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Abstract

Macroeconomic forecasting has recently started embracing techniques that can deal with large-
scale datasets and series with unequal release periods. MIxed-DAta Sampling (MIDAS) and Dy-
namic Factor Models (DFM) are the two main state-of-the-art approaches that allow modeling se-
ries with non-homogeneous frequencies. We introduce a new framework called the Multi-Frequency
Echo State Network (MFESN) based on a relatively novel machine learning paradigm called reser-
voir computing. Echo State Networks (ESN) are recurrent neural networks formulated as nonlinear
state-space systems with random state coefficients where only the observation map is subject to
estimation. MFESNs are considerably more efficient than DFMs and allow for incorporating many
series, as opposed to MIDAS models, which are prone to the curse of dimensionality. All methods
are compared in extensive multistep forecasting exercises targeting US GDP growth. We find that
our MFESN models achieve superior or comparable performance over MIDAS and DFMs at a much
lower computational cost.
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1 Introduction

The availability of timely and accurate forecasts of key macroeconomic variables is of crucial impor-

tance to economic policymakers, businesses, and the banking sector alike. Fundamental macroeco-

nomic figures, such as GDP growth, become available at low frequency with a considerable time lag

and are subject to various rounds of revisions after their release. This is particularly problematic in a

fast-changing and uncertain economic environment, as experienced during the Great Recession of 2007-

2008 (Hindrayanto et al. (2016)) and the recent pandemic (Buell et al. (2021), Huber et al. (2021)).

However, a large number of the potentially predictive financial market (and other macroeconomic)

indicators are available at a daily or even higher frequency (Andreou et al. (2013)). The desire to

utilize such high-frequency data for macroeconomic forecasting has led to the exploration of techniques

that can deal with large-scale datasets and series with unequal release periods (see Borio (2011, 2013),

Morley (2015); we also refer the reader to Fuleky (2020) for more details regarding high-dimensional

data and to Armesto et al. (2010) and Bańbura et al. (2013) for a review on mixed-frequency data).

We contribute to the existing literature by proposing a new macroeconomic forecasting framework

that utilizes high-dimensional and mixed-frequency input data, the Multi-Frequency Echo State Net-

work (MFESN). The MFESN originates from a machine learning paradigm called Reservoir Computing

(RC). RC is a family of learning models that take advantage of the information processing capabilities

of complex dynamical systems (see Maass et al. (2002), Legenstein and Maass (2007), Crutchfield

et al. (2010), and Lukoševičius and Jaeger (2009), Tanaka et al. (2019) for reviews). Generally speak-

ing, RC is a versatile class of recurrent neural network (RNN) models (see Salehinejad et al. (2017)

for a detailed survey). Although conventional RNNs are well-suited for handling sequence data and

dynamic problems, estimating their weights during the training phase is inherently difficult (Pascanu

et al. (2013), Doya (1992)). Reservoir networks stand out due to the fact that their inner weights can

be randomly generated and fixed, and only the output (readout) layer weights are subject to estimation

(supervised training). Echo State Network (ESN) is one of the most popular instances of RC mod-

els with provable universality, generalization properties (see Grigoryeva and Ortega (2018a,b, 2019),

Gonon et al. (2020a, 2023a), Gonon and Ortega (2021), and references therein for more details), and

excellent performance in forecasting, classification, and learning of dynamical systems (see Hart et al.

(2021), Grigoryeva et al. (2021)). While conventional RNNs have been adopted for macroeconomic

forecasting in a few instances (see, for example, Paranhos (2021)), to the best of our knowledge, we

are the first to explore easily-trainable reservoir models in this context.

Our main contribution is three-fold. First, inspired by the remarkable empirical success of ESNs

in prediction tasks, we propose the so-called Multi-Frequency Echo State Network (MFESN) frame-

work, which allows multistep forecasting of the target variable at lower or the same frequencies as

those of the input series. Second, we introduce two different approaches to predicting within the

MFESN framework, namely Single-Reservoir MFESN (S-MFESN) and Multi-Reservoir MFESN (M-

MFESN). S-MFESN is determined by modifying the ESN architecture to accommodate input and

target variables of mixed frequencies. In M-MFESN, several Echo State Networks are adopted to

handle input time series, each ESN corresponding to a group of input variables quoted at one given

frequency. Finally, our third contribution consists of an extensive empirical comparative analysis of

the forecasting capability of the proposed approaches in a concrete task of predicting the quarterly

U.S. output growth. We inspect the forecasting capabilities of the MFESN framework compared to

two well-established benchmarks widely used in the macroeconomic literature and among practitioners

and show its empirical superiority in several thoroughly conducted forecasting exercises. Moreover,

as a bi-product, we propose a new data aggregation scheme that allows bridging these two standard

forecasting approaches, which is not available in the literature.

In our empirical study, we evaluate the multistep forecasting performance of the MFESN framework

targeting quarterly U.S. output growth (Gross Domestic Product (GDP) growth) and utilizing a small-

and medium-sized set of monthly and daily financial and macroeconomic variables. We compare the
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MFESN approach against two state-of-the-art methods, MIDAS and DFM, known for their ability to

incorporate data of heterogeneous frequencies and utilize high-dimensional data inputs. The MIxed

DAta Sampling (MIDAS) model developed in Ghysels et al. (2004, 2007) has been adopted widely for

macroeconomic forecasting with mixed-frequency data (see for instance Clements and Galvão (2008,

2009), Ghysels and Wright (2009), Francis et al. (2011), Monteforte and Moretti (2012), Galvão and

Marcellino (2010), Galvão (2013), Andreou et al. (2013), Ghysels (2016), Jardet and Meunier (2022)).

However, MIDAS is prone to curse-of-dimensionality problems and performs poorly when the set of

predictors is of even moderate size (Clements and Galvão (2009), Kostrov (2021)) due to optimization-

related issues. Recently, some attempts have been made in the literature to overcome these issues

by employing variable selection techniques under some additional assumptions. For instance, Babii

et al. (2022) proposes the MIDAS projection approach, which is more amenable to high-dimensional

data environments under the assumption of sparsity. Even with these improvements, practical high-

dimensional implementations of MIDAS remain challenging. This is in part caused by the ragged edges

of the “raw” macroeconomic data, incomplete observations, and uneven sampling frequencies. The

relative inflexibility of MIDAS regression lag specifications makes integrating daily and weekly data

at true calendar frequencies (that is, without interpolation or aggregation) very complex. State-space

models effectively mitigate these issues.

A strong state-of-the-art state-space competitor for our MFESN framework is the Dynamic Factor

Model (DFM), which has been first introduced in Geweke (1977) and Sargent et al. (1977). DFMs

have become the standard workhorse for macroeconomic nowcasting and prediction (for more details,

we refer the reader to Stock and Watson (1996, 2002, 2016), Giannone et al. (2008), Bańbura and

Rünstler (2011), Chauvet et al. (2015), Hindrayanto et al. (2016)). Conventional DFMs for data

of multiple sampling frequencies are linear state-space models with a latent low-frequency process of

interest and high-dimensional input time series. Although their linear structure lends itself to inference

with likelihood-based methods and Kalman filtering, using DFMs in the high-dimensional setting is

limited by the associated computational effort. For Gaussian state-space models, some of these issues

are proposed to be handled with a more compact matrix representation as in Delle Monache and

Petrella (2019). Still, in the particular settings of nowcasting and forecasting of GDP growth, the

computational complexity is one of the main reasons why DFMs are rarely used with daily input

series, see Bańbura et al. (2013) for a detailed review and Aruoba et al. (2009) for a mixed-frequency

DFM wherein the latent factor process is updated daily, with the highest input frequency being

weekly. We address these numerical difficulties using novel Python libraries for auto-differentiation

and using GPUs for parallel computing, which allow the estimation of DFMs even in instances of

high-frequency input observations. Further, to adapt the DFM to mixed frequency tasks, we propose

a new DFM aggregation scheme with Almon polynomial structure that bridges MIDAS and the DFM

for our forecasting comparison. To our knowledge, we are the first to present this aggregation scheme

which reduces the number of parameters subject to estimation. In contrast, previous DFM such as

in Mariano and Murasawa (2003), Bańbura and Rünstler (2011), Camacho and Pérez-Quirós (2010),

Frale et al. (2011) commonly assume a fixed aggregation scheme a-priori depending on whether the

macroeconomic variable is a flow or stock variable.

To carry out a fair comparison of our MFESN framework with the state-of-the-art MIDAS and

DFM models, we designed two model evaluation settings that differ regarding whether the financial

crisis of 2007-2008 is included in the estimation period or not. In the first forecasting setting, all the

competing models are estimated using the data from January 1st, 1990, until December 31st, 2007.

Their performance in the forecasting into and after the financial crisis period is assessed. In the second

evaluation setting, fitting is done with data largely encompassing the crisis period, again from January

1st, 1990 but now up to December 31st, 2011. In both cases, the forecasting (testing) period spans

time up to the COVID-19 pandemic events, namely the fourth quarter of 2019. Along with the two

state-of-the-art DFM and MIDAS models, we use the unconditional mean of the sample as a baseline

benchmark against the reservoir models. We find that our ESN-inspired models attain comparable or
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much better performance than DFMs at a much lower computational cost, even for a relatively long

forecasting horizon of four quarters. Additionally, ESNs do not suffer from curse-of-dimensionality

problems, which are known to be pervasive for MIDAS models and hence consistently outperform

them in a number of forecasting exercises.

The remainder of the paper is structured as follows. Section 2 introduces the notation and termi-

nology used throughout the paper. Section 3 presents reservoir models and discusses their advantages,

as well as estimation, hyperparameter tuning, penalization and nonlinear multistep forecasting. In

Section 4, we introduce the Multi-Frequency Echo State Network (MFESN) framework, propose the

single-reservoir and multi-reservoir MFESN models, and spell out their defining features. Section 5

contains the empirical study of the comparative GDP forecasting performance of MFESNs with re-

spect to the set of benchmark models. We assess one-step and multistep forecasting results in several

setups, with a small and a medium-sized set of regressors. We fit models with data before and after

the 2007-08 financial crisis, and with different estimation windows. Section 6 concludes and discusses

future research avenues and applications. Finally, the Appendix contains detailed information on the

implementation of all models, robustness checks and additional figures.

Code. Our code, the data, and all results presented in the paper are made available in the GitHub

repository https://github.com/rceconmodelling/reservoir-computing-for-macroeconomic-modelling.

2 Notation and Preliminaries

This section introduces the notation used throughout the paper. It also presents what we call temporal

notation, which allows us to write multi-frequency models consistently and unambiguously, even when

an arbitrary number of sampling frequencies is considered. We also provide definitions of low- and

high-frequency forecasting schemes.

2.1 Notation

We use the symbol N (respectively, N+) to denote the set of natural numbers with the zero element

included (respectively, excluded). Z denotes the set of all integers. We use R (respectively, R+)

to denote the set of all (respectively, positive excluding zero element) reals. We abbreviate the set

[n] = {1, . . . , n}, with n ∈ N+.

Vector notation. A column vector is denoted by a bold lowercase symbol like r and r⊤ indicates

its transpose. Given a vector v ∈ Rn, we denote its entries by vi, with i ∈ {1, . . . , n}; we also write

v = (vi)i∈{1,...,n}. The symbols in,0n ∈ Rn stand for the vectors of length n consisting of ones and of

zeros, respectively. Additionally, given n ∈ N+, e
(i)
n ∈ Rn, i ∈ {1, . . . , n} denotes the canonical unit

vector of length n determined by e
(i)
n = (δij)j∈{1,...,n}. For any v ∈ Rn, ∥v∥ denotes its Euclidean

norm.

Matrix notation. We denote by Mn,m the space of real n ×m matrices with m,n ∈ N+. When

n = m, we use the symbols Mn and Dn to refer to the space of square and diagonal matrices of order n,

respectively. Given a matrix A ∈Mn,m, we denote its components by Aij and we write A = (Aij), with

i ∈ {1, . . . , n}, j ∈ {1, . . .m}. The symbol In ∈ Dn denotes the identity matrix, and the symbol On

stands for the zero matrix of dimension n. For any A ∈Mn,m, ∥A∥2 denotes its matrix norm induced

by the Euclidean norms in Rm and Rn, and ∥A∥2 = σmax(A), with σmax(A) the largest singular value

of A.
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Input and target stochastic processes. We fix a probability space (Ω,A,P) on which all random

variables are defined. The input and target signals are modeled by discrete-time stochastic processes

z = (zt)t∈Z and y = (yt)t∈Z taking values in RK and RJ , respectively. Moreover, we write z(ω) =

(zt(ω))t∈Z and y(ω) = (yt(ω))t∈Z for each outcome ω ∈ Ω to denote the realizations or sample paths

of z and y, respectively. Since z can be seen as a random sequence in RK , we write interchangeably

z : Z× Ω −→ RK and z : Ω −→ (RK)Z. The same applies to the analogous assignments involving y.

Temporal notation. Let (ut)t∈I , ut ∈ R be a (scalar) time series with I some index set (in this

paper it will always be discrete). Time series (ut)t∈I will be denoted just as (ut) when the index set

I is specified by the context. We write us1:s2 = (ut)t∈{s1,...,s2} for integers s1 < s2 and time series

(ut). To define the concept of the sampling frequency, we must introduce an additional series, call

it (vs)s∈J . The time index J is not the same as I. We assume that ut is sampled at the coarsest

rate; equivalently, it has the lowest sampling frequency, which we call in what follows the reference

frequency. In practice, this means that in the same window of time, ut will be observed at most as

frequently as vs. The case when the sampling frequency of vs is strictly higher than that of ut is of

primary interest.

We assume that all sampling happens in instants that are evenly spaced in time. Series other than

the reference one and with higher sampling frequencies are given an additional time index, the tempo

index, written t, ∗|κ , where κ is the frequency multiplier. Our tempo notation assumes that low- and

high-frequency series are sampled with temporal alignment : this means that the reference time index

t and the tempo index ∗|κ have the following properties.

Definition 2.1 A reference time index t ∈ N and a tempo index ∗|κ for a given high-frequency κ ∈ N+

are such that the following relations hold

(i) t, 0|κ ≡ t

(ii) t, κ|κ ≡ t+ 1

(iii) t, s|κ ≡ t+ ⌊s/κ⌋, (smodκ)|κ for ∀s ∈ N

(iv) t,−s|κ ≡ (t− 1)− ⌊s/κ⌋, κ− (smodκ)|κ for ∀s ∈ N,

where mod is the modulo operation and for any x ∈ R the floor operator ⌊x⌋ outputs the greatest

z ∈ N such that z ≤ x.

Since we can exchange “frequency” and “frequency multiplier” in the tempo notation, we will make

no distinction between the two terms in what follows. We now give an example to clarify the use of

the tempo notation.

Example 2.2 (Macroeconomic Mixed Frequency Data) Let (yt) be the time series of quarterly

sampled GDP growth and let (vr) be the time series of industrial production (IP) available at monthly

frequency. Notice that we use two different time indexes, t and r. We assume that both series are

observed at the end of the relevant time period: GDP is released at the end of each quarter, and IP

is released at the end of each month. Additionally, we assume that GDP is observed at the end of the

last month of the quarter which coincides with the release of monthly IP. We may then write t ≡ ⌊r/3⌋
for all t and r, since there are exactly 3 months in each quarter. In our tempo notation we proceed in

a reverse fashion and we instead anchor time to the lowest frequency index. The frequency multiplier

is κ = 3, therefore r ≡ t, s|3 with s ∈ {1, 2, 3}.
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Figure 1: Diagram of the low-/high-frequency forecasting and nowcasting schemes in tempo notation.
Arrows point to time indices of the forecast target, solid dots indicate the high-frequency time place-
holder for the constructed high-frequency forecasts.

2.2 Forecasting Schemes

To clarify the design of the forecasting experiments conducted in this paper, we present two different

types of prediction illustrated in Figure 1.

Let t denote time in the reference frequency of the target series (yt) and suppose a regressor (zr)

of frequency κ is included in the forecasting model. The notation can be readily extended to include

multiple regressors. Let h ≥ 0 be a low-frequency prediction horizon counted from the last available

observation of (yt). Let l ≥ 0 be a high-frequency horizon with respect to frequency κ.

Low-frequency forecasting. We call an h-steps ahead forecast low-frequency when predictions for

the target variable are constructed only at the end of the low-frequency periods. The information set

which is used at the time of h-steps ahead low-frequency forecasting at t is the σ-algebra defined as

Ft = σ
({
yt, yt−1, yt−2, . . . , zt,0|κ, zt,−1|κ, zt,−2|κ, . . .

