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Abstract

Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo
(MCMC) algorithm to sample from an unnormalized probability distribution. A
leapfrog integrator is commonly used to implement HMC in practice, but its per-
formance can be sensitive to the choice of mass matrix used therein. We develop
a gradient-based algorithm that allows for the adaptation of the mass matrix by
encouraging the leapfrog integrator to have high acceptance rates while also ex-
ploring all dimensions jointly. In contrast to previous work that adapt the hyper-
parameters of HMC using some form of expected squared jumping distance, the
adaptation strategy suggested here aims to increase sampling efficiency by maxi-
mizing an approximation of the proposal entropy. We illustrate that using multiple
gradients in the HMC proposal can be beneficial compared to a single gradient-
step in Metropolis-adjusted Langevin proposals. Empirical evidence suggests that
the adaptation method can outperform different versions of HMC schemes by ad-
justing the mass matrix to the geometry of the target distribution and by providing
some control on the integration time.

1 Introduction

Consider the problem of sampling from a target density 7 on R? of the form 7(g) oc e~U(®), with
a potential energy U : R? — R being twice continuously differentiable. HMC methods [20, 46, 9]
sample from a Boltzmann-Gibbs distribution (g, p) oc e (4P on the phase-space R?¢ based on
the (separable) Hamiltonian function

Hg,p) = Ul@)+ K(p) with K(p)= 39" M 'p,

The Hamiltonian represents the total energy that is split into a potential energy term U and a ki-

netic energy K which we assume is Gaussian for some symmetric positive definite mass matrix M.
Suppose that (¢(t), p(t)):er evolve according to the differential equations

dq(t) _ 0H(q(t),p(t)) 1 dp(t) _ _9H(q(t), p(t))

= =M t d = - =-VU(q(1)). 1

dt dp p(t) an dt dq (q(t)) (D

Let (¢¢)t>0 denote the flow of the Hamiltonian system, that is for fixed ¢, ¢; maps each (g, p)

to the solution of (1) that takes value (¢, p) at time ¢ = 0. The exact HMC flow ¢ preserves
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volume and conserves the total eneigy H + = H. Consequently, the Boltzmann-Gibbs
distribution is invariant under the Hamiltonian ow, that is(" ((E)) = (E) for any Borel

setE R2d. Furthermore, the ow satis es the generalizegversibility conditonF ' =

"+ F with the ip operatorF (q;p = (q; p). Put differently, the Hamiltonian dynamics go
backward in time by negating the velocity. If an analytical expression for the exact ow were
available, one could sample fromusing the invariant Markov chain that at stétgp) rst draws

a new velocity)® N (0; M) with the next state set tor (q; ) for someintegration timeT > 0.

Such a velocity refreshment is necessary as the HMC dynamics preserve the energy and so cannot
be ergodic. However, the Hamiltonian ow cannot be computed exactly, except for very special
potential functions. Numerical approximations to the exact solution of Hamiltonian's equations are
thus routinely used, most commonly tleapfrogmethod, also known as (velocity) Verlet integrator
[28, 10]. For a step size > 0 andL steps, such an algorithm updates the previous sgaéad a

new velocityp, N (0; M) by setting,for06 6 L 1,

h
Pey P EPey M U@a) ()

h

Pig=p S U@);, g+ =a+hM
This scheme can be motivated by splitting the Hamiltonian wherein the kick mappings in the rst
and third step update only the momentum, while the drift mapping in the second step advances only
the positiong with constant speed. Far = Lh, the leapfrog integrator approximates (Go; Po)
by (a_; pL) while also preserving some geometric propertie's afiamely volume preservation and
generalized reversibility. The leapfrog method is a second-order integrator, makingnanenergy
errorH(q ;p.) H(mp;po). A -invariant Markov chain can be constructed using a Metropolis-
Hastings acceptance step. More concretely, the proposed(gtaia ) is accepted with the ac-
ceptance rat@(go;po) = minflexp][ (H(a;p.) H(o;po))lg, while the next state is set
to F (qo; po) in case of rejection, although the velocity ip is inconsequential for full refreshment
strategies.

We want to explore here further the generalised speed measure introduced in [54] for adapting RWM
or MALA that aim to achieve fast convergence by constructing proposals that (i) have a high average
log-acceptance rate and (i) have a high entropy. Whereas the entropy of the proposal in RWM or
MALA algorithms can be evaluated ef ciently, the multi-step nature of the HMC trajectories makes
this computation less tractable. The recent work in [41] consider the same adaptation objective by
learning a normalising ow that is inspired by a leapfrog proposal with a more tractable entropy by
masking components in a leapfrog-style update via an af ne coupling layer as used for RealNVPs
[19]. [60] sets the integration time by maximizing the proposal entropy for the exact HMC ow in
Gaussian targets, while choosing the mass matrix to be the inverse of the sample covariance matrix.

