDL 3c.

4.3 Log-Gaussian Cox Point Process

Inference in a log-Gaussian Cox process model is an ideal setting for Riemann-Manifold
(RM) MALA and HMC [25], as a constant metric tensor is used therein that does not de-
pend on the position, making the complexity no longer cubic but only quadratic in the di-
mensiond of the target. Consider an area on[0; 1]2 discretized into grid locations(i; j ), for
i; j = 1 ; : : : ; n: The observationsyij are Poisson distributed and conditionally independent
given a latent intensity processf � gij with means� ij = m exp(x ij ) for m = n� 2 and a la-
tent vectorx drawn from a Gaussian process with constant mean� and covariance function
� ( i;j ) ;( i 0;j 0) = � 2

x expf�
p

(i � i 0)2 + ( j � j 0)2=(n� )g. The target density is proportional to
p(y; x) /

Q n � n
i;j exp [yij x ij � m exp(x ij )] exp

�
� (x � � 1)> � � 1(x � � 1)=2

�
. For the RM based

samplers, the preconditioning matrix isM = � + � � 1 where� is a diagonal matrix with diagonal
elementsf m exp(� + � ii )gi and step sizes adapted using dual averaging. We generate simulated
data ford 2 f 64; 256g and adapt for2000steps using a Cholesky factorC. Figure 18 in Appendix
H illustrates that the entropy-based adaptation can achieve a higher minESS/sec score ford = 64
with high acceptance rates for increasing leap-frog steps. The RM samplers perform slightly better
in terms of minESS/sec ford = 256, see Figure 4 and Figure 19 for a comparison of the inverse
mass matrices.

4.4 Stochastic volatility model

We consider a stochastic volatility model [36, 34] that has been used with minor variations for
adapting HMC [25, 32, 57]. Assume that the latent log-volatilities follow an autoregressive AR(1)
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(a) (b) (c)

Figure 4: Minimum (4a) and mean (4b) effective sample size for a Cox process in dimensiond =
256after adaptation. Estimates of the eigenvalues ofDL using power iteration in (4c).

process so thath1 � N (0; � 2=(1 � � 2)) and for t 2 f 1; : : : ; T � 1g, ht +1 = �h t + � t +1 with
� t � N (0; � 2). The observations follow the dynamicsyt jht � N (0; exp(� + ht )) . The prior
distributions for the static parameters are: the persistence of the log-volatility process(� + 1) =2 �
Beta(20; 1:5); the mean log-volatility� � Cauchy(0; 2); and the scale of the white-noise process
� � Half-Cauchy(0; 1). We reparametrize� and� with a sigmoid- and softplus-transformation,
respectively. Observe that the precision matrix of the AR(1) process is tridiagonal. Since a Cholesky
factor of such a matrix is tridiagonal, we consider the parameterizationC = B � 1

� for an upper-
triangular and tridiagonal matrixB � . The required operations with such banded matrices have a
complexity of O(d), see for instance [22]. For comparison, we also consider a diagonal matrix
C. We apply the model to ten years of daily returns of the S&P500 index, giving rise to a target
dimension ofd = 2519. In order to account for the different number of gradient evaluations, we
use3:5 � 104=L steps for the adaptation and for evaluating the sampler based onL 2 f 1; : : : ; 10g
leapfrog steps. We run NUTS for1000steps which has a four times higher run-time compared to
the other samplers. In addition to using effective sample size to assess convergence, we also report
the potential scale reduction factor split-R̂ [24, 55] where large values are indicative of poor mixing.
We report results over three replications in Figure 5 with more details in Figure 20, Appendix I.
First, HMC with moderately largeL tends to improve the effective samples per computation time
compared to the MALA case, while also having a smallerR̂. Second, using a tridiagonal mass
matrix improves mixing compared to a diagonal one, particularly for the latent log-volatilities as
seen in the median ESS/sec or medianR̂ values. The largest absolute eigenvalue ofDL tends to be
smaller for a tridiagonal mass matrix and the acceptance rates are approaching100%more slowly
for increasingL . Third, NUTS seems less ef�cient as does using a dual-adaptation scheme.