})
(2.1)

and, when using the mean square error as a loss, the optimal forecast is given by

ŷt+h = E [yt+h|Ft] . (2.2)

High-frequency forecasting. In this forecasting scheme, one may also use high-frequency regres-

sors to produce additional high-frequency forecasts of the low-frequency target variable. For example,

in the case of a target released at the end of each year and having monthly quoted covariates, the

low-frequency forecasting scheme would correspond to constructing forecasts always at the end of the

last month of the year (December). At the same time, with all the information collected up to the end

of December, there are other possibilities to construct forecasts. In particular, the forecaster could

consider placing herself at the end of any other month of the year instead and construct predictions

for the monthly proxy of the yearly variable for the next hth year.

In this scheme, one often artificially reduces the information set. Although not all the available

information is exploited, this procedure has its benefits: first, it renders high-frequency forecast in-

stances; second, it allows taking into account misspecification due to a seasonal response of (yt) to

(zr). This is especially important whenever multiple time series with different sampling frequencies

are combined in one model and seasonality effects are either difficult to detect or impossible to avoid.

In the context of macroeconomic forecasting, we refer the reader to Clements and Galvão (2008, 2009),

Chen and Ghysels (2010) and Jardet and Meunier (2022) where these questions are carefully discussed.
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Let the forecaster place herself at time t: she wishes to construct a high-frequency forecast for

some t, l|κ with l ∈ N. The maximal information set available at t is Ft as in (2.1). However, if she

uses Ft then the forecast for t, l|κ coincides with the low-frequency forecast and is given by (2.2) for

any l. Notice that the forecasts can be constructed using the reduced information sets instead. Let

h = ⌈l/κ⌉, ℓ = lmodκ, and m = h− ⌊l/κ⌋, and define

Ft−m,ℓ = σ
({
yt−m, yt−1−m, . . . , zt−m,ℓ|κ, zt−m,(ℓ−1)|κ, zt−m,(ℓ−2)|κ, . . .

})
= σ

({
yt−m, yt−1−m, . . . , zt+1−m,−(κ−ℓ)|κ, zt+1−m,−(κ−ℓ)+1|κ, zt+1−m,−(κ−ℓ+2)|κ, . . .

})
.

The high-frequency forecast information sets nest the low-frequency forecasting setup since Ft−m,ℓ ≡
Ft if l = κh for h ∈ N and the forecast for the high-frequency proxy constructed for the moments t, l|κ
for the low-frequency variable is provided by the conditional expectation

ŷHt+h,ℓ|κ = E [yt+h|Ft−m,ℓ] .

It is easy to see that if the forecaster is interested in nowcasting, it can be readily obtained by taking

m = 0 and writing for all 0 < ℓ ≤ κ− 1:

ŷNt+1,ℓ|κ = E [yt+1|Ft,ℓ] .

We refer the reader to Appendix A for more details on nowcasting and multicasting settings.

3 Reservoir Models

In this section, we introduce reservoir computing models (Jaeger and Haas, 2004) for forecasting of

stochastic time series of a single frequency. We focus on a family of RC systems called Echo State

Networks (ESNs), which have been successfully applied to forecasting of deterministic dynamical

systems (Pathak et al., 2017, 2018, Wikner et al., 2021, Arcomano et al., 2022). In the following, we

discuss the linear estimation of ESN model parameters, the hyperparameters tuning, the loss penalty

selection, and how to carry out nonlinear forecasting.

3.1 Reservoir Models

Reservoir computing (RC) models are nonlinear state-space systems that, in the forecasting setting,

are defined by the following equations:

xt = F (xt−1, zt), (3.1)

yt+1 = hθ(xt) + ϵt, (3.2)

for all t ∈ Z, where the state map F : RN × RK → RN , N,K ∈ N+ is called also the reservoir map,

and the observation map hθ : RN → RJ , J ∈ N+ is referred to as the readout layer, parametrized

by θ ∈ Θ. Sequences (zt)t∈Z, zt ∈ RK , and (yt)t∈Z, yt ∈ RJ , stand for the input and the output

(target) of the system, respectively, and (xt)t∈Z, xt ∈ RN , are the associated reservoir states. In

(3.2), (ϵt)t∈Z are J-dimensional independent zero-mean innovations with variance σ2ϵ IJ that are also

independent of xt across all t. Importantly, many families of RC systems have been proven to have

universal approximation properties for Lp-integrable stochastic processes (Gonon and Ortega, 2020),

and estimation and generalization error bounds have been established in Gonon et al. (2020a, 2023a).

In the case of an ESN model, the state and observation equations (3.1)-(3.2) are given by

xt = αxt−1 + (1− α)σ(Axt−1 + Czt + ζ) (3.3)

yt+1 = a+W⊤xt + ϵt, (3.4)
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where A ∈ MN is the reservoir matrix, C ∈ MN,K is the input matrix, ζ ∈ RN is the input shift,

α ∈ [0, 1) is the leak rate and W ∈ MN,J are the readout coefficients. The map σ : R → R is an

activation function applied elementwise, which in what follows we take to be the hyperbolic tangent.

We refer to A, C, ζ as state parameters that are randomly generated. Notice that if A = 0 and α = 0

the state equation reduces to a nonlinear regression model with random coefficients (or a feedforward

neural network with random weights) which is usually referred to as an Extreme Learning Machine

(Cao et al., 2018, Gonon et al., 2023a).

Properties of ESN models. We focus on ESNs with the so-called echo state property (ESP), that

is, when for any z ∈ (RK)Z there exists a unique y ∈ (RJ)Z such that (3.3)-(3.4) hold (see Grigoryeva

and Ortega (2018a,b, 2019) and references therein). One can require that the ESP holds only on

the level of the state equation, that is for any input sequence z ∈ (RK)Z there exists a unique state

sequence x ∈ (RN )Z such that (3.3) holds. The result in Corollary 3.2 in Grigoryeva and Ortega

(2018b), which is also valid for the case of ESNs with the leak rate, shows that the sufficient condition

of the ESP associated with (3.3) to hold is ∥A∥2 Lσ < 1 where Lσ is the Lipschitz constant of the

activation function σ (in our setting, Ltanh = 1). This sufficient ESP condition has been extensively

studied in the ESN literature; see Jaeger (2010), Jaeger and Haas (2004), Buehner and Young (2006),

Bai Zhang et al. (2012), Yildiz et al. (2012), Wainrib and Galtier (2016), Manjunath and Jaeger

(2013) for more details. The result in Corollary 3.2 in Grigoryeva and Ortega (2018b) also shows that

this condition implies the so-called fading memory property (Boyd and Chua, 1985), which from the

practical point of view means that the impact of initial x0 is negligible for sufficiently long samples.

In the stochastic setting, part (i) of Proposition 4.2 in Grigoryeva and Ortega (2021) proves

that the condition ∥A∥2 < 1 guarantees variance stationarity of the states associated with variance

stationary inputs. Moreover, Manjunath and Ortega (2023) show that this condition implies the so-

called stochastic state contractivity ensuring a stochastic analog of the ESP. Notably, violations of

∥A∥2 < 1 do not have detrimental implications for the performance of ESNs in various learning tasks,

as reported in multiple empirical studies.

Computational advantages of ESNs. We emphasize that the core computational advantage

of ESNs is that state parameters A, C, and ζ are randomly sampled and need not be estimated.

Additionally, since observation equation (3.4) is linear in xt, coefficients W can be estimated via

(penalized) least squares regression, as we explain in the following subsection. The choice of properties

of state parameters determines memory properties and forecasting performance of linear (Ballarin

et al., 2023) and nonlinear ESNs (Gonon et al., 2020b) as we discuss in Section 3.2.1.

3.2 Estimation

We now discuss in detail the estimation of coefficientsW in (3.4). Let a sample (zt,yt)
T
t=1 of input and

target pairs be available. Given an initial state x0, the reservoir states can be computed iteratively

according to state equation (3.3) as:

x1 = αx0 + (1− α)σ(Ax0 + Cz1 + ζ), . . . , xT = αxT−1 + (1− α)σ(AxT−1 + CzT + ζ).

Collect the states and the targets into the state and the observation matrices, respectively, as

X = (x1,x2, . . . ,xT−1)
⊤ ∈MT−1,N , Y = (y2,y3, . . . ,yT )

⊤ ∈MT−1,J .

Consider the ridge regression estimator for W given by

Ŵλ := argmin
W∈RN

T−1∑
t=1

∥∥∥yt+1 −W⊤xt

∥∥∥2
2
+ λ∥W∥22 =

(
X⊤X + λ((T − 1) IN )

)−1
X⊤Y, (3.5)
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where λ ∈ R+ is the ridge penalty strength. When λ→ 0, the estimator Ŵλ converges to the minimum-

norm least squares solution (Ishwaran and Rao, 2014). In applications, ridge regression is the most

commonly used estimation method applied to ESNs, as it provides a straightforward regularization

scheme both when N < T and N ≥ T . This is especially important since in practice the ESN

state dimension is often chosen to be 103–104 (see for example Pathak et al. (2017)). Additionally,

a virtue of the ridge regression problem is the fact that the associated objective function is convex

and, hence, it can be efficiently solved using stochastic gradient descent even when min{N,T} is large
and one decides against the closed-form solution (3.5). Finally, as mentioned in the properties of

reservoir systems in Subsection 3.1, we notice that in the presence of the fading memory property, the

estimation does not depend significantly on the choice of x0 as sample size T increases.

We refer to (3.5) as the fixed-parameter estimator. In our empirical analyses, we also implement

expanding and rolling window estimation strategies which update Ŵλ as new observations become

available (we refer the reader to Appendix B.1 for details). In the rest of the paper, for brevity, we

use Ŵ to denote the ridge estimator of coefficients W assuming that the appropriate choice of the

penalty strength λ is made for each concrete situation.

3.2.1 Hyperparameter Tuning

As discussed in Subsection 3.1, the performance of ESNs depends on the choice of randomly drawn

state parameters A, C, ζ. Much work has been put into determining optimal specifications (see for

example Rodan and Tino (2011), Goudarzi et al. (2016), Farkas et al. (2016), Grigoryeva et al. (2015,

2016), Gonon et al. (2020b)). We construct these parameters by first sampling Ã, C̃ and ζ̃ from

appropriately chosen laws. Then, we normalize each element of the tuple such that

A = Ã/ρ(Ã), C = C̃/∥C̃∥, ζ = ζ̃/∥ζ̃∥, (3.6)

where ρ(Ã) denotes the spectral radius of Ã. As discussed in the properties of reservoir systems in

Subsection 3.1, the sufficient condition of the ESP is ∥A∥2 < 1. By this normalizing choice, we allow

for some more flexibility in terms of marginal violations of the non-sharp ESP constraint. Finally,

defining A = ρA, C = γC, and ζ = ωζ, we can rewrite state equation (3.3) as

xt = αxt−1 + (1− α)σ(ρAxt−1 + γCzt + ωζ). (3.7)

We refer to tuple φ := (α, ρ, γ, ω) as the hyperparameters of the ESN. Specifically, α ∈ [0, 1) is the

leak rate and ρ ∈ R+ is called the spectral radius of the reservoir matrix, γ ∈ R+ is the input scaling,

and ω ∈ R+ is the shift scaling. The choice of the hyperparameters determines the properties of

the state map. For simplicity, in Section 5, we choose the hyperparameters based on the empirical

ESN literature. In Appendix B.2, we also propose a general though more computationally intensive

procedure to select hyperparameters in a data-driven way that could be interesting to practitioners.

3.2.2 Penalty Selection

To apply ridge estimator (3.5), it is necessary to first select a penalty λ. Cross-validation (CV) is a

common selection procedure for regularization strength in penalized methods such as ridge, LASSO,

and Elastic Net. CV techniques have also been applied in the time series context (Kock et al., 2020,

Ballarin, 2023) with their validity established in Bergmeir et al. (2018).

In our empirical study, to account for temporal dependence, we use a sequential CV strategy

with ten validation folds. More precisely, we reserve the last 50 observations for validation and all

other previous data points for training. The first fold consists of the first five observations out of the

validation set, and the model is fitted using all training data. The following validation fold comprises

the next five subsequent validation observations while the training set is expanded by five data points
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(from the previous fold). This procedure is repeated ten times and the CV loss is the average of the

one-step-ahead forecast MSE on each fold. In expanding or rolling window setups, we rerun the CV

penalty selection to ensure that estimated ESN coefficients do not induce oversmoothing. We refer

the reader to Appendix B.3 for additional details.

3.3 Relation to Nonparametric Regression

Together with hyperparameters and penalty strength selection, the choice of the state dimension N is

a key ingredient of an ESN model. A large state space generally implies better approximation bounds

(Gonon et al., 2023a,b). Although it is customary in the empirical literature to take N as large as

possible (Lukoševičius, 2012), some recent literature discusses both the statistical risk bounds and

the approximation-risk trade-off bounds for various RC families (see Gonon et al. (2020a) and Gonon

et al. (2023b) for details). Under simplified assumptions that α = 0 and ρ = 0 in (3.7), ESNs have

a natural connection to random-weights neural networks (Cao et al., 2018) and random projection

regression (Maillard and Munos, 2012), and are thus comparable to nonparametric sieve methods. If

the data were independently sampled, known results on sieve estimation would require that at most

N/T = o(1) up to logarithmic factors for consistency (Belloni et al., 2015). Chen and Christensen

(2015) have extended this result to β-mixing data with B-spline and wavelet sieves. Sieve rates

appear to suggest that choosing N = O(T ) in echo state networks could lead to nontrivial forecasting

bias owing to poor approximation properties. Unfortunately, this comparison relies on neglecting the

dynamic component of the ESN model, and as such it is only qualitative. It is, therefore, an important

topic for future research.

A different but related problem is the potential degradation of forecasting performance when a

model is at the interpolation threshold in the overparametrized regime, N ≥ T . Ridge regression is also

commonly applied to address generalization concerns in statistical learning (see Hastie et al. (2009)).

Recent work has studied more in-depth the link between regularization and generalization: Hastie

et al. (2022) show that “ridgeless”, that is interpolation, solutions can be optimal in some scenarios.

However, in our empirical evaluations in Section 5, cross-validation consistently selects non-zero ridge

penalties, confirming that ridge penalization plays an important role in ESN forecasting performance.

3.4 ESN Forecasting

We are primarily interested in using ESN models to construct conditional forecasts of target variables.

Given that the conditional mean is the best mean square error estimator for h-step-ahead target yt+h,

h ≥ 1, our main focus is approximating

ŷt+h|t := E
[
yt+h|x0:t, z0:t

]
.

The case h = 1 is trivial, since the ESN model is estimated by regressing yt+1 on state xt, and thus

we can set ỹt+1|t = Ŵ⊤xt. However, when h > 1 the nonlinear state dynamics precludes a direct

computation of the conditional mean. This is in contrast to linear models like VARMAs or DFMs,

where the assumption of linearity implies that conditional expectations reduce to simple matrix-

vector operations. In particular, linear models are such that the variance (and any other higher-order

moments) of the noise term do not impact the conditional mean forecast.

Let pθ(xt|xt−1, zt) and gθ(yt+1|xt) be the state transition and observation densities, respectively.

Then, for h > 1,

ŷt+h|t =

∫
yt+h gθ(yt+h|xt+h−1)

h−1∏
j=1

pθ(xt+j |xt+j−1, zt+j)ν(zt+j |xt+j−1)dzt+jdxt+jdyt+h, (3.8)

where ν(zt+j |xt+j−1) is the conditional density of inputs. Here, we introduce the additional assump-
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tion that xt+j−1 is sufficient to condition on past states and inputs, that is

ν(zt+j |xt+j−1) ≡ ν(zt+j |x0:t+j−1, z0:t+j−1). (3.9)

Some elements in the expectation integral are not directly available. Specifically, while an ESN

explicitly models both pθ(xt|xt−1, zt) and gθ(yt+1|xt), the density ν(zt+j |xt+j−1) is unavailable.

In the remaining part of this subsection, we present a novel ESN-based approach to forecasting the

target variable. Our idea is to enrich the ESN model with an auxiliary observation equation for the

input covariates. As we demonstrate in Section 5, our proposed method shows superior performance

with respect to the standard state-of-the-art benchmarks.

3.4.1 Multi-step Forecasting of Targets via Iterative Forecasting of Inputs

In general, we are interested in constructing forecasts of target variables that are not the same as the

model inputs. To do so, we resolve the issue of the intractability of (3.8) while simultaneously capi-

talizing on the available results using ESNs in the forecasting of dynamical systems. More explicitly,

we add to the ESN specification (3.3)-(3.4) an equation that allows sidestepping modeling the density

ν directly, thus making the computation of ŷt+h|t feasible even when h > 1.