2 Related work

The choice of the hyperparametdrsL andM can have a large impact on the ef ciency of the
sampler. For xedL andM, a popular approach for adaptihgis to target an acceptance rate of
around0:65 which is optimal for iid Gaussian targets in the lirdit 1 [8] for a given integration

time. HMC hyperparameters have been tuned using some foerpaficted squared jumping dis-
tance(ESJD) [49], using for instance Bayesian optimization [56] or a gradient-based approach [40].
A popular approach suggested in [32] tuhelsased on the ESJD by doublibguntil the path makes

a U-turn and retraces back towards the starting point, that is by stopping to intredssn the dis-

tance to the proposed state reaches a stationary point [4]; see also [57] for a variation and [48] for a
version using sequential proposals. Modern probabilistic programming languages such as Stan [12],
PyMC3 [51], Turing [23, 58] or TFP [39] furthermore allow for an adaptation of a diagonal or dense
mass-matrix within NUTS based on the sample covariance matrix. The Riemann manifold HMC
algorithm from [25] has been suggested that uses a position dependent masdhfarixased on

a non-separable Hamiltonian, but can be computationally expensive, reqififiy operations in
general. An alternative to chood& or more generally the kinetic enerdfy was proposed in [43]

by analysing the behaviour &f 7! r K (r U(x)). Different pre-conditioning approaches have been
compared for Gaussian targets in [38]. A popular route has also been to rst transform the target
using tools from variational inference as in [31] and then run a HMC sampler with unit mass matrix
on the transformed density with a more favourable geometry.



A common setting to study the convergence of HMC assumes a log-concave target. In the case that
U is my-strongly convex anth,-smooth, [45, 15] analyse the ideal HMC algorithm with unit mass
matrix where a higher condition number= m,=m; implies slower mixing: The relaxation time,

i.e. the inverse of the spectral gap, grows linear jrassuming the integration time is setfo=

?alm—fz. [14] establish non-asymptotic upper bounds on the mixing time using a leap-frog integrator
where the step size and the numbek of steps depends explicitly am; andm,. Convergence
guarantees are established using conductance pro les by obtaining (i) a high probability lower bound
on the acceptance rate and (ii) an overlap bound, that is a lower bound on the KL-divergence between
the HMC proposal densities at the starting positigneindgg, whenevery, is close tog. While

such bounds for controlling the mixing time might share some similarity with the generalised speed
measure, they do not lend themselves easily to a gradient-based adaptation.

3 Entropy-based adaptation scheme

We derive a novel method to approximate the entropy of the proposed positiori aftapfrog

steps. Our approximation is based on the assumption that the Hessian of the target is locally constant
around the mid-point of the HMC trajectory. This allows for a fast stochastic trace estimator of the
marginal proposal entropy. We then develop a penalised loss function that can be minimized using
stochastic gradient descent while sampling from the Markov chain in order to optimize a generalised
speed measure.

3.1 Marginal proposal entropy

Suppose tha€CC> = M !, whereC is de ned by some parametersand can be a diagonal
matrix, a full Cholesky factor, etc. Without loss of generality, the steplsize0 can be xed. We
can reparameterize the momentum resampling ggepN (0; M) by samplingv N (0O; 1) and
settingpg = C~ v. One can show by induction that theth step positiort. and momentunp,
of the leapfrog integrator can be represented as a functigrviaf

a=TL(v)= %M 'r U(g) + LhCv  h®M 1 [ (v); 3)
and
h X1
pL=W,(v)=C~ v E[r U@)+rU Tce(v)] h ruU Tiv) (4)
i=1
where
9( 1
c(v)= (L Dru Ti(v), (5)

i=1
see also [42, 21, 14] for the special case with an identity mass matrix. Observe that=fak
leap-frog steps, this reduces to a MALA proposal with preconditioning matrix.

Under regularity conditions, see for instance [21], the transformafjonR? ! RY is a C-

diffeomorphism. With denoting the standard Gaussian density, the densitf the HMC proposal

for the positiong afterL leapfrog steps is the pushforward density ofia the mapr, so that
logr, (TL(v)) =log (v) logjdetDTy (v)j: (6)

Observe that the density depends on the Jacobian of the transformatiens! q_. We would like
to avoid computindogj det DT, (v)j exactly. De ne the residual transformation

S ;R RE VT %c (v v 7
ThenDT,_ (v) = LhC (I+ DS. (v)) and consequently
logjdetDT, (v)j = dlog(Lh) + log jdetCj + log j det(l + DS, (Vv))j: (8)
Combining (6) and (8) yields the log-probability of the HMC proposal
logr. (TL(v))=log (v) dlog(Lh) logjdetCj logjdet(l+ DS, (V))j: 9)

We denote the Jacobian matrix of a functionR? | RY at the pointx asDf (x).



Comparing the equations (3) and (7), one sees$hév) = ¢ §C> L (v) for some constant

¢ 2 RY that depends onbut is independent of and consequentlpS, (v) = %C> D L(v). We
next show a recursive expression %, with a proof given in Appendix B.

X 1
DS (v)= h?
i=1

¢ i)LC>r 2U (Ti(v)) C (1+ DSi(v)) : (10)

1

In particular, DS: (v) is a symmetric matrix. Suppose further th&h? < SUPy2RY 2KC> T 2U(g)CK 5"

Notice that the recursive formula (10) requires compuﬁh@L 1) terms, each involving the Hes-
sian, in order to compute the Jacobian aftdeapfrog steps. Consider for the moment a Gaussian
target with potential functiotJ(q) = %(q ®)” g ) for g 2 RY and positive de nite
2 RY 4, Then, due to (10), forang2 RY, v 2 RY,
1 .
DS, ()= h?" (L ){C> 'CU+DS(v)= DL+ RL(V);
i=1
where

|
X 1 i
D.= h?C> IC (L i)E = h
i=1

,L2 1

> 1 11
6C C (11)

P .
and aremainder terR (v) = h?C> 1C ~ ,*(L i){DSi(v) . From Lemma 1, we see

thatif C> C , 6 z7z, thenl+ DS, (v) and DS (v) are positive de nite. TherR, is
also positive de nite andog det(l+ D) 6 logjdet(l+ DS, (v))j and we can maximize the lower
bound instead. Put differently, for Gaussian targBtS; can be decomposed into a component
D, that contains all terms that are lineatifC>  1C and that does not require a recursion; plus
a componenR| that contains terms that are higher than lineahi€> 'C and that needs to
be solved recursively. Our suggestion is to ignore this second term. NoticRthat0 and an

extension can be to include higher order teins h2C>  1C * |k > 1, in the approximation
D..