We imagine that similar ef�cient parameterizations ofM or M � 1 can be used for different generali-
sations of the above stochastic volatility model, such as includingp sub-diagonals for log-volatilities
having a higher-order AR(p) dynamics or multivariate extensions using a suitable block structure.
Likewise, this approach might also be useful for inferences in different Gaussian Markov Random
Field models with sparse precision matrices.

(a) (b) (c)

Figure 5: Minimum (5a) and median (5b) effective sample size per second and maximumR̂ of
q 7! qi for a stochastic volatility model (d = 2519) after adaptation.
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4.5 Learning non-linear transformations

To illustrate an extension to sample from highly non-convex targets by learning a non-linear trans-
formation within the suggested framework as explained in greater detail in Appendix C, we con-
sider sampling from a two-dimensional Banana distribution that results from the transformation
of N (0; �) where � is a diagonal matrix having entries100 and 1 via the volume-preserving
map � b(x) = ( x1; x2 + b(x2

1 � 100)), for b = 0 :1, cf. [27]. We consider a RealNVP-
type [19] transformationf = f 3 � f 2 � f 1 where f 1(x1; x2) = ( x1; x2 � g(s(x1)) + t (x1),
f 2(x1; x2) = ( x1 � g(s(x2)) + t (x1); x2) andf 3(x1; x2) = ( c1x1; c2x2). The functionss andt
are neural networks with two hidden layers of size50. For numerical stability, we found it bene�cial
to use a modi�ed af�ne scaling functiong as a sigmoid function scaled on a restricted range such as
(0:5; 2), as also suggested in [6]. As an alternative, we also consider learning a linear transforma-
tion f (x) = Cx for a Cholesky matrixC as well as NUTS and a standard HMC sampler with step
size adapted to achieve a target acceptance rate of0:65. Figure 6 summarizes the ESS where each
method uses4 � 105 samples before and after the adaptation. Whereas a linear transformation does
not improve on standard HMC, non-linear transformations can improve the mixing ef�ciency.

(a) (b) (c)

Figure 6: Minimum (6a) and mean (6b) effective sample size per second as well as minimum effec-
tive sample size (6c) for a Banana-shaped target in dimensiond = 2 after adaptation.

5 Discussion and Outlook

Limitations. Our approach to learn a constant mass matrix can struggle for targets where the Hes-
sian varies greatly across the state space, which can yield relatively short integration times with very
high acceptance rates. While this effect might be mitigated by considering non-linear transforma-
tions, it remains challenging to learn �exible transformations ef�ciently in high dimensions.

Variations of the entropy objective. Recent work [18, 11] have suggested to add the cross-
entropy term

R
� (q)

R
r (q0jq) log � (q0)dq0dq to the entropy objective for optimizing the parameters

of a Metropolis-Hastings kernel with proposal densityr (q0jq). Algorithm 1 can be adjusted to such
variations, possibly by stopping gradients throughr U as for optimizing the energy error term.

Variations of HMC. We have considered a standard HMC setting for a �xed number of leap-frog
steps. One could consider a mixture of HMC kernels with different numbers of leap-frog steps and
an interesting question would be how to learn the different mass matrices jointly in an ef�cient way.

Instead of a full velocity refreshment, partial refreshment strategies [33] can sometimes mix better.
The suggested adaptation approach can yield very high acceptance rates particularly for increasing
leap-frog steps and the learned mass matrix can be used with a partial refreshment. However, it
would be interesting to analyse if the adaptation can be adjusted to such persistent velocity updates.
It would also be of interest to analyse if similar ideas can be used to adapt different numerical
integrators such as those suggested in [7] for target densities relative to a Gaussian measure or for
multinomial HMC with an additional intra-trajectory sampling step [9, 59].