Consider the ESN where the reservoir states (xt)t∈Z follow (3.3), while the target sequence is the

same as the input sequence (zt)t∈Z,

xt = αxt−1 + (1− α)σ(Axt−1 + Czt + ζ) (3.10)

zt+1 =W⊤xt + ut+1. (3.11)

Here, we use symbolW for the output coefficients to separate this case from the general ESN equations

(3.3)-(3.4). In (3.11), (ut)t∈Z are K-dimensional independent zero-mean innovations with variance

σ2uIK that are also independent of xt across all t.

In this case, the reservoir map F (xt−1, zt) in (3.1) is determined by (3.10), and it is possible to

re-feed the forecasted variables back into the state equation as inputs. This yields the following state

recursion:

xt = F (xt−1,W⊤xt−1 + ut) =: Gθ(xt−1,ut),

where the subscript θ denotes the dependence on the model coefficients. In the reservoir computing

literature, regimes, where the ESN state equation is iteratively fed with the model outputs, are called

“autonomous” (Gonon et al., 2020b). They are widely and successfully utilized for the prediction of

deterministic dynamical systems. Indeed, in those instances, provided that the ridge estimate Ŵ is

available from data according to Subsection 3.2, the h > 1 steps autonomous state iteration is given

by

F ∗
θ (xt) := αxt + (1− α)σ((A+ CŴ⊤)xt + ζ)

and

xt+h = F ∗
θ ◦ F ∗

θ ◦ · · · ◦ F ∗
θ︸ ︷︷ ︸

h times

(xt).

Hence one can directly obtain the h-steps ahead predictions of the input time series as zt+h =

Ŵ⊤xt+h−1.

In the case of stochastic target variables, assuming (3.9), we notice that for the conditional forecast

of the states, it holds that

x̂t+1|t = E [xt+1|x0:t, z0:t] =

∫
xt pθ(xt|xt−1, zt)ν(zt|xt−1)dzt =

∫
Gθ(xt−1,ut)ϕ(ut)dut, (3.12)

where density ϕ of ut is, again, unavailable. Note that, even under the assumption ut ∼ N (0,Σu),
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which is standard in the filtering literature, the presence of nonlinear map Gθ makes the computation

of the forecasts of zt+h a non-straightforward exercise. Nevertheless, this forecast construction can be

readily used when one is interested exclusively in predicting the time series zt.

Whenever the final goal of the exercise is forecasting some other explained variable yt+h h-steps

ahead, additional issues arise. In this case, one needs to compute the conditional expectation in (3.8)

which is intractable even under Gaussian assumptions on the innovations. One option is to apply

particle filtering techniques such as bootstrap sampling or sequential importance sampling (SIS) to

evaluate the expectation (Doucet et al., 2001). We emphasize that the state dimension is usually

chosen to be large, and hence implementing filtering techniques requires some care.

Our approach is to avoid dealing with the nonlinear densities involved in (3.8) with the help of

(3.12) and, instead, to reduce the computation of the conditional expectation ŷt+h|t to a composition

of functions. By the linearity of observation equation (3.4) and the assumption of independence in

the zero-mean noise ϵt+h, we write

ŷt+h|t =W⊤x̂t+h−1|t =

∫
W⊤xt+h−1

h−1∏
j=1

pθ(xt+j |xt+j−1, zt+j)ν(zt+j |xt+j−1)dxt+jdzt+j

and use the approximation

ŷt+h|t ≈ ỹt+h =W⊤ F ∗
θ ◦ F ∗

θ ◦ · · · ◦ F ∗
θ︸ ︷︷ ︸

h−1 times

(xt), (3.13)

which originates from

x̂t|t−1 =

∫
Gθ(xt−1,ut)ϕ(ut)dut ≈ Gθ(xt−1,E[ut]) = F (xt−1,W⊤xt−1) ≡ F ∗

θ (xt−1), (3.14)

where ut is assumed to be zero-mean. The validity of (3.14) itself requires implicit assumptions on

the nature of the distribution of ut, but here we want to keep the analysis of ŷt+h|t to a minimum, and

just use the insights from the dynamical systems ESN literature. We are hence not delving deeper into

alternative approaches to estimate forecasts or, more generally, to compute conditional expectations

of ESN models with stochastic inputs.

4 Multi-Frequency Echo State Models

In this subsection, we construct a broad class of ESN models that can accommodate input and target

time series sampled at distinct sampling frequencies. We call this family of reservoir models the

Multi-Frequency Echo State Networks (MFESNs). The state-space structure of MFESNs is naturally

amenable to the setting of time series with mixed frequencies. Additionally, the prediction strategy

discussed in Section 3.4 is straightforward to extend to MFESNs.

We present two groups of MFESN architectures. The first family is based on a single echo state

network architecture and we call these models Single-Reservoir Multi-Frequency Echo State Networks

(S-MFESNs). The second group, referred to as Multi-Reservoir Multi-Frequency Echo State Networks

(M-MFESNs), allows for as many state equations as the number of distinct sampling frequencies

present in the input data.

4.1 Single-Reservoir MFESN

Recall that, in the temporal notation of Definition 2.1, we reserve t to be the reference time index,

which is also used for the target variable, and all other frequencies will be measured with respect to

the reference frequency.
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Consider L collections of different time series. We assume that the lth collection, l ∈ [L], consists

of nl time series that are sampled at a common frequency κl and contain observations (z
(l)
t,s|κl

)t,s with

z
(l)
t,s|κl

∈ Rnl for all t ∈ Z and s ∈ {0, . . . , κl−1}. Let κmax = maxl κl be the highest sampling frequency

among the L time series groups and let ql := κmax/κl indicate how low each κl sampling frequency

is with respect to κmax. We can now stack together and repeat the observations in a way that is

consistent with the high-frequency index by defining

zt,s|κmax
:=

(
z
(1)⊤
t,⌊s/q1⌋|κ1

, z
(2)⊤
t,⌊s/q2⌋|κ2

, . . . , z
(L)⊤
t,⌊s/qL⌋|κL

)⊤
∈ R

∑L
l=1 nl , s ∈ {0, . . . , κmax − 1},

where for all l ∈ [L], z
(l)
0,0|κl

= 0nl
. Thus, it is possible to write a single high-frequency ESN as

xt,s|κmax
= αxt,s−1|κmax

+ (1− α)σ(Axt,s−1|κmax
+ Czt,s|κmax

+ ζ), (4.1)

zt,s+1|κmax
=W⊤xt,s|κmax

+ ut,s+1|κmax
, (4.2)

where W ∈ MN,
∑L

l=1 nl
and s > 0. We term this class of MFESN models the Single-Reservoir Multi-

Frequency ESNs (S-MFESNs).

Notice that equations (4.1)-(4.2) of the S-MFESN model prescribe the dynamics at the highest

frequency, κmax. In order to forecast a lower frequency target, we map high-frequency states xt,s|κmax

to low-frequency targets yt+1 ∈ RJ by introducing a state alignment scheme. An aligned S-MFESN

uses the most recent state with respect to the reference time index t to construct the forecast. More

precisely, the state equation of an S-MFESN is iterated κmax times until the state xt−1,κmax|κmax
=

xt,0|κmax
is obtained and then target yt+1 is forecast with observation equation

yt+1 =W⊤xt,0|κmax
+ ϵt+1, W ∈MN,J . (4.3)

Estimation of aligned S-MFESN. Both coefficient matrices W and W can be estimated as ex-

plained in Subsection 3.2 under appropriate choices of corresponding penalty strengths. In particular,

in order to obtain Ŵ, the state and the observation matrices in (3.5) are given by

Xκmax = (x1,0|κmax
, . . . ,x1,κmax−1|κmax

, . . . ,xT−1,0|κmax
, . . . ,xT−1,κmax−1|κmax

)⊤ ∈M(T−1)κmax−1,N ,

Yκmax = (z1,1|κmax
, . . . ,z1,κmax|κmax

, . . . ,zT−1,1|κmax
, . . . ,zT−1,κmax|κmax

)⊤ ∈M(T−1)κmax−1,
∑L

l=1 nl
,

while

X =
(
x1,0|κmax

,x2,0|κmax
, . . . ,xT−1,0|κmax

)⊤ ∈MT−1,N ,

Y = (y2, . . . ,yT )
⊤ ∈MT−1,J ,

are used for the estimation of Ŵ . We note that the state equation (4.1) of S-MFESN can be initialized

by x0,0|κmax
, which under the fading memory property is inconsequential for long enough samples (see

the discussion in Subsection 3).

Forecasting with aligned S-MFESN. Let Ŵ and Ŵ be the sample estimates of the readout

matrices as explained above. The fitted high-frequency autonomous state transition map associated

with (4.1) is given by

Fκmax(xt,s−1|κmax
) := αxt,s−1|κmax

+ (1− α)σ
(
(A+ CŴ⊤)xt,s−1|κmax

+ ζ
)
, (4.4)
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Figure 2: Scheme of a Single-Reservoir MFESN (S-MFESN) model combining input data sampled at
two frequencies with state alignment and estimation for one-step ahead forecasting of the target series.

which, composed with itself exactly κmax times, yields the target-frequency-aligned autonomous state

transition map

F (xt,0|κmax
) := Fκmax ◦ Fκmax ◦ · · · ◦ Fκmax︸ ︷︷ ︸

κmax times

(xt,0|κmax
). (4.5)

Finally, from (3.13) the h-steps ahead low-frequency forecasts, h ∈ N, can be computed as

ỹT+h|T = Ŵ⊤(F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
h−1 times

(xT,0|κmax
)
)
. (4.6)

Figure 2 gives a graphical diagram of the 1-step forecasting procedure for an S-MFESN. Addition-

ally, Figure 12 in Appendix I provides a similar diagram for the case of multistep forecasts.

The following example illustrates this proposed forecasting strategy for the case of quarterly GDP

forecasting using monthly and daily series inputs.

Example 4.1 Suppose that we wish to use an aligned S-MFESN model to forecast a quarterly one-

dimensional target (yt) using n(m) monthly and n(d) daily series, (z
(m)
t,s|κ1

) and (z
(d)
t,s|κ2

), respectively.

We adopt the assumption that daily data is released 24 days over each calendar month and hence

κ1 = 3, κ2 = 72 and κmax = 72, while q1 = 24 and q2 = 1. Let t, ∗|72 be the temporal index with a

quarterly reference frequency. The input vector for the S-MFESN state equation consistent with the

daily frequency is given by

z
(m,d)
t,s|72 := (z

(m)
t,⌊s/24⌋|3

⊤
, z

(d)
t,s|72

⊤
)⊤ ∈ Rn(m)+n(d) with z

(d)
0,0|3 = 0n(d)

and z
(m)
0,0|24 = 0n(m)

.

The complete S-MFESN model with the state space dimension N can be written as:

x
(m,d)
t,s|72 = αx

(m,d)
t,s−1|72 + (1− α)σ(Ax(m,d)

t,s−1|72 + Cz
(m,d)
t,s|72 + ζ), (4.7)

z
(m,d)
t,s+1|72 =W

⊤x
(m,d)
t,s|72 + ut,s+1|72, (4.8)

yt+1 =W⊤x
(m,d)
t,0|κmax

+ ϵt+1, (4.9)

where the state equations (4.7)-(4.8) are run in their own maximum frequency temporal index s > 0,

and only the states xt−1,κmax|κmax
= xt,0|κmax

are used in the observation equation (4.9). Provided the

input-target pairs sample of length T , the coefficient matrices W ∈MN,n(m)+n(d)
in (4.8) and W ∈ RN
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in (4.9) can be estimated via ridge regression as explained above.

From (4.4) the high-frequency autonomous state transition map is given by

F
(m,d)
72 (x

(m,d)
t,s−1|72) := αx

(m,d)
t,s−1|72 + (1− α)σ

(
(A+ CŴ⊤)x

(m,d)
t,s−1|72 + ζ

)
,

which, composed with itself exactly 72 times, by (4.5) yields the target-frequency-aligned autonomous

state transition map

F (m,d)(x
(m,d)
t,0|72) := F

(m,d)
72 ◦ F (m,d)

72 · · · ◦ F (m,d)
72︸ ︷︷ ︸

72 times

(x
(m,d)
t,0|72).

By applying F (m,d) to state x
(m,d)
t,0|72 we iterate the S-MFESN forward in time to provide an estimate

for x
(m,d)
t+1,0|72, which can then be linearly projected using Ŵ to yield a forecast for yt+2. For the target

variable, as well as forecasts, we do not use our temporal notation for the sake of compactness and

clarity of exposition. Finally, the quarterly forecasts for h ∈ N can be computed using (4.6) as

ỹT+h|T = Ŵ⊤(F (m,d) ◦ F (m,d) ◦ · · · ◦ F (m,d)︸ ︷︷ ︸
h−1 times

(x
(m,d)
T,0|72)

)
.

4.2 Multi-Reservoir MFESN

Constructing an MFESN with a single reservoir is not necessarily the most effective modeling strategy.

Having more than one reservoir allows more flexible modeling of state dynamics for different subsets of

input variables sampled at common frequencies. For example, suppose quarterly and monthly data are

used as regressors. Our presentation is general enough to accommodate other types of partitioning of

series into the corresponding reservoir models. We leave it to future research to test other approaches

based, for instance, on markets or data types as done in van Huellen et al. (2020).

Assume again L groups of series with input observations (z
(l)
t,s|κl

)t,s with z
(l)
t,s|κl

∈ Rnl , l ∈ [L], for

all t ∈ Z and s ∈ {0, . . . , κl − 1} sampled at common frequencies {κ1, . . . , κL}, respectively. For each

of the L groups of input series we define the corresponding ESN model as

x
(l)
t,s|κl

= αlx
(l)
t,s−1|κl

+ (1− αl)σ(Alx
(l)
t,s−1|κl

+ Clz
(l)
t,s|κl

+ ζl), (4.10)

z
(l)
t,s+1|κl

=W⊤
l x

(l)
t,s|κl

+ u
(l)
t,s+1|κl

, l ∈ [L], (4.11)

with s > 0, Wl ∈ MNl,nl
with Nl the dimension of the state space. Notice that the time index s is

different for each l according to our temporal notation introduced in Definition 2.1 and each state

equation runs at its own frequency κl. The dimensions {N1, N2, . . . , NL} of the state spaces can be

chosen for the L reservoir models individually. Additionally, multiple reservoirs have the associated

hyperparameter tuples {φ1, . . . ,φL} to be tuned. This requires some care whenever one wants to

optimize all hyperparameters jointly. Since there are L reservoir state equations, we call this class of

MFESN models Multi-Reservoir Multi-Frequency ESN (M-MFESN).

Similar to S-MFESN, all L state equations are iterated each κl times respectively until the states

x
(l)
t−1,κl|κl

= x
(l)
t,0|κl

are obtained. The aligned M-MFESN observation equation is given by

yt+1 =W⊤xt,L + ϵt+1, with xt,L =


x
(1)
t,0|κ1

...

x
(L)
t,0|κL

 ∈ R
∑L

l=1 Nl , W ∈M∑L
l=1 Nl,J

. (4.12)
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Estimation of aligned M-MFESN. The coefficient matrices Wl, l ∈ [L], andW can be estimated

similarly to the case of S-MFESN. The state and observation matrices for the estimation of Ŵl, l ∈ [L],

in (3.5) are constructed as

X(l) = (x
(l)
1,0|κl

, . . . ,x
(l)
1,κl−1|κl

, . . . ,x
(l)
T−1,0|κl

, . . . ,x
(l)
T−1,κl−1|κl

)⊤ ∈M(T−1)κl−1,Nl
,

Y (l) = (z
(l)
1,1|κl

, . . . ,z
(l)
1,κl|κl

, . . . ,z
(l)
T−1,1|κl

, . . . ,z
(l)
T−1,κl|κl

)⊤ ∈M(T−1)κl−1,nl
,

while with the notation as in (4.12)

X = (x1,L,x2,L, . . . ,xT−1,L)
⊤ ∈MT−1,

∑L
l=1 Nl

,

Y = (y2, . . . ,yT )
⊤ ∈MT−1,J ,

are used for the estimation of Ŵ . Again, the state equations (4.10) of M-MFESN can be started with

x
(l)
0,0|κl

= 0Nl
(see Subsection 3 for more details).