For an arbitrary potential enerdy, equation (10) shows that evaluatibg, leads to a non-linear
function of the Hessians evaluated along the different points of the leapfrog-trajectory. We suggest
to replace it with a rst order term with one Hessian evaluation which is however scaled accordingly.
Concretely, we maximize

2
L( )=logjdet(l+ D.)j with D = hz% C”r 2U(GyL=2c)C (12)

as an approximation dbgjdet(l+ DS, )j. The intuition is that we assume that the target density
can be approximated locally by a Gaussian one with precision matrixn (11) given by the Hes-
sian ofU at the mid-pointy, - 5. of the trajectory. We want to optimize( ) given in (12) even

if we do not have access to the HessiaflU explicitly, but only through Hessian-vector products

r 2U(g)w for some vectow 2 RY. Vector-Jacobian productgp (f;x;w ) = w” Df (x) for dif-
ferentiablef : R 1 RY can be computed ef ciently via reverse-mode automatic differentiation, so
thatr 2U(q)w = vjp (r U;q;w)> can be evaluated with complexity lineardn

Suppose the multiplication witlD| is a contraction so that all eigenvalues @f have abso-

lute values smaller than one. Then one can apply a Hutchinson stochastic trace estimator of
logj det(l4 + D .. )j with a Taylor approximation, truncated and re-weighted using a Russian-roulette
estimator [44], see also [29, 5, 13] for similar approaches in different settings. More concretely, let
N be a positive random variable with support®rand letp, = P(N > k). T#pen,

X‘I 1)k+1 K
L( )=logdet(l+ D_ )= Ey~ —"" (D))" ; (13)
e P



where" is drawn from a Rademacher distribution. While this yields an unbiased estimatof fpr
and its gradient as shown in Appendix A.IDf is contractive, it can be computationally expensive
if N has a large mean or have a high variandg if has an eigenvalue that is closeltor 1, see
[44, 17]. Since both the rst order Gaussian approximation as well as the Russian Roulette estimator
hinges oD having small absolute eigenvalues, we consider a constrained optimisation approach
that penalises such large eigenvalues. For the random vaNathiat determines the truncation level
in the Taylor series, we compubg = (D )V"= (D.)N" ,and y = & Dby Note that this
corresponds to applyiny times the power iteration algorithm and withyj > j 2j > 11> | ¢j
denoting the eigenvalues of the symmetric mabix, almost surely ,, ! forn! 1 | see
[26]. For some 2 (0;1), we choose some differentiable monotone increasing penalty function
h: R! Rsuchthat(x) > Oforx> andh(x) =0 forx 6 andwe add the ternh (j nj) for

> 0to the loss function that we introduce below, see Appendix A.2 for an example of

3.2 Adaptation with a generalised speed measure

Extending the objective from [54] to adapt the HMC proposal, we aim to solve
Z Z h i

arg min (o) (v)  loga((qo;Vv);(TL (v); WL (V) + logr (T (v)) dvdoy; (14)

whereT_, W, r_ as well as the acceptance ratéepend oy and the parameterswe want to

adapt. Also, the hyper-parameter 0 can be adapted online by increasing the acceptance rate

is above a target acceptance rateand decreasing otherwise. We choose, = 0:67, which is
optimal for increasingl under independence assumptions [8]. One part of the objective constitutes
minimizing the energy errofl go;Vv) = H (T (v);W_(V)) H(mp;C> v) that determines the
log-acceptance rate vlaga(g;C> v) = minf0; ( o;Vv)g. Unbiased gradients of the energy
error can be obtained without stopping any gradient calculations in the backward pass. However,
we found that a multi-step extension of the biased fast MALA approximation from [54] tends to
improve the adaptation by stopping gradients throudh as shown in Appendix A.3.

Suppose that the current state of the Markov champ /e resample the momentwn N (O; 1)
and aim to solve (14) by taking gradients of the penalised loss function

minfO; ( q;v)g  (dlogh+logjdetCj+ L() h( nj);

as illustrated in Algorithm 1, which also shows how we update the hyperparameters . The
adaptation scheme in Algorithm 1 requires to choose learning rates,  and can be viewed

within a stochastic approximation framework of controlled Markov chains, see for instance [2, 1, 3].
Different conditions have been established so that in nite adaptive schemes still converge to the
correct invariant distribution, such as diminishing adaptation and containment [50]. We have used
Adam [37] with a constant step size to adapt the mass matrix, but have stopped the adaptation after
some xed steps so that any convergence is preserved and we leave an investigation of convergence
properties of an in nite adaptive scheme for future work.