Our focus was on learning a mass matrix so that samples from the Markov chain can be used for
estimators that are consistent for increasing iterations. However, unbiased estimators might also be
constructed using coupled HMC chains [30] and one might ask if the adapted mass matrix leads to
shorter meeting times in such a setting.
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[7] Alexandros Beskos, Frank J Pinski, Jesús Maria Sanz-Serna, and Andrew M Stuart. Hybrid
Monte Carlo on Hilbert spaces.Stochastic Processes and their Applications, 121(10):2201–
2230, 2011.

[8] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, and Andrew Stu-
art. Optimal tuning of the hybrid Monte Carlo algorithm.Bernoulli, 19(5A):1501–1534, 2013.

[9] Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo.arXiv preprint
arXiv:1701.02434, 2017.
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Appendices

A Gradient terms for the adaptation scheme

A.1 Gradients for the entropy approximation

Following the arguments in [13], we can compute the gradient of the term in (13) using
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which yields a stochastic gradient via a Russian-roulette estimator.

Additionally, to avoid gradients with in�nite means even ifDL is not contractive, we consider a
spectral normalisation, so that instead of computing recursively� 0 = " and � k = DL � k � 1 for
k 2 f 1; : : : ; N g, we set�� 0 = " and

�� k = DL �� k � 1 � min f 1; � 0k�� k � 1k2 =kDL �� k � 1k2g (15)

for k 2 f 1; : : : ; N g and� 0 2 (0; 1), such as� 0 = 0 :99in all our experiments. We obtain an estimator
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A.2 Gradients for the penalty function

We used the following penalty function

h(x) = ( x � � )21f x 2 [�;� 2 )g + (( � 2 � � )2 + ( � 2 � � )2(x � � 2))1f x > � 2 g

throughout our experiments with� 2 f 0:75; 0:95g, and� 2 = 1 + � . The motivation was to have
a quadratic increase for the penalty term if the largest absolute eigenvalue approaches1, and then
smoothly switch to a linear function for values larger than� 2. Gradients for this function can be
computed routinely using automatic differentiation.

A.3 Gradients for the energy error

We can write the energy error as

�( q0; v) = U(TL (v)) � U(q0) + K (WL (v)) � K (C �> v)

= U
�

q0 + LhCv � h2CC> � L (v) � L
h2

2
CC> r U(q0)
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� U(q0)

+
1
2
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2

�
1
2

kvk2 : (16)

Recall from (5) that� L (v) is a weighted sum of potential energy gradients along the leap-frog
trajectory. For computing gradients of the energy-error for the fast approximation, we therefore stop
the gradient for allr U(q̀ ) for any` 2 f 1; : : : ; Lg.

B Proof of Lemma 1

Proof. We generalise the arguments from [14], Lemma 7. Proceeding by induction overn, we have
for the casen = 1 , for anyv 2 Rd, thatDT1(v) = hC andS1(v) = 1

h C � 1q0 � h
2 C> r U(q0) with

derivative of zero. For the casen = 2 , using (3) and (5), one obtains

DT2(v) � 2hC � h3CC> r 2U(T1(v))C (17)
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and moreover

DS2(v) = �
h2

2
C> r 2U(T1(v))C (18)

which establishes (10). Clearly,kDS2(v)k2 < 1
8 if 22h2 < 1

4kC > r 2 U (T1 (v)) C k2
.

Further, for anyn < L , again from (3) and (5),

DTn +1 (v) = ( n + 1) hC � h2CC> D� n +1 (v)
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which shows the representation (10) for the casen + 1 by recalling that

DTn +1 (v) = ( n + 1) hC(I + DSn +1 (v)) :

Assume now thatkDS` (v)k2 < 1=8 holds for all` 6 n. Then for anyv 2 Rd
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where the second inequality follows from(n + 1 � i )i 6 ( n +1 � i + i
2 )2 6 L 2

4 , whereas the third
inequality follows from the induction hypothesis and the assumptionL 2h2 < supq

1
4kC > r 2 U (q)C k2

.