Forecasting with aligned M-MFESN. Let Ŵ and Ŵl, l ∈ [L], be the sample estimates of the

readout matrices. For any l ∈ [L] the κl-frequency autonomous state transition map is given by

F (l)
κl

(x
(l)
t,s−1|κl

) := αlx
(l)
t,s−1|κl

+ (1− αl)σ
(
(Al + ClŴ⊤

l )x
(l)
t,s−1|κl

+ ζl

)
. (4.13)

The target-frequency-aligned autonomous state transition map associated with each frequency l is

hence defined as

F (l)(xt,0|κl
) := F (l)

κl
◦ F (l)

κl
◦ · · · ◦ F (l)

κl︸ ︷︷ ︸
κl times

(x
(l)
t,0|κl

). (4.14)

Finally, from (3.13) the h-steps ahead forecasts can be computed as

ỹT+h|T = Ŵ⊤


F (1) ◦ F (1) ◦ · · · ◦ F (1)︸ ︷︷ ︸

h−1 times

(x
(1)
T,0|κ1

)

...

F (L) ◦ F (L) ◦ · · · ◦ F (L)︸ ︷︷ ︸
h−1 times

(x
(L)
T,0|κL

)

 . (4.15)

In Figure 3 we provide a diagram for the case of 1-step ahead forecasting with an aligned M-MFESN

involving regressors of only two frequencies. Figure 13 in Appendix I provides a similar diagram for

the case of multistep forecasting.

Example 4.2 Similar to Example 4.1, we aim to forecast a quarterly target with monthly and daily

series, but this time we use an M-MFESN model. We have to define two independent state equations,

one for monthly and one for daily series; in the observation equations, two states must be aligned

temporally and stacked to form the full set of regressors. The data consists again of quarterly (yt),

n(m) monthly series (z
(m)
t,s|3) and n(d) daily series (z

(d)
t,s|72).

The aligned M-MFESN model with two reservoirs of dimensions N(m) and N(d), respectively, is

given by

x
(m)
t,s|3 = α1x

(m)
t,s−1|3 + (1− α1)σ(A1x

(m)
t,s−1|3 + C1z

(m)
t,s|3 + ζ1), (4.16)

z
(m)
t,s+1|3 =W

⊤
(m)x

(m)
t,s|3 + u

(m)
t,s+1|3, (4.17)

x
(d)
t,s|72 = α2x

(d)
t,s−1|72 + (1− α2)σ(A2x

(d)
t,s−1|72 + C2z

(d)
t,s|72 + ζ2), (4.18)
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Figure 3: Scheme of a Multi-Reservoir MFESN (M-MFESN) model combining input data sampled
at two frequencies with state alignment and estimation for one-step ahead forecasting of the target
series.

z
(d)
t,s+1|72 =W

⊤
(d)x

(d)
t,s|72 + u

(d)
t,s+1|72, (4.19)

yt+1 =W⊤

 x
(m)
t,0|3

x
(d)
t,0|72

+ ϵt+1, (4.20)

where s > 0, W(m) ∈ MN(m),n(m)
, W(d) ∈ MN(d),n(d)

and W ∈ RN(m)+N(d) . Here, the monthly reservoir

(x
(m)
t,s|3) has the temporal index of frequency 3, while the daily reservoir (x

(d)
t,s|72) of 72; the high-

frequency index s is different for the two models. Notice that in an M-MFESN model it is necessary

to introduce 2 additional observation equations for the states, that is (4.17) and (4.19)). Notice that

the state equations are iterated each κl times to collect the states to be aligned in the observation

equation (4.20). Again, the sample-based estimates of coefficient matrices Ŵ(m), Ŵ(d) and Ŵ in (4.17),

(4.18), and in (4.20), respectively, can be obtained via the ridge regression as discussed above.

Exactly as in Example 4.1, using (4.13) we can introduce high-frequency autonomous state maps

F
(m)
3 and F

(d)
72 as

F
(m)
3 (x

(m)
t,s−1|3) := α1x

(m)
t,s−1|3 + (1− α1)σ

(
(A1 + C1Ŵ⊤

(m))x
(m)
t,s−1|3 + ζ1

)
,

F
(d)
72 (x

(d)
t,s−1|72) := α2x

(d)
t,s−1|72 + (1− α2)σ

(
(A2 + C2Ŵ⊤

(d))x
(d)
t,s−1|72 + ζ2

)
,

as well as their target-frequency aligned counterparts F (m) and F (d), by (4.14), as

F (m)(x
(m)
t,0|3) := F

(m)
3 ◦ F (m)

3 ◦ F (m)
3︸ ︷︷ ︸

3 times

(x
(m)
t,0|3),

F (d)(x
(d)
t,0|72) := F

(d)
72 ◦ F

(d)
72 ◦ · · · ◦ F

(d)
72︸ ︷︷ ︸

72 times

(x
(d)
t,0|72).
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The h-step ahead forecasts can be computed using the approximation in (4.15) as

ỹT+h|T = Ŵ⊤


F (m) ◦ F (m) ◦ · · · ◦ F (m)︸ ︷︷ ︸

h−1 times

(x
(m)
T,0|3)

F (d) ◦ F (d) ◦ · · · ◦ F (d)︸ ︷︷ ︸
h−1 times

(x
(d)
T,0|72)

 .

In this case, it is important to note that while both F (m) and F (d) are composed h − 1 times at step

h, the underlying number of autonomous reservoir iterations is different for the monthly and daily

reservoirs, namely 3 and 72, and depends on their own frequencies. This also suggests that one should

take into account the different time dynamics when, for example, tuning M-MFESN hyperparameters

φ(m) and φ(d), as proposed in Subsection B.2.

5 Empirical Study

In this section, we compare the forecasting performance of our proposed MFESN to state-of-the-art

benchmarks. We use a combination of macroeconomic and financial data sampled at low and high-

frequency intervals, respectively. Our empirical exercises encompass several setups, with a small and

a medium-sized set of regressors, fitting models with data before and after the 2007-08 crisis, and with

fixed, rolling, and expanding estimation windows.

5.1 Data

Two sets of predictors of different sizes are compiled: Small-MD with 9 predictors and Medium-MD

with 33 predictors in monthly and daily frequency. The reference frequency is quarterly: this is the

frequency at which the target variable, US GDP growth, is available. Seasonally adjusted quarterly

and monthly data is obtained from the Federal Reserve Bank of St. Louis Monthly (FRED-MD) and

Quarterly (FRED-QD) Databases for Macroeconomic Research (see McCracken and Ng (2016, 2020)

for detail). Daily data is obtained from Refinitiv Datastream, a subscription-based data service. All

data is the last revised vintage data. The macroeconomic target and predictors, their transformations,

and availability are listed in Table 5.1.

The selection of predictors follows the seminal work by Stock and Watson (1996, 2006) in which the

FRED-MD and FRED-QD data are proposed. Variations of their dataset have been used profusely

in the literature (for example, see Boivin and Ng (2005), Marcellino et al. (2006), Hatzius et al.

(2010)). Indicators from ten macroeconomic and financial categories are considered: (1) output and

income, (2) labor market, (3) housing, (4) orders and inventories, (5) price indices, (6) money and

credit, (7) interest rates, (8) exchange rates, (9) equity, and (10) derivatives. The latter five categories

represent financial market conditions and are sourced at daily frequency. The exception is interest

rates, which move relatively slowly and enter as monthly aggregates, available in the FRED-MD data.

We refer to this dataset as Medium-MD. A subset of predictors is selected for the Small-MD dataset by

choosing variables that have been identified as leading indicators in the empirical literature (Ingenito

and Trehan, 1996, Clements and Galvão, 2008, Andreou et al., 2013, Marsilli, 2014, Ferrara et al.,

2014, Carriero et al., 2019, Jardet and Meunier, 2022). Data availability is an additional criterion,

and predictors unavailable before 1990 are not considered. This excludes the VIX volatility index,

which has been identified as a leading indicator in some studies, for example in Andreou et al. (2013),

Jardet and Meunier (2022).

We follow instructions by McCracken and Ng (2016, 2020) on pre-processing macroeconomic pre-

dictors before they are used as input for forecasting. These are mainly differenced for detrending. We

further transform financial predictors to capture market disequilibrium and volatility. Disequilibrium

indicators, such as interest rate spreads, have been found to be more relevant for macroeconomic
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Table 5.1: Variables, Frequencies and Transformations for Small and Medium

SM Start Date T Code Name Description

Quarterly

XX 31/03/1959 5 GDPC1 Y Real Gross Domestic Product

Monthly

XX 30/01/1959 5 INDPRO XM1 Industrial Production Index
XX 30/01/1959 5 PAYEMS XM4 Payroll All Employees: Total nonfarm
XX 30/01/1959 4 HOUST XM5 Housing Starts: Total New Privately Owned
XX 30/01/1959 5 RETAILx XM7 Retail and Food Services Sales
XX 31/01/1973 5 TWEXMMTH XM11 Nominal effective exchange rate US
XX 30/01/1959 2 FEDFUNDS XM12 Effective Federal Funds Rate
XX 30/01/1959 1 BAAFFM XM14 Moody’s Baa Corporate Bond Minus FEDFUNDS
XX 30/01/1959 1 COMPAPFFx XM15 3-Month Commercial Paper Minus FEDFUNDS
X 30/01/1959 2 CUMFNS XM2 Capacity Utilization: Manufacturing
X 30/01/1959 2 UNRATE XM3 Civilian Unemployment Rate
X 30/01/1959 5 DPCERA3M086SBEA XM6 Real personal consumption expenditures
X 30/01/1959 5 AMDMNOx XM8 New Orders for Durable Goods
X 31/01/1978 2 UMCSENTx XM9 Consumer Sentiment Index
X 30/01/1959 6 WPSFD49207 XM10 PPI: Finished Goods
X 30/01/1959 1 AAAFFM XM13 Moody’s Aaa Corporate Bond Minus FEDFUNDS
X 30/01/1959 1 TB3SMFFM XM16 3-Month Treasury C Minus FEDFUNDS
X 30/01/1959 1 T10YFFM XM17 10-Year Treasury C Minus FEDFUNDS
X 30/01/1959 2 GS1 XM18 1-Year Treasury Rate
X 30/01/1959 2 GS10 XM19 10-Year Treasury Rate
X 30/01/1959 1 GS10-TB3MS XM20 10-Year Treasury Rate - 3-Month Treasury Bill

Daily

XX 30/01/1959 8 DJINDUS XD3 DJ Industrial price index
X 31/12/1963 8 S&PCOMP XD1 S&P500 price index
X 01/05/1982 1 ISPCS00-S&PCOMP† XD2 S&P500 basis spread
X 11/09/1989 8 SP5EIND XD4 S&P Industrial price index
X 31/12/1969 8 GSCITOT XD5 Spot commodity price index
X 10/01/1983 8 CRUDOIL XD6 Spot price oil
X 02/01/1979 8 GOLDHAR XD7 Spot price gold
X 30/03/1982 8 WHEATSF XD8 Spot price wheat
X 01/11/1983 8 COCOAIC,COCINUS‡ XD9 Spot price cocoa
X 30/03/1983 1 NCLC.03-NCLC.01 XD10 Futures price oil term structure
X 30/10/1978 1 NGCC.03-NGCC.01 XD11 Futures price gold term structure
X 02/01/1975 1 CWFC.03-CWFC.01 XD12 Futures price wheat term structure
X 02/01/1973 1 NCCC.03-NCCC.01 XD13 Futures price cocoa term structure

Notes: S and M stand for small and medium datasets, respectively. An ‘X’ indicates selection into the dataset.
‘Start Date’ is the date for which the series is first available (before data transformations). Following Mc-
Cracken and Ng (2016, 2020), the transformation codes in column ‘T’ indicate with D for difference and log
for natural logarithm 1: none, 2: D, 3: DD, 4: Log, 5: Dlog, 6: DDlog, 7: percentage change, 8: GARCH
volatility. ‘Codes’ are the codes in the FRED-QD and FRED-MD datasets for quarterly and monthly data and
Datastream mnemonic for the remaining frequencies. Missing values due to public holidays are interpolated by
averaging over the previous five observations. ‡Available until 20/09/2021. ‡Average before 29/12/2017, COCI-
NUS mean adjusted thereafter.

prediction than routine changes captured by differencing (see Borio and Lowe (2002), Gramlich et al.

(2010), Qin et al. (2022)). In addition to disequilibrium indicators, realized stock market volatility

has been found to improve macroeconomic predictions (Chauvet et al., 2015). In the absence of intra-

day trading data from the 1990s onward, which prevents us from utilizing conventional daily realized

volatility indicators, we extract volatility indicators from daily price series by fitting a GARCH(1,1)

by Bollerslev (1986).1 In addition to volatility of stock and commodity prices, term structure indi-

1We include a control scale = 1 to ensure convergence of the optimization algorithm and only include a constant
mean term in the return process for simplicity.

20



cators are used. The term structure is forward-looking, capturing information about future demand

and supply, and has been found to be a leading predictor of GDP growth (see for example Hong and

Yogo (2012), Kang and Kwon (2020)).

The data spans the period January 1st, 1990 to December 31st, 2019.2 We are interested in

evaluating model performance under two stylized settings. First, a researcher fits all models up until

the Great Recession, including data from Q1 1990 to Q4 2007. Second, fitting is done with data largely

encompassing the crisis period, again from Q1 1990 but now up to Q4 2011. In both cases, the testing

sample ranges from the next GDP growth observation after fitting up to Q4 2019. All exercises exclude

the global COVID-19 economic depression, as we consider it as an extreme, unpredictable event that

induces significant structural changes in the underlying macroeconomic dynamics.3

To avoid having to handle the many edge cases that daily data in its “raw” calendar releases

involves, we use an interpolation approach. We set ex ante the number of working days in any month

to be exactly 24: given that in forecasting the most recent information sets are more relevant, when

interpolating daily data over months with less than calendar 24 observations, we linearly interpolate

the “missing” data starting from a months’ beginning (using the previous months’ last observation).

The choice of 24 as a daily frequency is transparent by noting that this is the closest number to actual

commonly observed data releases, whilst also being a multiple of both 4 (approximate number of weeks

per month) and 6 (upper bound on the number of working days per week).

5.2 Models

In this section, we present the set of models that we use throughout our empirical exercises. For a

general overview, Table 5.2 summarizes all models, including hyperparameters. In our analysis, we

compare the competing models based on several performance measures introduced in Appendix C.

5.2.1 Benchmarks

Unconditional mean. We use the unconditional mean of the sample used for fitting as a baseline

benchmark. For GDP growth forecasting, there is evidence that the unconditional mean produces

forecasts that are competitive with linear models such as VARs in terms of mean square forecasting

errors (MSFE), even at relatively short horizons (Arora et al., 2013). It is therefore an important

reference for the performance of all other models and we report relative MSFE with respect to the

unconditional mean in the tables below.

AR(1) model. A simple autoregressive process of order one on the target variable is included as a

benchmark model.4 This is also a common benchmark in the literature, as AR(1) models are often

able to capture key dynamics and produce meaningful forecasts for macroeconomic variables (Stock

and Watson, 2002, Bai and Ng, 2008). We emphasize that since AR(1) model is fit to the series of

quarterly GDP targets and does not use any additional information, its forecasts are identical for both

the Small-MD and Medium-MD samples.

MIxed DAta Sampling (MIDAS). The first mixed-frequency model benchmark is given by a

MIDAS model (Ghysels et al., 2004, 2007). Our dynamic MIDAS specification includes autoregressive

2In the Small-MD dataset experiments we make a small variation and instead include data starting from 1st January
1975, but only for the initial CV selection of ridge penalties for MFESN models. Our aim is to make sure that at least
for the fixed window estimation strategy – where λ is cross-validated once and only one Ŵ is estimated – the ridge
estimator is robust. In practice, when we compare to expanding and rolling window estimators, where λ is re-selected
at each window, we find that extending the initial CV data window has little impact on out-of-sample performance.

3In the macroeconomic literature this falls under the category of “natural disaster” events, and should not be näıvely
modeled together with previous observations. In this section, we therefore avoid dealing with post-COVID-19 macroe-
conomic data altogether.

4Suggested by an anonymous referee.
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Model Name Description Specification

Mean
Unconditional mean of target series over esti-
mation sample.

None

AR(1)
Autoregressive model of target series esti-
mated using OLS.

None

MIDAS
Almon-weighted MIDAS regression, linear
(unconstrained) autoregressive component.

Autoregressive lags: 3
Monthly freq. lags: 9
Daily freq. lags: 30

DFM [A] Stock aggregation, VAR(1) factor process.
Factors: 5 for Small-MD

10 for Medium-MD

DFM [B] Almon aggregation, VAR(1) factor process
Factors: 5 for Small-MD

10 for Medium-MD

singleESN [A]

S-MFESN model:

Sparse-normal Ã, sparse-uniform C̃, ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 30
Sparsity: 33.3%
ρ = 0.5, γ = 1, α = 0.1

singleESN [B]

S-MFESN model:

Sparse-normal Ã, sparse-uniform C̃, ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 120
Sparsity: 8.3%
ρ = 0.5, γ = 1, α = 0.1

multiESN [A]

M-MFESN model:
Monthly and daily frequency reservoirs.