4 Numerical experiments

This section illustrates the mixing performance of the entropy-based sampler for a variety of target
densities. First, we consider Gaussian targets either in high dimensions or with a high condition
number. Our results con rm (i) that HMC scales better than MALA for high-dimensional Gaussian
targets and (ii) that the adaptation scheme learns a mass matrix that is adjusted to the geometry of the
target. This is in contrast to adaptation schemes trying to optimize the ESJD [49] or variants thereof
[40] that can lead to good mixing in a few components only. Next, we apply the novel adaptation
scheme to Bayesian logistic regression models and nd that it often outperforms NUTS, except in a
few data sets where some components might mix less ef ciently. We also compare the entropy-based
adaptation with Riemann-Manifold based samplers for a Log-Gaussian Cox point process models.
We nd that both schemes mix similarly, which indicates that the gradient-based adaptation scheme
can learn a suitable mass matrix without having access to the expected Fisher information matrix.
Then, we consider a high-dimensional stochastic volatility model where the entropy-based scheme
performs favourably compared to alternatives and illustrate that ef cient sparsity assumptions can be
accommodated when learning the mass matrix. Finally, we show in a toy example how the suggested



Algorithm 1 Sample the next statf and adapt, and .

1: Sample velocitw N (0;1) andsep= C~ v.

2: Apply integratorLFto obtain(q;p;r U(q))os s = LKQ;P.
3: Stop gradients U(g) = stop _grad(r U(g)) for06 "6 L.
4: Compute | (v) using (5).

5: Compute ( p;V) using (16) and set = minf1;e ( %V)g,

6: Compute y ;Y = RADEMACHER().

7: SetL( ) = stop _grad(y)>D_".

8

: Sethy = stop grad —~ and y = XD by

K K2
9:E()= minfO; ( q;Vv)g (dlogh+logjdetCj+ L() h( nj):
10: Adapt r E():
11: Adapt [ A+ (a »)].# projectsontoacompactset; default vajiie 2;107].
12: Adapt [ + h( nj)].# projects onto a compact set; default vajue?; 10°].

13: Sampleu U (0;1) and set’= ltygaqd + lfysa O

14: function D (w):

15: #D (w) = D w computes Hessian-vector products ef ciently
16: z = vjp (r U;stop _grad(qy =2c); Cw)~

17  return hz% C>z

18: end function

19: function RADEMACHER:
20: Sample Rademacher random variabknd truncation level .

21: Initialisey 0Oand ¢ = ".

22: fork =1::N do

23: #Apply a spectral normalisation for stabilitylif, is not a contraction;2 (0; 1).
24: Set y = DL x 1 minfl % 1k, =kDp « 1k,gandy y+ (p—i)k K
25: end for

26: return n;y
27: end function

approach might be modi ed to sample from highly non-convex potentials. Our implemeritation
builds up on tensor ow probability [39] with some target densities taken from [53]. We i6ed
parallel chains throughout our experiments to adapt the mass matrix.

4.1 Gaussian targets

Anisotropic Gaussian distributions. We consider sampling from a multivariate Gaussian distri-
butionN (0; ) with strictly convex potential(q) = %q> 1q for different covariance matrices

. Forc > 0, assume a covariance matrix given by = j exp(c(i 1)=(d 1)log 10). We set
() c =3 andd 2 f 10°; 10*g and (ii) c = 6 andd = 100, as considered in [52]. The eigenvalues
of the covariance matrix are thus distributed betw&ea 100in setting (i), while they vary from
1 and 1P in setting (ii). The preconditioning factd® is assumed to be diagonal. We adapt the
sampler ford4  10* steps in case (i) and fdi®® steps in case (ii). We compared it with a NUTS
implementation in tensor ow probability (TFP) [39] with a default maximum tree depthCxdind
step sizes adapted using dual averaging [32, 47] that we denote by N in the gures below. Addition-
ally, we consider a further adaptation of NUTS by adapting a diagonal mass matrix using an online
variance estimate of the accepted samples as implemented in TFP and denoted AN subsequently.
We also consider two objectives as a replacement of the generalised speed measure (GSM): (a) the
ESJD and (b) a weighted combination of the ESJD and its inverse as suggested in Levy et al. [40],
without any burn-in component, which we denote L2ZHMC, see Appendix D for a precise de nition.
We compute the minimum and mean effective sample size (minESS and meanESS) of all functions

ranging fromL = 1 to 10. It can be observed that HMC adapted with the GSM objective performs

2https://github.com/marcelah/entropy_adaptive_hmc



well in terms of minESS/sec fdr > 1, whereas the ESJD or L2HMC objectives yield poor mixing

as measured in terms of the minESS/sec. The meanESS/sec statistics are more similar for the differ-
ent objectives. These observations provide some empirical evidence that the ESJD can be high even
when some components mix poorly, which has been a major motivation for the GSM objective in
[54]. The mass matrix learned using the GSM adapts to the target covariance as can be seen from the
the condition numbers &>  C in Figure 1c becoming relatively close 1o The GSM objective

also yields acceptance rates approacHirfgr increasing leap-frog steps and multiplication with

D. becomes a contraction as shown in Appendix F.1, Figure 7. Resullsfdt0* can be found

in Figure 8 in Appendix F.1 which indicate that as the dimension increases, using more leap-frog
steps becomes more advantageous. For the case (ii) of a very ill-conditioned target, results in Table
1 show that the GSM objective leads to better minESS/sec values, while further statistics shown in
Figure 9 illustrate that the GSM also yields to higher minESS/sec values compared to NUTS with
an adapted mass matrix. We want to emphasize that for IxeHigh acceptance rates for HMC

need not be disadvantageous. This is illustrated in Figure 11 in Appendix F.4 for a Gaussian target
N (0; 1) in dimensiond = 10, where tuning just the step-size to achieve a target acceptance rate can
lead to slow mixing for some, because the proposal can make a U-turn.