C Extension to learn non-linear transformations

The suggested approach can perform poorly for non-convex potentials or even convex potentials
such as arsing in a logistic regression model for some data sets. We illustrate here how to learn
a reasonable proposal for a general potential function by considering some version of position-
dependent preconditioning. Consider an invertible differentiable transformationf : Rd ! Rd. The
idea now is to run HMC with unit mass matrix for the transformed variablesz = f � 1(q) where
q � � . Write ~� for the density ofz and let ~U be the corresponding potential energy function which
is given by

~U(z) = U(H (z)) � log j det Df (z)j
with gradient

r ~U(z) = Df (z)> r U(f (z)) � r log j det Df (z)j:

The transformationf as well as~U generally depend on some parameters� that we again omit for a
less convoluted notation. Our approach can be seen as an alternative for instance to [31] where such
a transformation is �rst learned by trying to approximate~� with a standard Gaussian density using
variational inference, while the HMC hyperparameters are adapted in a second step using Bayesian
optimisation.

We write ~TL : v 7! zL for the transformation that maps the initial velocityv = p0 � N (0; I) to the
L-th leapfrog stepzL , starting atz0 based on the potential function~U with unit mass matrixM = I .
Analogously, we de�ne the mapping~WL : v 7! pL and similarly to (7), we de�ne

~SL (v) =
1

Lh
~TL (v) � v:
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We can then reparametrize the proposal at the pointq0 = f (z0) by v 7! f ( ~TL (v)) . Consequently,
the log-density of the proposal is given by

logr L (f ( ~TL (v))) = log � (v) � log j det Df ( ~TL (v)) j � log j det D ~TL (v)j;

and we can write

log j det D ~TL (v)j = d logLh + log j det(I + D ~SL (v)) j:

We use the same approximation

D ~SL (v) � � h2 L 2 � 1
6

r 2 ~U(zbL= 2c)

based on the transformed Hessian now.

Hessian-vector products can similarly be computed using vector-Jacobian products: Withg(z) =
grad( ~U;z), we then computer 2 ~U(z)w = vjp (g; z; w)> for z = f � 1(stop grad(f (zbL= 2c)) .
The motivation for stopping the gradients comes from considering the special casef : z 7! Cz that
corresponds to the position-independent preconditioning scheme above. For such a linear transfor-
mation,

~U(z) = C> r 2U(Cz)C:

To recover the previous case, we stop gradients atqbL= 2c = f (zbL= 2c) = CzbL= 2c.

Gradients for the log-accept ratio can be computed based on the log-accept ratio of the transformed
chain [35]. The energy error of the transformed chain is

� � (q0; v) = U� ( ~TL (v)) � U� (f � 1(q0)) + K ( ~WL (v)) � K (v)

= U
n

f
h
f � 1(q0) + Lhv � h2 ~� L (v)

� L
h2

2

�
Df (f � 1(q0))> r U(q0) � r log j det Df (f � 1(q0))

� io

+ log j det Df (zL )j � U(q) + log j det Df (f � 1(q)) j

+
1
2

�
�
�
�
�

�
�
�
�
�
v �

h
2

�
Df (z0)> r U(f (z0)) � r log j det Df (z0) + Df (zL )> r U(f (zL ))

� r log j det Df (zL )j
�

� h
L � 1X

` =1

Df (z` )> r U(f (z` )) � r log j det Df (z` )j

�
�
�
�
�

�
�
�
�
�

2

�
1
2

kvk2 ;

where

~� L (v) =
LX

i =1

(L � i )
�
Df (zi )> r U(f (zi )) � r log j det Df (zi )

�

andz0; : : : ; zL is the leap-frog trajectory starting atz0 = f � 1(q0). We also stop allU gradients,
i.e. r U(f (z` ))  stop grad(r U(f (z` )) . It can be seen that this recovers the above setting if
f : z 7! Cz.