Sparse-normal Ã1, Ã2,

sparse-uniform C̃1, C̃2, ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit.

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.5, γ = 1.5, α = 0
D: ρ = 0.5, γ = 0.5, α = 0.1

multiESN [B]

M-MFESN model:
Monthly and daily frequency reservoirs.

Sparse-normal Ã1, Ã2,

sparse-uniform C̃1, C̃2, ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit.

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.08, γ = 0.25, α = 0.3
D: ρ = 0.01, γ = 0.01, α = 0.99

Table 5.2: Table of models used in applied forecasting exercises. MFESN hyperparameters are defined
with respect to normalized state parameters c.f. (3.6).

lags of the target series and uses an Almon weighting scheme. As shown in Bai et al. (2013), exponential

Almon MIDAS regressions are related to dynamic factor models, which we also consider as benchmarks.

The MIDAS model includes three lags of quarterly GDP target variable, and 30 daily and 9 monthly

lags for all daily and monthly series, respectively. This model prescription allows for some parsimony

as the Almon polynomial weighing reduces the number of daily and monthly lag coefficients.

A thorough description of our MIDAS implementation can be found in Appendix E. To make

optimization more efficient, we use explicit expressions for MIDAS loss gradients as in Kostrov (2021).

The MIDAS estimation can be hard to perform in practice due to the complexity of nonlinear opti-

mization. First, exponential weighting schemes might require computing floating-point numbers that

exceed numerical precision. Therefore, it is a better choice to start the gradient descent close to the

origin of the parameter space. Second, even with this choice of starting points, one may encounter

issues with optimization results since the Almon-scheme MIDAS loss can have a large number of dis-

tinct local minima. In Appendix H.1 we document, using a simple replication experiment, that even
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small changes in the initial conditions can result in different local minima picked by the numerical

optimization algorithm.5 These important robustness issues are present even when using closed-form

gradients and multi-start optimization routines for the MIDAS models. The computational issues be-

come more pronounced as the number of MIDAS parameters increases unless a careful model/variable

selection step is performed. We, therefore, do not include any MIDAS model specifications in the

Medium-MD setup.

Dynamic Factor Model (DFM). The dynamic factor model framework has been extensively

applied in macroeconometrics, starting with Geweke (1977) and Sargent et al. (1977). A DFM spec-

ification assumes that predictable dynamics of a large set of time series can be explained by a small

number of factors with an autoregressive dependence (see for example Forni et al. (2005), Doz et al.

(2011), Stock and Watson (2016)). We generalize the standard two-frequency DFM modeling setup

(Mariano and Murasawa, 2003, Bańbura and Modugno, 2014) to a flexible mixed-frequency DFM

that encompasses any number of data frequencies. Moreover, we derive a novel weighting scheme that

effectively links the MIDAS and DFM approaches. For a detailed discussion of our factor model setup,

we refer the reader to Appendix F. Two distinct DFM specifications are used. The first one termed

DFM [A] uses the standard linear aggregation scheme, as provided in Example F.1, while the second

is a variation that implements an Almon weighting scheme as presented in Example F.2 (we name it

DFM [B]). The latter is similar to a MIDAS-type aggregation scheme (Marcellino and Schumacher,

2010): the factor structure effectively mitigates the parameter proliferation.

A key choice for a DFM model is the dimension of the factor process. While a number of methods

have been developed over the years to systematically derive the number of factors (see, for example,

the review of Stock and Watson (2016)), commonly used macroeconomic panels feature a number of

challenges, such as weak factors (Onatski, 2012). Moreover, as mentioned in Appendix F.1, factor

number selection in the mixed-frequency setting has not been sufficiently addressed in the literature.

To sidestep these issues, we construct both DFM models with 5 unobserved factors for Small-MD and

10 for Medium-MD, respectively, and assume that they follow a VAR(1) process.

One extant issue with integrating daily data is its very high release frequency compared to monthly

and especially quarterly releases: computationally this can be extremely taxing, which might be one

of the reasons why to our knowledge we are the first to provide DFM forecasts that include daily data.

Our solution is to reduce aggregate daily data every 6 days by averaging, thus leaving 4 observations

per month. This eases the computational burden to estimate coefficients and latent states considerably

(12 versus 72 daily observations per quarter).

5.2.2 Multi-Frequency ESNs

The first set of ESNs we propose is given by two S-MFESN models, based on Example 4.1. One

model uses a reservoir of 30 neurons (we call it singleESN [A]); the other has a larger reservoir of

dimension 120 (named singleESN [B]). The sparsity degree of state parameters for both models is set

to be 10/N , where N is the reservoir size. Both MFESNs share the same hyperparameters, ρ = 0.5,

γ = 1, α = 0.1 (see (3.7)). These values have not been tuned but are presumed credible given other

ESN implementations in the literature. To make a fair comparison with DFMs, we fit the S-MFESN

models using 6-day-averaged daily data. Note here that for MFESN models the computational gains

of averaging are negligible, and are most apparent when tuning the ridge penalty via cross-validation.

Our second set of proposed models consists of two M-MFESNs according to Example 4.2. Both

models have two reservoirs, one for each data frequency – monthly and daily – with 100 and 20 neurons,

respectively; sparsity degrees are again adjusted to be 10/N , where N is the reservoir state dimension.

The first M-MFESN has hyperparameters that are hand-selected among reasonable values: we note

5We set the initial coefficient values to zero in all empirical exercises.
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Execution Time (Seconds) for Model Estimation

DFM singleESN multiESN

Dataset Mean AR(1) MIDAS [A] [B] [A] [B] [A] [B]

Small-MD 0.1 0.7 1.3 40.5 85.5 2.6 4.5 15.3 14.6

Medium-MD 0.1 0.8 − 48.0 226.5 2.5 5.7 17.7 14.7

Table 5.3: Execution time in seconds for model estimation measured over a single run on a quad-core computer.
MFESN models timing includes ridge penalty cross-validation. MIDAS estimation time refers to optimization
from a single initial value. DFM models were estimated on a single-core server and times are adjusted by a
factor of 1/4 for comparison.

that the monthly-frequency reservoir has no state leak and a larger input scaling, while the daily

frequency reservoir features smaller scaling than usual (to avoid compressing high volatility events

with the activation function) and the same leak rate as in S-MFESN models (we call this specification

multiESN [A]). For the second M-MFESN, we change hyperparameters more radically: we aim to

set up a model that has a very high input memory (Ballarin et al., 2023), and that also features

long-term smoothing of states. Note that here input scaling values are small, spectral radii are an

order of magnitude smaller than in previous models, and leak rates are large (we term this model

multiESN [B]).

5.3 Results

We start by commenting on the computational efficiency of competing models and report execution

times in seconds in Table 5.3. Firstly, DFM models appear to be the most computationally effortful

models among all specifications. For the Small-MD dataset, the simplest MFESN models, that is,

singleESN [A] and [B], have execution times which are at most 3.5 times higher than the MIDAS

model, while still being at least 15.6 times computationally cheaper than any of the DFM models.

The more resource-demanding models MFESN, multiESN [A] and [B], are nevertheless at least 2.6

times faster to run than the best DFM model (DFM [A]). When moving to the Medium-MD dataset,

where the MIDAS model is not, as explained earlier, a feasible choice, the most inefficient MFESN

model (singleESN [B]) still outperforms the best DFM model, DFM [A], by 8.4 times, while the

same holds for multiESN [A] model versus DFM [A] model by 2.7 times. We can conclude that

our proposed MFESN architectures provide an attractive and computationally efficient framework

for GDP forecasting in the multifrequency framework which is feasible for computations on low-cost

machine configurations available to practitioners.

Competing forecasts are compared using the Model Confidence Set (MCS) test derived in Hansen

et al. (2011). One should note that due to the intrinsic nature of data availability of macroeconomic

time series and panels, our sample sizes are modest. This implies that the small sample sensitivities

of the MCS test need to be taken into account when evaluating our comparisons. Recent analyses

of the finite sample properties of the MCS methodology have shown that it requires signal-to-noise

ratios which are unattainable in most empirical settings, an issue that undermines its applicability

(Aparicio and de Prado, 2018). Given this fact, we also conduct pairwise model comparison tests

with the Modified Diebold-Mariano (MDM) test for predictive accuracy (Diebold and Mariano, 2002,

Harvey et al., 1997).

As we also provide multiple-steps-ahead forecasts, we test for the best subset of models uniformly

across all horizons using the Uniform Multi-Horizon MCS (uMCS) test proposed by Quaedvlieg (2021).

Since there is relatively little systematic knowledge regarding the power properties of the uMCS test in

small samples, our inclusion of this procedure is meant as a statistical counterpoint to simple relative
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1-Step-ahead GDP Forecasting - Small-MD Dataset

Fixed Parameters Expanding Window Rolling Window

Model 2007 2011 2007 2011 2007 2011

MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 * 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **

AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.775 ** 1.209 **

MIDAS 0.533 ** 1.300 0.596 ** 1.129 * 0.709 ** 1.170 *

DFM [A] 0.799 * 1.337 0.980 * 1.320 0.919 * 1.226

DFM [B] 0.885 1.221 ** 0.982 * 1.022 ** 0.948 1.028 **

singleESN [A] 0.721 ** 1.015 ** 0.597 ** 0.867 ** 0.529 ** 0.863 **

singleESN [B] 0.758 * 0.921 ** 0.602 ** 0.844 ** 0.561 ** 0.930 **

multiESN [A] 0.802 * 1.250 0.635 ** 0.874 ** 0.621 ** 0.859 **

multiESN [B] 0.590 ** 0.969 ** 0.552 ** 0.895 ** 0.530 ** 0.921 **

Table 5.4: Relative MSFE and Model Confidence Set (MCS) comparison between models in 1-step-ahead
forecasting exercises. Unconditional mean MSFE is used as a reference. MCS columns show inclusion among
best models: ∗ indicates inclusion at 90%, ∗∗ indicates inclusion at 75% confidence.

forecasting error comparisons, which provide limited information about the significance of performance

differences. We provide more details on our implementation of the test in Appendix D. Finally, we do

not report uMCS test outcomes for the expanding window setup, as Quaedvlieg (2021) argues that in

such context the test is invalid.

5.3.1 Small Dataset

We begin our discussion of the Small-MD forecasting results by reviewing Table 5.4. For both sample

setups (2007 and 2011) and all three estimation strategies (fixed, expanding, and rolling windows) we

provide relative MSFE metrics, with the unconditional mean being used as a reference. Plots of each

of the model’s forecasts are given in Figures 4 and 5; additional plots for cumulative SFE, cumulative

RMSFEs and other metrics can be found in Appendix I.

The overall finding is that MFESN models perform very well, and, when we exclude the 2007

fixed parameters setup, they perform the best. It is easy to see from Figure 4 (a) why the 2007 fixed

window estimation case is different from other cases: the 2008 Financial Crisis induced a deep drop in

quarter-to-quarter GDP growth that was in stark contrast with previous business cycle fluctuations.

By keeping model parameters fixed, and using only information from 1990 to 2007 – periods where

systematic fluctuations are small – DFM and MFESN models are fit to produce smooth, low-volatility

forecasts. MIDAS, on the other hand, yields an exponential smoothing which can be more responsive

to changes in monthly and daily series. From Figure 4 (b) and (c) it is possible to see that expanding

and rolling window estimation resolves this weakness of state-space models. At the same time, the

AR(1) model outperforms the unconditional mean only in the 2007 sample with fixed parameters,

losing to the MIDAS model in all but one scenario.

Table 5.4 shows that MFESN models always perform better than the mean in terms of MSFE,

something which no other model class achieves across all setups. In both expanding and rolling window

setups they also always outperform the AR(1) model. Furthermore, at least one MFESN model for

each subclass (single or multi-reservoir) is always included in the model confidence set at the highest

confidence level. We remind again that the MCS test of Hansen et al. (2011) might be distorted due

to the modest sample sizes considered, even more so in the 2011 test sample. To complement the

MCS, we provide graphical tables for pairwise Modified Diebold-Mariano (MDM) tests, with 10%
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Figure 4: 1-Step-ahead GDP Forecasting – 2007 Sample – Small-MD Dataset
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Figure 5: 1-Step-ahead GDP Forecasting – 2011 Sample – Small-MD Dataset
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level rejections highlighted in Figure 14, Appendix I. The MDM tests broadly agree with the results

of Table 5.4, although they do not account for multiple testing, and therefore cannot be interpreted

as yielding subsets of the most accurate forecasting models in a statistical sense.

For multiple-steps-ahead forecasts, relative RMSFE and uMCS are reported in Tables 5.5 and 5.6:

we constrain our exercise to h ∈ {1, . . . , 8} steps, since we are interested in GDP growth forecasts

within 2 years. Note that for h = 1 our results are similar, but do not reduce to the one-step-

ahead results. To make correct multistep RMSFE evaluations and execute the uMCS procedure one

must select h different vectors of residuals of the same length: this implies that residuals at the end

of the forecasting sample must be trimmed off to compute short-term multistep RMSFEs that are

comparable to the long-term ones. We focus our discussion on Figures 6 and 7, which reproduce

the RMSFE numbers of the aforementioned tables graphically. Generally, we notice that MIDAS,

as well as S-MFESNs, provide the worst-performing multistep forecasts, with RMSFEs considerably

exceeding the unconditional mean baseline after horizon 1.

For MIDAS, we have already discussed how the existence of multiple loss minima can generate

numerical instabilities. Model re-fitting at each horizon can amplify this problem, as the loss landscape

itself changes as new observations are added to the fitting sample. We provide more discussions in

Appendix H.1. In the case of S-MFESN models, the reason is structural: we have discussed how in

our framework multistep MFESN forecasting entails iterating the state map, which can have multiple

attraction (stable) points. If the hyperparameters and estimated full model Ŵ s jointly do not define

a contraction, the limit of the multistep forecast does not have to be the estimated MFSEN model

intercept. However, Figures 6 and 7 show that our M-MFESN models, multiESN [A] and multiESN

[B], both perform on par or better than DFM models even after horizon h = 4. For example, in the

2007 expanding and rolling window experiments, multiESN [B] is able to outperform both DFMs and

an unconditional mean forecast by meaningful margins for forecasts up to a year into the future.

5.3.2 Medium Dataset

We now present the results for the Medium-MD dataset, which includes more than 30 regressors and

many high-frequency daily series. The same metrics as in the previous subsection are used for this

dataset to evaluate the relative performance of different methods.

The main difference in our empirical exercises is that now we a priori exclude MIDAS from the

set of forecasting methods as explained in detail in Subsection 5.2.1. Table 5.7 showcases the relative

performance of DFM and MFESN models in the Medium-MD forecast setup. We find that the

MFESN model multiESN [B] performs best in all setups, particularly under fixed parameters, where

MCS testing reveals that it is the only model included at a 75% confidence level. Of course, for the

MCS results we must again take into account the relatively small sample size, which could distort

the selection of best model subsets. MDM tests of Figure 16 in Appendix I largely agree with the

MCS results: in the fixed parameter setup any pairwise comparison of an alternative model against

MFESN multiESN [B] is rejected in favor of the latter. A visual inspection of one-step-ahead forecasts

in Figures 8 and 9 also shows that DFM models estimated over the Medium-MD datasets produce

forecasts with larger variability than MFESN methods, which is likely the key driver of the difference

in performance.