(@ (b) (©)

Figure 1: Minimum (1a) and mean (1b) effective sample sizg of ¢ per second after adaptation
for an anisotropic Gaussian target£ 1000). The condition number of the transformed Hessian
C> 1C are shownin (1c).

Correlated Gaussian distribution. We sample from &1-dimensional Gaussian target with co-
variance matrix given by the squared exponential kernel plus small white noise as in [54], with
k(xi;x;) =exp %(xi X;)2=0:42 + :01j on the regular grid0; 4]. We consider a general
Cholesky factolC. The adaptation is performed ove®® steps. Results ovdiO runs are shown in
Figure 10 in Appendix F.3 and summarized in Table 2.

Table 1: MIinESS/sec for gradient- Table 2: MinESS/sec for gradient-based
based adaptation schemes targeting an adaptation schemes targeting a correlated
ill-conditioned Gaussian densitg & 100). Gaussian densityd(= 51).

Steps GSM ESJD L2HMC Steps GSM ESJD L2HMC

1 122.3(15.5) 0.1(0.01) 0.1(0.01) 1 63.8(3.9) 0.8(1.6) 0.3(0.1)

5 753.8(22.2) 0.1(0.02) 0.1(0.02) 5 390.0(5.0)0 2.0(5.4) 2.7(2.3)

10  570.0(37.4) 0.6(395.2) 0.1(0.05) 10  282.7(7.8) 0.9(3.7) 0.4(0.9)

4.2 Logistic regression
Consider a Bayesian logistic regression model witHata pointsy; 2 f 0; 1g and d-dimensional
plies a potential functiok(q) = = [,  yix7q+log 1+ e+ %q> 0 -q: We considered

six datasets (Australian Credit, Heart, Pima Indian, Ripley, German Credit and Caravan) that are
commonly used for benchmarking inference methods, cf. [16]. The state dimension ranges from
d =3 tod = 87. We choose o = | and parameteriz€ via a Cholesky matrix. We adapt over

10* steps. HMC with a moderate number of leap-frog steps tends to perform better for four out of



six data sets, with subpar performance for the Australian and Caravan data in terms of minESS/sec,
albeit with higher mean ESS/sec across dimensions. The adaptive HMC algorithm tends to perform
well if D is contractive during iterations of the Markov chain such as for the German Credit data
set as shown in Figure 2, where the eigenvalud3 ofare estimated using a power iteration. If this

is not the case as for the Caravan data in Figure 3, the adapted HMC algorithm can perform worse
than MALA or NUTS. More detailed diagnostics for all data sets can be found in Appendix G.

(@) (b) ©

Figure 2: Minimum (2a) and mean (2b) effective sample size for a Bayesian logistic regression
model for German credit data set£ 25) after adaptation. Estimates of the eigenvalueB pf2c.

(@) (b) (©

Figure 3: Minimum (3a) and mean (3b) effective sample size for a Bayesian logistic regression
model for caravan data set € 87) after adaptation. Estimates of the eigenvalueb pf3c.

4.3 Log-Gaussian Cox Point Process

Inference in a log-Gaussian Cox process model is an ideal setting for Riemann-Manifold
(RM) MALA and HMC [25], as a constant metric tensor is used therein that does not de-
pend on the position, making the complexity no longer cubic but only quadratic in the di-
mensiond of the target. Consider an area (B 1] discretized into grid locationgi;j ), for
i;jj = 1;:::;n: The observationg;; are Poisson distributed and conditionally independent
given a latent intensity process g; with means ; = mexp(x; ) form = n 2 and a la-
tent vectorx drawn fron’b a Gaussian process with constant meaand covariance function

(i ):(i% 0 = 2 expf (i 192+(] j92=(n )g. The target density is proportional to
ply;x) I 5 "explyy xj  mexp(xj)lexp (x  1)>  *(x  1)=2. Forthe RM based
samplers, the preconditioning matrixNé = + L where is a diagonal matrix with diagonal
elementd mexp( + j)g and step sizes adapted using dual averaging. We generate simulated
data ford 2 f 64; 2569 and adapt foR000steps using a Cholesky fact@r. Figure 18 in Appendix
H illustrates that the entropy-based adaptation can achieve a higher minESS/sec sdore6ibr
with high acceptance rates for increasing leap-frog steps. The RM samplers perform slightly better
in terms of MINESS/sec fat = 256, see Figure 4 and Figure 19 for a comparison of the inverse
mass matrices.