17



D Gradient-based adaptation using the expected squared jumping distance
and variations

We consider the different loss functions

FGSM(� ) = �
Z Z

� (q0)� (v)
h

logaf (q0; v); (TL (v); WL (v))g � � log r L (TL (v))
i
dvdq0

(19)

FESJD(� ) = �
Z Z

� (q0)� (v)
h
af (q0; v); (TL (v); WL (v))g kq0 � T L (v)k2

i
dvdq0 (20)

FL2HMC(� ) = �
Z Z

� (q0)� (v)
haf (q0; v); (TL (v); WL (v))g kq0 � T L (v)k2

�
(21)

�
�

af (q0; v); (TL (v); WL (v))g kq0 � T L (v)k2

i
dvdq0:

The L2HMC objective (21) has been suggested in Levy et al. [40] for learning generalisations of
HMC, although we ignore a burn-in term that has been included originally. In our implementation,
we adapt� > 0online as a moving average of the expected squared jumping distance. The objectives
(20) and (21) can be optimized using stochastic gradient descent similar to Algorithm 1 without the
approximations as required for the GSM objective (19).

E Proof of the HMC proposal reparameterizations

For completeness, we provide a proof of the reparameterization (3) and (4) of theL-th step position
qL and momentumpL using the velocityv that relates to the initial momentump0 � N (0; M )
via p0 = C �> v. Such representations with an identity mass matrix have been used previously in
[42, 21, 14].

Proof. We proceed by induction over` 2 f 1; : : : ; Lg. For the casè = 1 , the recursions in (2)
imply

q1 = q0 + hCC>
�
p0 �

h
2

r U(q0)
�

= q0 + hCv �
h
2

CC> r U(q0)

and

p1 =
�
p0 �

h
2

r U(q0)
�

�
h
2

r U(q1) = C �> v �
h
2

[r U(q0) + r U(q1)] :

Suppose now that the representations hold for1 6 ` < L . Then, using the recursions in (2),

q̀ +1 = q̀ + hCC>
�
p` �

h
2

r U(q̀ )
�

= q0 �
�

`h2

2
CC> +

h
2

CC>
�

r U(q0) +
�
`hC + hCC> C �> �

v � h2CC> r U(q̀ )

� h2CC>
` � 1X

i =1

r U(qi ) � h2CC> � ` (v)

= q0 �
�
(` + 1)

h2

2
CC>

�
r U(q0) + ( ` + 1) hCv � h2CC>

X̀

i =1

r (` + 1 � i )r U(qi ):

This establishes the representation forqL . The induction step for the momentum is a straightforward
application of (2) to the induction hypothesis.
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F Gaussian targets experiments

F.1 High-dimensional Gaussian targets

(a) (b) (c)

(d) (e) (f)

Figure 7: Anisotropic Gaussian target (d = 1000). Minimum (7a), mean (7b) and median (7c)
effective sample size ofq 7! qi per second. Average acceptance rates in 7d and estimates of the
eigenvalues ofDL in 7e. Condition number of transformed HessianC> � � 1C in 7f.

(a) (b) (c)

(d) (e) (f)

Figure 8: Independent Gaussian target (d = 10000). Minimum (8a), mean (8b) and median (8c)
effective sample size ofq 7! qi per second. Average acceptance rates in 8d and estimates of the
eigenvalues ofDL in 8e. Condition number of transformed HessianC> � � 1C in 8f.
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F.2 Ill-conditioned anisotropic Gaussian target

(a) (b) (c)

(d) (e) (f)

Figure 9: Ill-conditioned Gaussian target (d = 100). Minimum (9a), mean (9b) and median (9c)
effective sample size ofq 7! qi per second. Average acceptance rates in 9d and estimates of the
eigenvalues ofDL using power iteration in 9e. Condition number of transformed HessianC> � � 1C
in 9f. Values computed after adaptation.

F.3 Correlated Gaussian target

(a) (b) (c)

(d) (e) (f)

Figure 10: Correlated Gaussian target(d = 51). Minimum (10a), mean (10b) and median (10c)
effective sample size ofq 7! qi per second. Average acceptance rates in 10d and estimates of
the eigenvalues ofDL using power iteration in 10e. Condition number of transformed Hessian
C> � � 1C in 10f. Values computed after adaptation.
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