The multistep-ahead experiments are run as for the Small-MD dataset, with a maximum horizon

of 8 quarters. Tables 5.8 and 5.9 present the relative RMSFE performance of multistep forecasts

for all models, and we use Figures 10 and 11 of RMSFEs as references for our discussion. What

can be seen visually – and is also reproduced in the Tables – is that multi-reservoir MFESN models

and DFM model [A] have the best performance up to 4 quarters ahead; overall, taking into account

also the longer term, expanding or rolling window estimation of model multiESN [B] yields the best

forecasting results in the 2007 sample setup. The post-crisis 2011 sample setup makes comparison

harder, as DFM and M-MFESN models largely produce results in line with the unconditional sample
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Multistep-ahead GDP Forecasting - Small-MD Dataset - 2007 Sample

Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992 **

FIX MIDAS 0.823 1.672 2.737 1.816 2.213 2.791 1.888 1.921

FIX DFM [A] 0.890 0.969 1.014 1.077 1.341 1.701 2.001 2.180 *

FIX DFM [B] 0.937 1.069 1.202 1.344 1.799 2.310 2.638 2.801

FIX singleESN [A] 0.852 0.994 0.995 0.995 0.993 0.991 0.991 0.991 *

FIX singleESN [B] 0.871 0.986 0.989 0.989 0.985 0.981 0.981 0.981 **

FIX multiESN [A] 0.898 0.980 0.990 0.991 0.988 0.985 0.985 0.985 **

FIX multiESN [B] 0.767 0.954 0.983 0.991 0.991 0.990 0.991 0.991 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -

EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 -

EW MIDAS 0.814 1.283 1.518 1.596 1.697 1.391 1.951 1.800 -

EW DFM [A] 0.985 1.109 1.123 1.114 1.217 1.226 1.241 1.539 -

EW DFM [B] 0.989 1.082 1.149 1.199 1.315 1.412 1.373 1.425 -

EW singleESN [A] 0.771 1.260 1.485 1.564 2.070 2.728 2.550 2.834 -

EW singleESN [B] 0.772 1.031 1.135 1.319 1.831 2.279 2.449 2.556 -

EW multiESN [A] 0.792 0.897 0.941 0.976 1.015 1.240 1.377 1.227 -

EW multiESN [B] 0.740 0.853 0.894 0.911 0.873 0.993 1.020 1.020 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *

RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962 **

RW MIDAS 0.933 1.438 1.642 1.993 1.794 1.661 1.816 1.973 *

RW DFM [A] 0.931 1.017 1.033 1.020 1.024 1.003 0.918 1.062 *

RW DFM [B] 0.942 0.973 0.970 1.045 1.059 1.203 1.225 1.263 *

RW singleESN [A] 0.714 1.320 1.693 1.972 2.733 3.669 3.391 3.719 *

RW singleESN [B] 0.737 1.100 1.248 1.667 2.327 2.765 2.842 2.792 *

RW multiESN [A] 0.773 0.972 1.053 1.111 1.187 1.293 1.505 1.131 *

RW multiESN [B] 0.716 0.895 0.916 0.926 0.890 1.041 1.102 1.105 **

Table 5.5: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used as
reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS columns
show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates inclusion at
75% confidence.

29



Multistep-ahead GDP Forecasting - Small-MD Dataset - 2011 Sample

Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **

FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 *

FIX MIDAS 1.090 1.721 1.793 2.203 2.363 1.997 2.846 2.328

FIX DFM [A] 1.112 1.051 0.999 1.079 1.084 1.025 1.020 1.061 *

FIX DFM [B] 1.058 0.945 0.916 1.003 1.012 0.970 1.038 1.033 **

FIX singleESN [A] 0.978 1.705 2.561 2.704 3.314 3.151 2.999 3.316

FIX singleESN [B] 0.930 1.095 1.885 2.356 2.650 2.704 2.880 2.844 **

FIX multiESN [A] 1.059 1.148 1.262 1.312 1.339 1.409 1.424 1.162

FIX multiESN [B] 0.981 1.007 0.985 0.994 1.008 0.999 0.999 0.998 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -

EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 -

EW MIDAS 1.005 1.382 1.339 1.354 1.609 1.444 1.803 1.263 -

EW DFM [A] 1.144 1.132 1.057 1.093 1.076 1.067 1.038 1.016 -

EW DFM [B] 0.985 0.940 0.918 0.995 1.010 0.980 1.050 0.971 -

EW singleESN [A] 0.935 1.645 2.184 1.929 2.388 1.959 1.810 2.266 -

EW singleESN [B] 0.911 1.092 1.101 1.529 2.195 1.843 1.847 2.060 -

EW multiESN [A] 0.922 0.965 1.089 0.978 0.977 1.043 1.278 0.995 -

EW multiESN [B] 0.944 0.992 0.978 0.977 0.991 0.985 0.990 0.996 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968

RW MIDAS 1.051 1.303 1.310 1.674 1.762 1.467 1.643 1.463

RW DFM [A] 1.061 1.033 1.012 1.088 1.077 1.015 1.040 1.069

RW DFM [B] 0.947 0.893 0.901 1.009 1.040 0.966 1.030 0.949 **

RW singleESN [A] 0.919 1.788 2.359 2.483 2.981 2.401 2.234 2.690

RW singleESN [B] 0.944 1.132 1.214 1.762 2.608 2.552 2.517 2.541

RW multiESN [A] 0.896 1.047 1.222 1.124 1.122 1.410 1.666 1.316

RW multiESN [B] 0.940 1.003 0.969 0.989 0.979 0.972 0.967 0.961 **

Table 5.6: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used as
reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS columns
show inclusion among best models: ∗ indicates inclusion at 90%, ∗∗ indicates inclusion at 75% confi-
dence.
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Figure 6: Multistep-ahead GDP Forecasting, RMSFE – 2007 Sample – Small-MD Dataset
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Figure 7: Multistep-ahead GDP Forecasting, RMSFE – 2011 Sample – Small-MD Dataset
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1-Step-ahead GDP Forecasting - Medium-MD Dataset

Fixed Parameters Expanding Window Rolling Window

Model 2007 2011 2007 2011 2007 2011

MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **

AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.775 * 1.209 **

DFM [A] 0.841 * 1.325 * 0.682 ** 1.272 ** 0.747 * 1.517 **

DFM [B] 1.118 * 1.408 ** 0.821 * 1.117 ** 0.926 1.186 **

singleESN [A] 0.967 * 1.717 * 0.775 ** 1.072 ** 0.791 * 1.493 *

singleESN [B] 0.826 * 1.278 ** 0.655 ** 1.028 ** 0.561 ** 0.944 **

multiESN [A] 0.901 * 1.080 ** 0.618 ** 0.913 ** 0.556 ** 0.884 **

multiESN [B] 0.682 ** 0.748 ** 0.587 ** 0.774 ** 0.547 ** 0.728 **

Table 5.7: Relative MSFE and Model Confidence Set (MCS) comparison between models in 1-step-ahead
forecasting exercises. Unconditional mean MSFE is used as a reference. MCS columns show inclusion among
best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates inclusion at 75% confidence.

mean. This evaluation is confirmed by uMCS tests, consistently with the multistep results obtained

with the Small-MD dataset.

6 Conclusions

Macroeconomic forecasting – especially long-term forecasting of macroeconomic aggregates – is a topic

of crucial importance for institutional policymakers, private companies, and economic researchers.

Given the modern-day availability of “big data” resources, methods capable of integrating heteroge-

neous data sources are increasingly sought to provide more precise and robust forecasts.

This paper presents a new methodological framework inspired by the Reservoir Computing liter-

ature to deal with data sampled at multiple frequencies and with multiple-step-ahead forecasts. We

have then taken Echo State Networks – a type of RC models – and formally extended them to allow

the modeling of data with multiple release frequencies. Our discussion encompasses model fitting,

hyperparameter tuning, and forecast computation. As a result, we provide two classes of models,

single- and multiple reservoir multi-frequency ESNs, that can be effectively applied to our empirical

setup: forecasting US GDP growth using monthly and daily data series. Along with the unconditional

mean and AR(1) model, we considered two well-known methods, MIDAS and DFMs, as the current

benchmarks available in the literature. In our applications, we find that MFESN models are compu-

tationally more efficient and easier to implement than DFMs and MIDAS, respectively, and perform

better than or as well as benchmarks in terms of MSFE. These improvements are statistically signifi-

cant in a number of setups, as shown by our MCS and MDM tests. Thus, we argue that our machine

learning-based methodology can be a useful addition to the toolbox of contemporary macroeconomic

forecasters.

Lastly, we wish to highlight the many potential areas of research that we believe would be inter-

esting to explore in the future. We have not discussed the role of the distribution from which we

sample the entries of the reservoir matrices. While it is known that these can have significant effects

on the forecasting capacity of an ESN model, the literature lacks definitive theoretical results (even

for dynamical systems applications) or systematic studies with stochastic inputs and targets. The

hyperparameter tuning routine we have developed neither allows separating individual hyperparam-

eters nor does it tackle the identification problem. Moreover, we assume that the ridge regression

penalty strength, λ, is tuned ex ante: it would be interesting and desirable to understand if it is
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Multistep-ahead GDP Forecasting - Medium-MD Dataset - 2007 Sample

Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *

FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992

FIX DFM [A] 0.914 0.947 0.955 0.988 1.015 1.027 1.034 0.995 **

FIX DFM [B] 1.046 1.204 1.293 1.341 1.649 1.984 2.101 2.070 *

FIX singleESN [A] 0.985 0.995 0.995 0.995 0.994 0.992 0.992 0.992 *

FIX singleESN [B] 0.912 0.985 0.985 0.985 0.980 0.976 0.976 0.976 *

FIX multiESN [A] 0.950 0.993 0.994 0.994 0.992 0.990 0.990 0.990 *

FIX multiESN [B] 0.826 0.972 0.988 0.990 0.989 0.986 0.985 0.985 *

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -

EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 -

EW DFM [A] 0.805 0.916 0.978 1.038 1.077 1.126 1.077 1.073 -

EW DFM [B] 0.893 1.134 1.418 1.567 2.238 2.964 3.375 3.629 -

EW singleESN [A] 0.879 1.125 1.305 1.442 1.860 2.166 2.361 2.443 -

EW singleESN [B] 0.802 1.174 1.439 1.744 2.305 2.869 2.935 3.167 -

EW multiESN [A] 0.780 0.935 1.012 1.005 1.093 1.337 1.328 1.313 -

EW multiESN [B] 0.760 0.874 0.911 0.891 0.863 0.971 1.030 1.051 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962

RW DFM [A] 0.837 0.913 0.924 0.954 1.012 0.997 1.018 1.005

RW DFM [B] 0.932 1.116 1.232 1.414 1.952 2.704 3.183 3.294

RW singleESN [A] 0.873 1.274 1.530 1.652 2.095 2.575 2.786 3.014

RW singleESN [B] 0.732 1.190 1.490 1.712 2.218 2.861 2.967 3.094

RW multiESN [A] 0.732 0.914 0.960 1.011 1.202 1.618 1.683 1.572

RW multiESN [B] 0.731 0.871 0.875 0.844 0.771 0.971 1.014 1.014 **

Table 5.8: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used as
reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS columns
show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates inclusion at
75% confidence.
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Multistep-ahead GDP Forecasting - Medium-MD Dataset - 2011 Sample

Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *

FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 **

FIX DFM [A] 1.126 0.987 0.962 1.054 1.031 0.988 1.001 1.002 **

FIX DFM [B] 1.149 0.987 0.885 1.064 1.142 1.134 1.273 1.296

FIX singleESN [A] 1.283 1.921 2.527 3.038 3.285 3.154 3.193 3.655

FIX singleESN [B] 1.059 1.523 1.918 2.417 2.812 2.683 2.703 2.970

FIX multiESN [A] 1.011 1.061 1.434 1.477 1.748 2.030 2.023 1.994

FIX multiESN [B] 0.841 0.945 0.997 0.978 1.004 1.015 1.013 1.014 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -

EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 -

EW DFM [A] 1.092 0.942 0.944 1.049 1.026 0.994 0.996 0.999 -

EW DFM [B] 0.971 1.046 1.031 1.114 1.238 1.116 1.223 1.310 -

EW singleESN [A] 1.039 1.451 1.980 2.385 2.699 2.353 2.506 2.608 -

EW singleESN [B] 0.992 1.828 2.465 3.072 3.547 3.357 3.368 3.610 -

EW multiESN [A] 0.934 1.014 1.391 1.252 1.371 1.369 1.228 1.279 -

EW multiESN [B] 0.857 0.931 1.003 0.973 1.002 1.009 1.025 1.029 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **

RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968 **

RW DFM [A] 1.113 0.982 0.927 1.038 1.030 0.997 1.016 1.028 *

RW DFM [B] 0.881 0.996 1.021 1.098 1.150 1.114 1.114 1.212 **

RW singleESN [A] 1.193 2.267 3.265 3.580 4.090 3.790 4.015 4.562

RW singleESN [B] 0.927 1.933 2.612 3.265 3.753 3.567 3.556 3.792

RW multiESN [A] 0.900 1.049 1.500 1.465 1.789 1.707 1.505 1.462

RW multiESN [B] 0.816 0.916 0.977 1.009 0.982 0.988 0.974 0.981 **

Table 5.9: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used as
reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS columns
show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates inclusion at
75% confidence.
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Figure 8: 1-Step-ahead GDP Forecasting – 2007 Sample – Medium-MD Dataset
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Figure 9: 1-Step-ahead GDP Forecasting – 2011 Sample – Medium-MD Dataset
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Figure 10: Multistep-ahead GDP Forecasting, RMSFE – 2007 Sample – Medium-MD Dataset
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Figure 11: Multistep-ahead GDP Forecasting, RMSFE – 2011 Sample – Medium-MD Dataset
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possible to jointly tune λ and φ, or rather if one can fully separate their selection. In our preliminary

experiments, we have noticed that the roles of the ridge penalty and the input scaling, for example,

cannot be trivially disentangled – thus prompting the ψ-form normalization. Model selection for the

dimension of MFESN models is another question that would be key to exploring and designing more

efficient and effective ESN models, especially when dealing with multiple frequencies and reservoirs.

Finally, practitioners may be interested in identifying the combination of frequencies in the regressor

series that would lead to the most accurate GDP forecasts produced by MFESN models.
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A Nowcasting and Multicasting

Nowcasting. We call nowcasting the setup in which one constructs a high-frequency proxy for a

yet-unobserved target which will be available at the end of the current low-frequency period. As such,

we construct a nowcast only for horizons 0 < l ≤ κ − 1; notice that l = κ yields a contemporaneous

regression at t + 1, while l = 0 falls into the category of low-frequency forecasting considered in

Section 2.2, hence both these two cases are excluded. The σ-algebras that are used in order to

construct nowcasts ŷt+1,ℓ|κ are given by

Ft,ℓ|κ = σ
({
yt, yt−1, . . . , zt,ℓ|κ, zt,(ℓ−1)|κ, zt,(ℓ−2)|κ, . . .

})
= σ

({
yt, yt−1, . . . , zt+1,−(κ−ℓ)|κ, zt+1,−(κ−ℓ)+1|κ, zt+1,−(κ−ℓ+2)|κ, . . .

})
.

The l-steps nowcast for the high-frequency proxy constructed at moments t, ℓ|κ of the current period

for the low-frequency variable which becomes available at t+1, 0|κ ≡ t+1 is provided by the conditional

expectation

ŷNt+1,ℓ|κ = E [yt+1|Ft,ℓ] .

Multicasting. One always aims to construct one-step and multistep forecasts by using all the avail-

able information at a given point in time. It is, therefore, natural to compare models by constructing

high-frequency nowcasts for the target variable to be released at the end of the current period and

its high-frequency proxy forecasts for the next periods. To avoid confusion, we refer to this situation

as multicasting. More explicitly, provided that the forecaster finds herself at time index t, s|κ and is

interested in all the forecasts up to some maximal low-frequency horizon H ≥ 1, for each 1 ≤ l ≤ Hκ
the multicasting scheme yields the following combination:

(a) Nowcasting when 0 < l ≤ κ− 1 and ℓ = l: ŷNt+1,ℓ|κ = E [yt+1|Ft,ℓ].

(b) Forecasting when l > κ− 1:

• Low-frequency forecasting if l satisfies lmodκ = 0: ŷt+h = E [yt+h|Ft].

• High-frequency forecasting if lmodκ ̸= 0: Ft,ℓ: ŷ
H
t+h,ℓ|κ = E [yt+h|Ft,ℓ].

B ESN Implementation

B.1 Fixed, Expanding and Rolling Window Estimation

Model parameter stability is an important and well-studied question in linear time series analysis.

Indeed, identifying and explaining structural breaks play a key role in macroeconomic modeling. To

account for this possibility, we compare multiple estimation setups which may reflect possible changes

in model parameters.

Suppose again that a sample Y = (y2,y3, . . . ,yT )
⊤ ∈ MT−1,J of targets is available, an initial

state x0 is given and regressors Z = (z1, z2, . . . ,zT−1)
⊤ ∈ MT−1,K are observed. Additionally, the

researcher has available an out-of-sample dataset, Y † = (yT+1,yT+2, . . . ,yT+S)
⊤ ∈ MS,J , Z

† =

(zT , zT+1, . . . ,zT+S−1)
⊤ ∈ MS,K for S ≥ 1. We now define the estimation setups which can be used

for subsequent forecasting for h ∈ N+ steps ahead and can be adjusted for the multi-frequency setup.