4.4 Stochastic volatility model

We consider a stochastic volatility model [36, 34] that has been used with minor variations for
adapting HMC [25, 32, 57]. Assume that the latent log-volatilities follow an autoregressive AR(1)



() (b) ©

Figure 4: Minimum (4a) and mean (4b) effective sample size for a Cox process in dimension
256 after adaptation. Estimates of the eigenvalued pfusing power iteration in (4c).

process sothat; N (0; 2=(1  ?))andfort 2 f1;:::;T 19, hsr = hy+ (41 with

+ N (0; 2). The observations follow the dynamiggh, N (0;exp( + hy)). The prior
distributions for the static parameters are: the persistence of the log-volatility pfoceds =2

Betg20; 1:5); the mean log-volatility Cauchy0; 2); and the scale of the white-noise process

Half-Cauchy0; 1). We reparametrize and with a sigmoid- and softplus-transformation,

respectively. Observe that the precision matrix of the AR(1) process is tridiagonal. Since a Cholesky
factor of such a matrix is tridiagonal, we consider the parameterizétien B * for an upper-
triangular and tridiagonal matri8 . The required operations with such banded matrices have a
complexity of O(d), see for instance [22]. For comparison, we also consider a diagonal matrix
C. We apply the model to ten years of daily returns of the S&P500 index, giving rise to a target
dimension ofd = 2519. In order to account for the different number of gradient evaluations, we

leapfrog steps. We run NUTS fdi000steps which has a four times higher run-time compared to

the other samplers. In addition to using effective sample size to assess convergence, we also report
the potential scale reduction factor spfitf24, 55] where large values are indicative of poor mixing.

We report results over three replications in Figure 5 with more details in Figure 20, Appendix I.
First, HMC with moderately large tends to improve the effective samples per computation time
compared to the MALA case, while also having a smalfer Second, using a tridiagonal mass
matrix improves mixing compared to a diagonal one, particularly for the latent log-volatilities as
seen in the median ESS/sec or medtmalues. The largest absolute eigenvalu®eftends to be

smaller for a tridiagonal mass matrix and the acceptance rates are approHad¥gore slowly

for increasing.. Third, NUTS seems less ef cient as does using a dual-adaptation scheme.

We imagine that similar ef cient parameterizations\éfor M ! can be used for different generali-
sations of the above stochastic volatility model, such as inclygsup-diagonals for log-volatilities
having a higher-order AR} dynamics or multivariate extensions using a suitable block structure.
Likewise, this approach might also be useful for inferences in different Gaussian Markov Random
Field models with sparse precision matrices.

(@) (b) ©)

Figure 5: Minimum (5a) and median (5b) effective sample size per second and mahafm
g 7! g for a stochastic volatility modeb(= 2519) after adaptation.



4.5 Learning non-linear transformations

To illustrate an extension to sample from highly non-convex targets by learning a non-linear trans-
formation within the suggested framework as explained in greater detail in Appendix C, we con-
sider sampling from a two-dimensional Banana distribution that results from the transformation
of N(0; ) where is a diagonal matrix having entrie00 and 1 via the volume-preserving

map p(X) = (X1;x2 + b(x{ 100)), for b = 0:1, cf. [27]. We consider a RealNVP-

type [19] transformatiof = f3 f, f; wherefi(x1;X2) = (Xg1;X2  9(s(x1)) + t(x),
fa(X1;%2) = (X1 9(s(X2)) + t(X1);X2) andfs(x1;X2) = (€1X1;C2X2). The functionss andt

are neural networks with two hidden layers of sk For numerical stability, we found it bene cial

to use a modi ed af ne scaling functiog as a sigmoid function scaled on a restricted range such as
(0:5; 2), as also suggested in [6]. As an alternative, we also consider learning a linear transforma-
tionf (x) = Cx for a Cholesky matrixC as well as NUTS and a standard HMC sampler with step
size adapted to achieve a target acceptance rdd®bf Figure 6 summarizes the ESS where each
method used 10° samples before and after the adaptation. Whereas a linear transformation does
not improve on standard HMC, non-linear transformations can improve the mixing ef ciency.

() (b) (©

Figure 6: Minimum (6a) and mean (6b) effective sample size per second as well as minimum effec-
tive sample size (6¢) for a Banana-shaped target in dimesio after adaptation.

5 Discussion and Outlook

Limitations. Our approach to learn a constant mass matrix can struggle for targets where the Hes-
sian varies greatly across the state space, which can yield relatively short integration times with very
high acceptance rates. While this effect might be mitigated by considering non-linear transforma-
tions, it remains challenging to learn exible transformations ef ciently in high dimensions.

Variations ofthe entropy objective. Recent work [18, 11] have suggested to add the cross-
entropy term  (q) r(qjg)log (g®dqg%qto the entropy objective for optimizing the parameters
of a Metropolis-Hastings kernel with proposal densifg%q). Algorithm 1 can be adjusted to such
variations, possibly by stopping gradients througll as for optimizing the energy error term.

Variations of HMC. We have considered a standard HMC setting for a xed number of leap-frog
steps. One could consider a mixture of HMC kernels with different numbers of leap-frog steps and
an interesting question would be how to learn the different mass matrices jointly in an ef cient way.

Instead of a full velocity refreshment, partial refreshment strategies [33] can sometimes mix better.
The suggested adaptation approach can yield very high acceptance rates particularly for increasing
leap-frog steps and the learned mass matrix can be used with a partial refreshment. However, it
would be interesting to analyse if the adaptation can be adjusted to such persistent velocity updates.
It would also be of interest to analyse if similar ideas can be used to adapt different numerical
integrators such as those suggested in [7] for target densities relative to a Gaussian measure or for
multinomial HMC with an additional intra-trajectory sampling step [9, 59].

Our focus was on learning a mass matrix so that samples from the Markov chain can be used for
estimators that are consistent for increasing iterations. However, unbiased estimators might also be
constructed using coupled HMC chains [30] and one might ask if the adapted mass matrix leads to
shorter meeting times in such a setting.
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Appendices

A Gradient terms for the adaptation scheme

A.1 Gradients for the entropy approximation
Following the arguments in [13], we can compute the gradient of the term in (13) using
! " #
@ R @ @, .
—L()=Tr ( D] = fDLg = En» D = fDLg" ;
i k=0 i k=0 Pk i

Xk

which yields a stochastic gradient via a Russian-roulette estimator.

Additionally, to avoid gradients with in nite means evenDX_ is not contractive, we consider a
spectral normalisation, so that instead of computing recursivgly " and « = D ¢ 1 for

k=DL k1 minfl; Ok Kk 1k2:kD|_ Kk 1k29 (15)
fork 2f1;:::;Ngand °2 (0; 1), such as®= 0:99in all our experiments. We obtain an estimator
")(*l k 4
@ ). @ "
O e T L G
1 k=0 @I

A.2 Gradients for the penalty function
We used the following penalty function
h(x)=(x Yl e+ (2 )2+( 2 D2X  2)lixs g

throughout our experiments with2 f 0:75;0:95g, and , = 1+ . The motivation was to have
a quadratic increase for the penalty term if the largest absolute eigenvalue apprbaaheéshen
smoothly switch to a linear function for values larger than Gradients for this function can be
computed routinely using automatic differentiation.

A.3 Gradients for the energy error

We can write the energy error as

((o;v)= U(TL(v)) U(mp)+ K(WL(V) K(C™ V)

2
U g+ LhCv h2CC> [(v) L%CCW U(p)  U(w)
2
1 h X1 1.
> Y% EC [r U(gp)+r U(q)] hC r U(g) Ekvk : (16)

=1

+

Recall from (5) that ( (v) is a weighted sum of potential energy gradients along the leap-frog
trajectory. For computing gradients of the energy-error for the fast approximation, we therefore stop

B Proof of Lemma 1

Proof. We generalise the arguments from [14], Lemma 7. Proceeding by inductiom owerhave
for the casen = 1, for anyv 2 RY, thatDT;(v) = hC andS;(v) = %C o %C> r U(g) with
derivative of zero. For the case= 2, using (3) and (5), one obtains

DTo(v) 2hC h3CC”>r 2U(Ty(v))C (17)
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and moreover he
DS,(v) = 7C> r 2U(Ty(v))C (18)

which establishes (10). ClearfDS(V)k, < § if 2°h* < gresrzyirwyer;
Further, for anyn < L , again from (3) and (5),
DThs1 (V)= (n+1)hC  h?CCD 4 (V)

#
X0
=(n+1)hC h?cc> (n+1 i)r 2U(Ti(v))DTi(v)
wi=1 #
X0
=(n+1)hC h?cc> (N+1 i)r 2U(Ti(v))ihC (1+ DSi(v))
isl #
X1 .
—(n+1)hC +(n+1)hC  h? %icwZU(Ti(v))C(HDsi(v)) :

i=1
which shows the representation (10) for the aasel by recalling that
DTh+1 (V) = (n+1)hC(I+ DSy (V)):
Assume now thakDS: (v)k, < 1=8 holds for all" 6 n. Then for any 2 Rd

2 X
KDSp+1 (V)k, 6 nhT1 i(n+1 i) C”r 2U(T(V)C , ki +DSi(v)k,
i=1

h?2 Lz .,

6 1 - - Cr U(Ti(v))C , ki+DSi(v)k,
h2 L2 1 1 1
— s 1+ o =
6 n+l 4 4L 2n2 8 6 8

where the second inequality follows frotn +1  i)i 6 (w)2 6 %, whereas the third
inequality follows from the induction hypothesis and the assumtfdr? < sup m.

C Extension to learn non-linear transformations

The suggested approach can perform poorly for non-convex potentials or even convex potentials
such as arsing in a logistic regression model for some data sets. We illustrate here how to learn
a reasonable proposal for a general potential function by considering some version of position-
dependent preconditioning. Consider an invertible differentiable transfornfati®{ ! RY. The
idea now is to run HMC with unit mass matrix for the transformed variables f 1(q) where
q . Write ~ for the density ofz and letO be the corresponding potential energy function which
is given by
U(z) = U(H(2)) logjdetDf (z)j

with gradient

r 0(z)= Df (2)>r U(f(2)) r logjdetDf (2)j:
The transformatiof as well adJ generally depend on some parametetisat we again omit for a
less convoluted notation. Our approach can be seen as an alternative for instance to [31] where such
a transformation is rst learned by trying to approximatevith a standard Gaussian density using
variational inference, while the HMC hyperparameters are adapted in a second step using Bayesian
optimisation.

We write T, : v 7! z_ for the transformation that maps the initial velocity pp N (0O;1) to the
L-th leapfrog step_, starting atzo based on the potential functidhwith unit mass matriM = 1.
Analogously, we de ne the mapping/_ : v 7! p_. and similarly to (7), we de ne

S (v) = %“ﬁ_ (v) w
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We can then reparametrize the proposal at the pgint f (zg) by v 7! f (T (v)). Consequently,
the log-density of the proposal is given by

logr  (f (TL(V))) =log (v) logjdetDf (T_(v))j logjdetDTL (v)j;
and we can write

logjdetDT. (v)j = dlogLh +log jdet(l+ DS (V))j:

We use the same approximation

,L2 1

DSL(v)  h*=—

r 20(ZpL=2c)

based on the transformed Hessian now.