We consider the following estimation strategies:

(i) Fixed parameters: An estimator Ŵ is computed strictly over sample observations Y and Z

with some penalty λ chosen with data available up to time T . Model parameters are kept fixed

when the estimated model is applied to construct out-of-sample forecasts ŷT+1, ŷT+2, . . . , ŷT+S

as out-of-sample regressors zT , zT+1, . . . ,zT+S−1 are added to the information set.
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(ii) Expanding window: For each out-of-sample time step s = 0, . . . , S, define ŴEW
s as the

estimate computed by “expanding” the sample window up to time T + s, given by Y EW
s :=

(y2,y3, . . . ,yT ,yT+1, . . . ,yT+s)
⊤ and ZEW

s := (z1, z2, . . . ,zT−1, zT , . . . ,zT+s−1)
⊤. Coefficients

ŴEW
s are re-estimated and penalty strength λ is re-validated over windows Y EW

s , ZEW
s .

(iii) Rolling window: In this setup the within-window sample size is kept fixed across windows

– that is, the sample window “rolls” over the data – by defining ŴRW
s as the estimate over

Y RW
s := (y2+s,y3+s, . . . ,yT+s−1,yT+s)

⊤ and ZRW
s := (z1+s, z2+s, . . . ,zT+s−2, zT+s−1)

⊤ for s =

0, . . . , S. Coefficients ŴRW
s are re-estimated and penalty strength λ is re-validated over windows

Y RW
s , ZRW

s .

In all three strategies, hyperparameters φ := (α, ρ, γ, ω) could also be re-tuned on corresponding

windows as in Appendix B.2. The fixed-parameter setup is the most rigid one. It builds upon the idea

that the initial sample contains sufficient information for correct model estimation and forecasting and

that the model parameters are constant. Its theoretical analysis is relatively easy as there is no need

to discuss the stability of the penalty and the hyperparameters across sample windows. An expanding

window setup is based on the belief that newly available data contains key information to produce

forecasts and, therefore, must be continuously incorporated. In essence, forecasters do this when they

re-estimate a model at each data release cycle. In the case of a rolling window estimation strategy, one

can theoretically handle model changes. Although proper structural break modeling would require a

consistent identification of breakpoints, rolling window estimation can potentially accommodate slow

drifts in model parameters over time by directly discarding old data, unlike with an expanding window.

We do not explore the selection of an optimal window size, which in rolling window estimation has

been shown to improve forecasting performance (Inoue et al. (2017)).

B.2 Hyperparameter Tuning

We now propose a general scheme for selection of hyperparameters φ := (α, ρ, γ, ω) in (3.7) for a

model of the form (3.3)-(3.4). Our approach builds on the idea of leave-one-out cross-validation for

time series models. Using a fixed, expanding, or rolling window over the training data, one can always

compute the one-step forecasting errors committed by the ESN, given fixed normalized model matrices

(A,C, ζ) and a hyperparameter vector φ. By choosing an appropriate loss function ℓ : RJ×RJ → R+,

J ∈ N+, we can thus compute the empirical ESN forecasting error

LT (φ) :=
T−1∑
t=T0

ℓ(yt+1, Ŵt(φ)
⊤xt),

where Ŵt(φ) is the readout coefficients estimator involving data available up to time t and 1 < T0 <

T − 1 is the minimum number of observations used for fitting. Notice that if ℓ(u,v) = ∥u − v∥22,
u,v ∈ RJ , then LT (φ) is the cumulative squared error that is minimized in training (modulo a ridge

penalty term). Here, however, the interest is not in estimating W , which minimizes LT , but rather

finding the optimal hyperparameter vector

φ∗ ∈ argmin
φ∈[0,1)×[0,ρ]×[0,γ]×[0,ω]

LT (φ),

where upper bounds ρ, γ, and ω can be appropriately chosen (in our empirical exercises we use 10

and verify that solutions are never on the boundary). We highlight that to tune φ one may choose ℓ

that is different from the one used in the estimation of the readout coefficients W .

We present the entire hyperparameter optimization routine in Algorithm 1. Note that step (i) might

entail re-normalizing inputs and targets at each window t. This setup is general and allows applying
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Algorithm 1: Hyperparameter tuning

Data: Sample y2:T = {y2,y3, . . . ,yT }, z1:T−1 = {z1, z2, . . . ,zT−1}, initial state x0, initial
guess φ0, convergence criterion Crit, maximal algorithm iterations MaxIter. If ridge
regression is used to estimate W , fixed regularization strength λ > 0.

Result: φ∗

Fix T and determine the model fit windows for t = T0, . . . , T − 1. Choose whether the ESN
model is estimated with a fixed or rolling window;
j = 0;
while (not Crit) and (j < MaxIter) do

(i) Given φj , estimate coefficient matrices(
Ŵt(φj)

)
T0:T−1

,

where possibly Ŵt(φj) does not depend on t, e.g. in the fixed estimation setup;
(ii) Compute

LT (φj) :=
T−1∑
t=T0

ℓ(yt+1, Ŵt(φj)
⊤xt),

the cumulative one-step-ahead forecasting loss;
(iii) Update φj+1 ← φj with an appropriate rule (for example, the gradient descent of LT
in the direction of φj ; in our applications, we use variants L-BFGS-B and pattern search);

(iv) j ← j + 1, update Crit;

any global optimization routine to minimize LT (φ). We construct the loss LT (φj) sequentially, that

is by summing squared residuals of the model estimated in step (i) of Algorithm 1 when ℓ is a

quadratic loss. One can program LT (φj) via TensorFlow so that the gradient can be evaluated by

backpropagation in Algorithm 1 (iii). Since there is no guarantee that the objective function is convex

or even everywhere smooth, we suggest applying optimizers known to explore the parameter space

efficiently. We emphasize that the lack of convexity guarantees is much more consequential for the

other benchmarks, in particular for the MIDAS model (see Appendix H.1 for more details).

One issue with the state formulation in (3.3) and thus with the hyperparameter optimization

routine in Algorithm 1, is that φ can not always be point identified. For example, if one considers

identity activation σ and lets α = ω = 0, it is obvious that the ESN model is system isomorphic

Grigoryeva and Ortega (2021) to x∗
t = dρAx∗

t−1 + dγCzt, yt = d−1Wx∗
t + ϵt for all d ̸= 0. This

issue also arises in nonlinear models, for example when σ is taken as a hyperbolic tangent and γ is

sufficiently small. Parameter identification in nonlinear models has been extensively studied in semi-

and nonparametric cross-sectional regressions. For instance, it is known that in certain setups, point

identification requires a proper normalization to be imposed. The interested reader can refer to Section

6.3 of Horowitz (2009) for a discussion in a similar vein regarding nonparametric transformation

models. Since often ω = 0 is used, hyperparameter identification can be a significant issue when

attempting model tuning. Whenever ω = 0 we propose a helpful reparametrization given by

xt = αxt−1 + (1− α)σ
(
ψAxt−1 + Czt

)
,

where ψ = ρ/γ. This prescription allows decoupling ρ and γ at the cost of the constant input scaling,

which may be undesirable whenever one wants to attenuate the nonlinearity induced by the sigmoid

map without also reducing the spectral radius.6 It is immediate to modify the optimization scheme to

6One can fix C to have a different scaling before optimizing the hyperparameter ψ. However, this amounts to one
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deal with the case φ̃ = (α,ψ). In the sequel, we assume that the ESN models are estimated using the

approaches proposed in this subsection and use the conventional ESN specification as in (3.3)-(3.4) to

discuss the forecasting strategy.

B.3 Cross-validation

Because the initial cross-validation of λ uses an extended sample to try and improve generalization –

specifically, our concern is for the fixed estimation setups – we use two slightly different approaches:

• In all setups – fixed, expanding, rolling – the initial ridge penalty cross-validation is done on

the extended sample (starting January 1st, 1975 instead of January 1st, 1990). We construct

10 folds with 5 out-of-sample observations starting from the end of the sample. Each fold and

out-of-sample observation set is re-normalized.

• Only in the expanding and rolling setups, for each subsequent window (the ones that now

include at least one testing observation), we use the true sample (starting January 1st, 1990)

and construct 5 folds, again with 5 out-of-sample observations. This is done to keep cross-

validation computational complexity low and avoid making some folds too small, which could

hurt larger MFESN models.

In practice, simple experiments show that there is not much difference between using 5 or 10 folds in

the initial cross-validation.

C Performance measures

In this section we define the performance measures used throughout the paper to quantify the quality

of forecasts produced by competing models. Suppose that a given model is used to produce a collection

of forecasts {ŷs}s∈S , ŷs ∈ RJ . The ordered index set S = {s1, . . . , s|S|}, where |S| is the number of

indices in S, can change depending on the setup. For example, in the case of 1-step ahead forecasting,

S = {T + 1, T + 2, . . . , T + T} where the 1-step ahead forecasts are constructed using the data up to

T, T +1, . . . , T +T − 1, respectively. For h-step ahead forecasts, we set S = {T +h, T +h+1, . . . , T +

T − H + h} where H is the maximal forecasting horizon. This ensures that the same number of

forecasts are produced at each horizon and can be compared, for example, using the uniform Model

Confidence Set (MCS) test described in Appendix D.

MSFE and RMSFE. The root mean squared forecasting error is given by

MSFE(S) :=
1

|S|
∑
s∈S
∥ys − ŷs∥22,

while the root mean squared forecasting error is

RMSFE(S) :=
√

MSFE(S) .

Cumulative SFE and Cumulative RMSFE. The cumulative squared forecasting error is given

by the cumulative sum of squared errors. We define for any forecasting index τ ∈ S,

CSFE(τ) :=
∑
s∈S
s≤τ

∥ys − ŷs∥22.

more ex ante model tuning step.
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To define the cumulative RMSFE for any τ ∈ S we first define Tl(τ) := {s ∈ S : s ≤ τ} and then write

CRMSFE(τ) :=

√√√√ 1

|Tl(τ)|
∑

s∈Tl(τ)

∥ys − ŷs∥22.

Ahead RMSFE and 1-Year-Ahead RMSFE. If one wants to the evaluate performance ahead

of a certain point of time, it is also possible to define the ahead RMSFE,

AheadRMSFE(τ) :=

√√√√ 1

|Tu(τ)|
∑

s∈Tu(τ)

∥ys − ŷs∥22,

where we introduce Tu(τ) := {s ∈ S : s ≥ τ}.
In the special case where the indices of S are associated to dates, one may also compare performance

after a given amount of time has passed from the current time index. For example, one may evaluate

how performance degrades after model estimation when parameters are fixed and not updated. In our

empirical exercises where {yt}t∈Z, yt ∈ R, is a quarterly GDP series, we can define the 1-year-ahead

RMSFE as

1YAheadRMSFE(τ) :=

√√√√ 1

|Tu(τ + 4)|
∑

s∈Tu(τ+4)

(ys − ŷs)2.

D Uniform Multi-Horizon MCS

We now give details on the implementation of the Uniform Multi-Horizon MCS test for the multi-

horizon forecast comparisons in our empirical analysis. Our procedure follows closely the one originally

provided by Quaedvlieg (2021): we provide R code for our functions, while the author’s code was

originally developed in the Ox programming language.

A main difference is that we prefer to use a Bartlett kernel to compute the sample uSPA statistic,

whereas Quaedvlieg (2021) uses the quadratic spectral (QS) kernel of Andrews (1991). Our main

reason for this choice is that the QS kernel features non-zero weights for all lags, while the Bartlett

kernel has finite support. This is especially important since we only have a few forecasts in our case;

thus, higher lag autocovariances between model losses can only be poorly estimated. It means our

uMCS procedure implements the standard Newey-West HAC estimator. We use B = 100 replications

for the outer and inner bootstraps. Finally, the inner bootstrap critical value is set at α = 0.1.

E MIDAS

A state-of-the-art methodology for incorporating data of heterogeneous frequencies into one model

is the MIDAS framework developed in Ghysels et al. (2004, 2007). Here we present MIDAS in its

dynamic form, which allows the inclusion of target series autoregressive lags. We use our temporal

notation given in Definition 2.1 throughout.

If the MIDAS model contains only one explanatory variable (zr) with frequency multiplier κ, then

it can be written as

yt = α0 +

p∑
i=1

αiyt−i + β
K∑
k=0

φ(θ, k)zt,−k|κ + ϵt, (E.1)

where α0 is a constant term, {αi}pi=1 are the autoregressive parameters, β is a scaling parameter,

{φ(θ, k)}Kk=0 are the MIDAS weights given as a parametric function of lag k and underlying parameter
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vector θ ∈ Rq, and (ϵt) is a martingale difference process relative to the filtration {Ft} generated by

{yt−1−j , xt−j , . . . , xt−j,−K|κ, ϵt−1−j | j ≥ 0} and such that E[ϵ2t ] = σ2ϵ <∞.

The MIDAS weighting scheme is the core innovation of the model. It borrows parsimony from

distributed lag models in the sense that, even if K is large, the vector θ ∈ Rq is usually restricted

to contain only a handful of parameters. This greatly reduces the number of coefficients that need

to be estimated, and a nonlinear least-squares estimator θ̂ can be readily implemented. There are

alternative formulations of the MIDAS framework where φ(θ, k) = θk so that the above reduces to a

full linear model, the so-called unrestricted MIDAS or U-MIDAS (Foroni and Marcellino, 2011).

We follow the literature and use the most commonly applied weighting scheme that is based on

the exponential Almon weighting polynomial map φ : Rq × N+ −→ R+ (see Almon (1965) for more

details). In particular, for the case of q = 2, the two-parameter Almon weighting polynomial is given

by

φ(θ, k) = φ((θ1, θ2), k) = exp(θ1k + θ2k
2), k ∈ N+.

Since Almon weights need not sum up to a given constant for different values of θ1 and θ2, it is often

common to consider the normalized Almon scheme

φ(θ, k) =
exp(θ1k + θ2k

2)∑K
k=0 exp(θ1k + θ2k2)

, (E.2)

which together with (E.1) allows to treat β as a rescaling constant.

Let us now consider a more general model suitable for situations where time series of different

frequencies are available and must be integrated into the MIDAS equation. Consider the case of L

regressor time series. We assume that the lth time series is sampled at a frequency κl and contains

observations (z
(l)
t,s|κl

)t,s with z
(l)
t,s|κl

∈ R for all t ∈ Z and s ∈ {0, . . . , κl − 1}. It happens frequently in

practice that κl, l ∈ [L] takes values from a small set of integers. For example, in the case of yearly,

quarterly, and monthly data κl ∈ {1, 4, 12} even though L could be very large (often, hundreds or

thousands of series might be of interest). The MIDAS model explaining low-frequency target variable

yt with L regressors (z
(l)
t,s|κl

)t,s, l ∈ [L] can be written as follows

yt = α0 +

p∑
i=1

αiyt−i +
L∑
l=1

βl

Kl∑
k=0

φ(θl, k)z
(l)
t,−k|κl

+ ϵt, (E.3)

where the martingale difference process (ϵt) is relative to the filtration generated by sets as in (E.1),

modified to include all the considered L regressors.

The MIDAS framework produces forecasts of the chosen target variable at the low frequency of

the target. Yet, due to the MIDAS multi-frequency structure, nowcasting is also a straightforward

exercise: if, for example, the high-frequency regressor is a single series (zr) with frequency multiplier

κ, one can construct exactly κ regression equations – one for each high-frequency release within a

low-frequency period – and use these to produce high-frequency nowcasts of the target. In fact, due

to the convenience of the MIDAS model, it is easy to define high-frequency regression specifications

to study high-frequency forecasts and multicasts (see Section 2.2 and Appendix A).

In practice, implementing (E.3) demands some care. From a computational point of view, as

long as the relevant regression matrices can be constructed, estimation amounts to a nonlinear least-

squares problem, which can be readily solved. In Appendix E.1 and Appendix H.1 we discuss the

technical aspects of our MIDAS implementation in more detail. One of the important issues of the

MIDAS estimation is the non-convexity of the nonlinear least squares loss as a function of parameters.

Often, a practitioner may obtain different estimation results depending on initialization and, more

importantly, those that lead to a different quality of forecasts. Other weighting schemes that allow

for convex estimation problems can be used. For example, one may adopt the Almon lag polynomial
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parametrization (Ghysels, 2016, Pettenuzzo et al., 2016) using a discrete polynomial basis for the

transformation of high-frequency regressors. This specification allows for standard OLS estimation

but requires careful choice of the polynomial order hyperparameter.

Another crucial disadvantage of the MIDAS specification is that practical implementations can be

very challenging. This is caused mainly by the ragged edges of the “raw” macroeconomic data, incom-

plete observations, and uneven sampling frequencies. The relative inflexibility of MIDAS regression

lag specifications makes integrating daily and weekly data at true calendar frequencies (i.e. without

interpolation or aggregation) very complex.7 State-space models effectively mitigate these issues.