Hessian-vector products can similarly be computed using vector-Jacobian productg(XYith
grad(U.z), we then compute 0(z2)w = vjp (g;z;w)” forz = f *(stop _grad(f (zp.=2c))-

The motivation for stopping the gradients comes from considering the specidl casé Cz that
corresponds to the position-independent preconditioning scheme above. For such a linear transfor-
mation,

U(z) = C>r 2U(Cz)C:

To recover the previous case, we stop gradientgabe = f (zpi=2¢) = CZpi=2c-

Gradients for the log-accept ratio can be computed based on the log-accept ratio of the transformed
chain [35]. The energy error of the transformed chain is

(%:V):Un(Th(V)) U )+ KWL(V) K(v)
=U f f Yg)+ Lhv h?~ (V)
h2 io
L7 Df (f Y(q))”r U(qp) r logjdetDf (f (o))
+logjdetDf (z)] U(q)+log jdetDf (f ()]
1 h

+ > % > Df (zo)”r U(f (z0)) r logjdetDf (zo)+ Df (z.)”r U(f (z.))
1 2
r logjdetDf(z.)j h Df (z)>r U(f(z)) r logjdetDf (z)j
‘=1
% kvk?;
where
X
TL(v) = (L i) Df(z)>r U(f(z)) r logjdetDf(z)
i=1
andzo;:::;z is the leap-frog trajectory starting as = f *(g). We also stop alU gradients,

i.e.r U(f (z)) stop _grad(r U(f (z)). It can be seen that this recovers the above setting if
f:z7 Cz.
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D Gradient-based adaptation using the expected squared jumping distance
and variations

We consider the di;ferzent loss functions

h i
Fosm( ) = (@) (v) logaf (qo;v); (TL(v);WL(v))g  logry (TL(v)) dvdg
S 5 ) | (19)
Fesa ) = () (v) af (6; v); (TL(v); WL (V) gkap T L (v)k® dvday (20)
zz

Naf (gp;v): (TL (v); WL (W) gkap T L (WK

Fronmc( ) = () (V) (21)
i

af (qo; v); (TL (V); W (V) gkgp T L (V)K

dvdo:

The L2HMC objective (21) has been suggested in Levy et al. [40] for learning generalisations of
HMC, although we ignore a burn-in term that has been included originally. In our implementation,
we adapt > 0online as a moving average of the expected squared jumping distance. The objectives
(20) and (21) can be optimized using stochastic gradient descent similar to Algorithm 1 without the
approximations as required for the GSM objective (19).

E Proof of the HMC proposal reparameterizations

For completeness, we provide a proof of the reparameterization (3) and (4)loftthstep position

g. and momentunp, using the velocity that relates to the initial momentupy N (O; M)

viapg = C> v. Such representations with an identity mass matrix have been used previously in
[42, 21, 14].

imply

o=+ hCC> po gr U(p) = g+ hCv gCC>r U(p)

and

Pz P DrU@)  DrU@)=C7 v D[ U@+ r U@

Suppose now that the representations hold.fér™ < L . Then, using the recursions in (2),

h
G =g +hCC” p SrU(q)

*h2 h
oy 7cc> + Ecc> r U(@)+ hC+hCC>C”> v h2CC’r U(g)

X 1
h2CC> r U(g) h2CC> -(v)
i=1
h2 X
(o) (‘+1)?CC> r U(p) + (" +1)hCv h2CC” rC+1 i)y U(g):
i=1

This establishes the representationdor The induction step for the momentum is a straightforward
application of (2) to the induction hypothesis.

O
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F Gaussian targets experiments

F.1 High-dimensional Gaussian targets

(@) (b) (©

(d) (e) 0

Figure 7: Anisotropic Gaussian target € 1000). Minimum (7a), mean (7b) and median (7¢c)
effective sample size af 7! ¢ per second. Average acceptance rates in 7d and estimates of the
eigenvalues oD in 7e. Condition number of transformed Hess@h 1C in 7f.

(@) (b) (c)

(d) (e) )

Figure 8: Independent Gaussian targets 10000). Minimum (8a), mean (8b) and median (8c)
effective sample size af 7! ¢ per second. Average acceptance rates in 8d and estimates of the
eigenvalues oD in 8e. Condition number of transformed Hess@h 1C in 8f.
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F.2 lll-conditioned anisotropic Gaussian target

@) (b) (©

(d) (e) )

Figure 9: lll-conditioned Gaussian target £ 100). Minimum (9a), mean (9b) and median (9¢)
effective sample size af 7! g per second. Average acceptance rates in 9d and estimates of the
eigenvalues oD using power iteration in 9e. Condition number of transformed Hes3tan C

in 9f. Values computed after adaptation.

F.3 Correlated Gaussian target

@ (b) (c)

(d) © ®

Figure 10: Correlated Gaussian targeét= 51). Minimum (10a), mean (10b) and median (10c)
effective sample size aff 7! g per second. Average acceptance rates in 10d and estimates of
the eigenvalues oD, using power iteration in 10e. Condition humber of transformed Hessian
C> ICin 10f. Values computed after adaptation.
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