Finally, as shown in Bai et al. (2013), exponential Almon MIDAS regressions have inherent con-

nections to dynamic factor models, which we discuss in the next section. When the factor structure is

not trivial, MIDAS can, however, only yield a finite-order approximation to a DFM data-generating

process. Furthermore, Bai et al. (2013) prove that in well-identified setups the mapping between

exponential Almon and factor model coefficients is highly nonlinear. Given the robustness evalua-

tions in Appendix H.1, in practice, it appears hard to formally relate MIDAS and DFM forecasting

performance.

E.1 MIDAS Implementation

While the MIDAS regression framework is straightforward to discuss in terms of equations, some care

must be taken when implementing it computationally. A key assumption that can be imposed is that

the integer frequencies κ := {κ1, . . . , κL} of L regressors are such that κmax := max(κ) is a multiple

of each of the κl, l ∈ [L]. In this case, MIDAS parameter estimation can be written in matrix form,

which allows for efficient numerical implementation, which we spell out in the following paragraphs.

Let ql = κmax/κl, l ∈ [L] denote the frequency ratios and define y := (y1, y2, . . . , yT )
⊤ the vector

of target observations, where T is the sample length in reference time scale. Additionally, let z(l) :=

(z
(l)
1 , z

(l)
2 , . . . , z

(l)
Tl
)⊤ be Tl = T · κl long vector which consists of observations of the lth covariate z(l)

released with frequency κl. For the parameters of the MIDAS model in (E.3) to be identifiable, we

assume that

T > 1 + p+
L∑
l=1

⌈
Kl

κl

⌉
.

Since κmax is a multiple of each of the L frequencies, for each series we introduce

Y = y ⊗ iκmax , Z(l) = z(l) ⊗ iql ,

where iql and iκmax are vectors of ones of lengths ql and κmax, respectively. In the absence of missing

observations, we have that Y,Z(l) ∈ RTmax with Tmax = T · κmax observations. We now construct

preliminary regression matrices such that their maximal rows number is Tmax without accounting

for the lags structure of both the target (autoregressive lags) and regressors (MIDAS lags) and we

7One could set up a MIDAS regression with the full yearly calendar of weeks and working days as lags. However,
ragged edges arising from holidays, leap years, etc. would still be non-trivial to handle coherently without resorting to
downsampling, data re-alignment, or interpolation.
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introduce zeros where no observations are available.8 Define for p ≥ 1 and for Kl ≥ 0

Yp =



0 0 · · · 0

y1 0 · · · 0

y2 y1 · · · 0
...

...
...

...

yT−2 yT−3 · · · yT−p−1

yT−1 yT−2 · · · yT−p


⊗ iκmax and ZKl

=



z
(l)
1 0 · · · 0

z
(l)
2 z

(l)
1 · · · 0

z
(l)
3 z

(l)
2 · · · 0

...
...

...
...

z
(l)
Tl−1 z

(l)
Tl−2 · · · z

(l)
Tl−Kl−1

z
(l)
Tl

z
(l)
Tl−1 · · · z

(l)
Tl−Kl


⊗ iql .

In the special case p = 0 (the MIDAS model, in this case, is called static, since it does not contain an

autoregressive term) we take Yp as empty. We now follow by noticing that one should not use Yp ∈
MTmax,p and ZKl

∈MTmax,Kl+1 as autoregressive and mixed-frequency regression matrices, respectively,

since some observations are missing. To overcome this we introduce

n := max

{
p,

⌈
K1

q1

⌉
, . . . ,

⌈
KL

qL

⌉}
· κmax (E.4)

and the so-called upper truncation (selection) matrix

U =
(
OTmax−n+1,n−1 ITmax−n+1,Tmax−n+1

)
with which we obtain the following required response vector and regression matrices

Yresp = UY ∈ RTmax−n+1,

Y reg
p = UYp ∈MTmax−n+1,p,

Zreg
Kl

= UZKl
∈MTmax−n+1,Kl+1,

Zreg =
(
Y reg
p Zreg

K1
· · · Zreg

KL

)
∈MTmax−n+1,

∑L
l=1 Kl+L,

where Y reg
p is empty whenever p = 0.

We can now observe that Yresp and Zreg are sufficient to construct all MIDAS forecasting and

nowcasting regressions. In practice, some care needs to be taken to make sure that data is correctly

aligned: for example, in the case of nowcasting exercise regressors in Zreg and targets in Yresp have to

be aligned differently than in the case of forecasting exercises. Provided the aligned data is executed

correctly, the estimation of MIDAS parameters can be carried out efficiently. An important thing to

mention is that the truncation with the help of s in (E.4) may be too restrictive, as it may lead to

excluding up to Kmax − 1 rows from Zreg that could be used for estimation. This can be avoided

at the time of implementation. In our repository available at [the address removed for anonymous

submission] we consider this detail and exclude from the final regression matrices only those rows

which cannot be used due to the lag requirements in the model. We warn the reader that this comes

at a cost, namely the codes are lengthier and less elegant.

F Mixed-frequency DFM

Macroeconomic modeling based on dynamic factor models has been popular since their introduction

in Geweke (1977) and Sargent et al. (1977). The proposition of DFMs is that a low-dimensional latent

8At the time of implementation of this procedure in any convenient coding environment it is more natural to introduce
placeholders instead and to perform the subsequently discussed truncation via matrix manipulation rather than by using
matrix multiplication.
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factor (f t)t∈Z, f t ∈ Rd, drives a high-dimensional observable stochastic process (yt)t∈Z, yt ∈ Rn. We

consider a time-inhomogeneous state-space model with dynamics

f t+1|f1:t,y1:t ∼ ht+1,θ(·|f t) (F.1)

yt+1|f1:t+1,y0:t ∼ gt+1,θ(·|f t+1) (F.2)

for some time-dependent state transition kernels ht,θ and observation densities gt,θ and some parameter

vector θ in a parameter space Θ. A common example in the literature (see Watson and Engle (1983)

for more details) is linear Gaussian factor models with time-inhomogeneous state transitions that can

be represented as

f t+1 = Aθf t +Rθut (F.3)

yt+1 = Λt+1,θf t+1 + St+1,θwt+1 (F.4)

with state transition matrix Aθ ∈Md, time-dependent factor loading matrices Λt ∈Mn,d, and where ut

and wt are independent Gaussian vectors with zero mean and identity covariance matrix of dimension

p and n, respectively, and Rθ and St,θ re matrices of appropriate dimensions. It is often assumed that

the dimension p of the state noise vector ut is smaller than the latent state space dimension d, which

implies that RθR
⊤
θ is rank deficient, such as for AR(p) factor dynamics (Stock and Watson, 2016,

Forni et al., 2005, Doz et al., 2011). In this case, d = kp for some k ∈ N+,

Aθ =


A

(1)
θ A

(2)
θ · · · A

(p−1)
θ A

(p)
θ

Ik Ok · · · Ok Ok

Ok Ik · · · Ok Ok
...

. . .
...

Ok Ok · · · Ik Ok

 , Λt,θ =
(

Λ
(1)
t,θ Λ

(2)
t,θ · · · Λ

(p)
t,θ

)
(F.5)

with A
(j)
θ ∈ Mk and Λ

(j)
t,θ ∈ Mn,k. Setting f t = (v⊤t ,v

⊤
t−1, . . . ,v

⊤
t−p+1)

⊤ implies that (vt)t∈Z is a

k-dimensional AR(p) process and it is commonly assumed that Λ
(j)
t,θ = On,k for j > 1. Let the initial

state f0 be distributed according to ν. The joint density of the latent path f0:T and observations y0:T
is then

pθ,ν(f0:T ,y0:T ) = ν(f0)g0,θ(y0|f0)
T∏
t=1

ht,θ(f t|f t−1)gt,θ(yt|f t),

while the marginal likelihood of y0:T is pθ,ν(y0:T ) =
∫
pθ,ν(f0:T ,y0:T )df0:T . Popular procedures for

learning the static parameters θ ∈ Θ are based on gradient descent of the negative log-likelihood func-

tion ℓT : Θ→ R,θ 7→ − log pθ,ν(y0:T ) or on the Expectation Maximization (EM) algorithm introduced

in Dempster et al. (1977). We consider here gradient descent algorithmsbased on a sequence of step

sizes γk > 0, that update the model parameters based on iterations of the form

θk+1 = θk − γk+1∇θℓT (θ)|θ=θk
,

for k ∈ N+.9

9Consistency of the maximum log-likelihood estimate for the dynamics (F.3)-(F.4) in the time-homogeneous case has
been established for instance in Douc et al. (2011) under regularity assumptions, including, for instance, the full-rank
of the noise covariance matrix Sθ, of the controllability matrix Cθ =

(
Rθ|AθRθ| · · · |Ad−1

θ Rθ

)
, and of the observability

matrix Oθ =
(
Λ⊤

θ |(ΛθAθ)
⊤| · · · |(ΛθA

d−1
θ )⊤

)⊤
. It is also possible to consider an online learning setting using a recursive

decomposition of the score function as in LeGland and Mevel (1997). For general latent state dynamics (F.1) and
observation densities (F.2) that can be non-linear with non-Gaussian noise, particle filtering algorithms are often utilized
that make use of particle approximations in gradient-descent or EM learning approaches, see for instance Kantas et al.
(2015).
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Assuming a linear Gaussian setting where the transition density of the latent factor process is

given by (F.5) to yield an AR(p) process (vt)t∈Z, vt = (v1,t, . . . , vk,t)
⊤, there remains some flexibility

as to how the linear mappings

Aggθ,L : Mk,p → R, (vt−p+1 . . . ,vt) 7→ (Λt,θf t)i = (Λt,θ)i,·


vt
vt−1
...

vt−p+1


for some lag parameter L ≤ p are chosen for each dimension i ∈ [n].10 We call this linear mapping

Aggθ,L an aggregation function and consider specific examples below that yield different models for

the factor loadings matrices Λt,θ. Notice that our aggregation functions are linear with respect to the

latent factors in contrast to the non-linear approaches introduced in Proietti and Moauro (2006) that

require approximations, such as resorting to extended Kalman filtering techniques.

Example F.1 (Stock aggregation) For i ∈ [n], let βi = (βi1, . . . , βik) ∈ Rk and consider

AggSθ,1(vt−p+1 . . . ,vt)i =
k∑

m=1

βimvm,t,

with θ = βi.

Example F.2 (Almon-Lag aggregation) For i ∈ [n], let βi ∈ Rk, ψi ∈ R2k and consider

AggAL
θ,L(vt−p+1 . . . ,vt)i =

k∑
m=1

βim

L−1∑
ℓ=0

φ(ψim, ℓ)vm,t−ℓ,

with θ = (βi,ψi,βi,ψi) and Almon-Lag weights φ given in (E.2).

Example F.3 (Trigonometric aggregation) For i ∈ [n], let βi ∈ Rk, and for K ∈ N, let λ ∈ RK
+ ,

ω ∈ [0, 1]K , γ ∈ [−π, π]K and τ ∈ R+. Define

Aggsinθ,L(vt−p+1 . . . ,vt)i =

k∑
m=1

βim

L−1∑
ℓ=0

ap(λ,ω,γ, τ, ℓ)vm,t−ℓ,

with θ = (βi,λ,ω,γ, τ) and

ap(λ,ω,γ, τ, ℓ) =
exp

(
1
τ

∑K
j=1 λ

2
j cos(2πωjℓ+ γj)

)
∑p−1

ℓ′=0 exp
(
1
τ

∑K
j=1 λ

2
j cos(2πωjℓ′ + γj)

) .
This aggregation scheme is motivated by self-attention models (we refer the reader to Bahdanau

et al. (2014), Vaswani et al. (2017) for more details), but to retain linearity only considers a relative

positional encoding with a Toeplitz structure. Observe that the aggregation parameters are shared

across all n dimensions in contrast to the Almon lag scheme in Example F.2.

Some authors (see for example Mariano and Murasawa (2003), Bańbura and Modugno (2014))

have imposed different restrictions on the form of the factor loadings matrices or aggregation function,

particularly for one-dimensional mixed-frequency factor models of quarterly GDP growth rates and

10The Markovian representation (F.1)-(F.2), that is, the companion form, is based on the autoregressive order p,

however, one can set A
(ℓ)
θ = Ok for ℓ > p.
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monthly covariates, which are motivated by approximations of growth rates. We do not pursue this

additional restriction in this work.

Kalman filtering techniques have been used routinely for handling missing observations in multi-

frequency DFMs, see Harvey et al. (1998). In this work, we leverage modern auto-differentiation

libraries (Abadi et al., 2016, Dillon et al., 2017) to compute the gradient of the log-likelihood based

on Kalman filtering formulae and estimate the static parameters θ by gradient ascent of the log-

likelihood. For alternative estimation approaches using EM that could be extended to this setting, we

refer the reader to Bańbura and Modugno (2014). Nonlinear or non-Gaussian dynamic factor models

in a mixed frequency setting have been considered in Gagliardini et al. (2017), Leippold and Yang

(2019) that rely on particle filtering methods in conjunction with backward simulation algorithms as

in Godsill et al. (2004), while Schorfheide et al. (2018) consider a Bayesian approach using particle

MCMC (see Andrieu et al. (2010)). Such approaches can become computationally expensive and are

not considered for benchmarking purposes.

While previous mixed-frequency DFMs (see Mariano and Murasawa (2003), Bańbura and Modugno

(2014) for a more thorough discussion) often consider time series which are sampled at two frequencies,

we introduce here a flexible mixed-frequency DFM that describes L ∈ N+ collections of distinct time

series sampled at frequencies {κ1, . . . , κL} and each consisting of {n1, . . . , nL} series, respectively. In

the same setting as in Section 4, each group of nl, l ∈ [L], time series sampled at frequency κl contains

observations (y
(l)
t,s|κl

) with y
(l)
t,s|κl

∈ Rnl for all t ∈ Z and s ∈ {0, . . . , κl − 1}. Let κmax = maxl κl.

Suppose that the latent factor dynamics are updated at the highest sampling frequency based on the

linear transition

f t,s+1|κmax
= Aθf t,s|κmax

+Rθut,s+1|κmax
, (F.6)

where

f t,s|κmax
=

(
v⊤t,s|κmax

, . . . ,v⊤t,s−p+1|κmax

)⊤
,

with Aθ given in (F.5) for the special case where A
(ℓ)
θ = Ok for ℓ ≥ 2, p = κmax and

A
(1)
θ = Ā

ρ

max
{
ρ, |λ1(Ā)|

}
with parameters ρ ∈ (0, 1), Ā ∈ Mk and with λ1(Ā) denoting the largest eigenvalue of Ā. In the

simplified scenario of first-order autoregressive dynamics, we parameterize Rθ ∈ Mk to be positive

definite and diagonal and ut,s+1|κmax
are a sequence of IID k-dimensional standard Gaussian variables.

Notice that Kalman filtering formulas yield the first moment

f̂ t,s|κmax
= E

[
f t,s|κ

∣∣y1,0|κmax
, . . . ,yt,s|κmax

]
recursively online, see for example Appendix F.1 for details in the general time-inhomogeneous case.

Due to the linearity in (F.6), for any h ∈ N,

f̂ t,s+h|κmax
= E

[
f t,s+h|κmax

∣∣y1,0|κmax
, . . . ,yt,s|κmax

]
= Ah

θf̂ t,s|κmax
.

Furthermore, from the linearity of the aggregation scheme, we obtain the forecasts for any s, h ∈ N,

E
[
y
(l)
t,s+h|κl

∣∣y1,0|κl
, . . . ,yt,s|κl

]
= Aggθ(l)

(
f̂ t,(s+h)ql|κmax

)
, (F.7)

where ql = κmax/κl (c.f. Section 4.1) and Aggθ(l) is the aggregation scheme for frequency l. We

observe that there is a single latent factor process that describes the observations at all frequencies, in

contrast, for instance, to hierarchical Hidden Markov Models (HMM) (Hihi and Bengio, 1995) where

the latent variables evolve a priori at different time-scales. This time evolution of states is similar to
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the SMFESN models also developed in this paper.

It is possible to write the following mixed-frequency DFM model in Example F.4 as a general

time-inhomogeneous state-space system (F.1)-(F.2) by suitably parameterizing the time dependencies

in the aggregation matrices. We provide more details on implementing our mixed frequency DFM

in Appendix F.1 below. The standard Kalman filtering recursions utilized therein for parameter

estimation have a cubic complexity in the dimension d or n of the Markovian factor process f or the

observation process y, respectively, at every time step. The marginal log-likelihood is optimized based

on stochastic gradient methods with adaptive step sizes (Kingma and Ba, 2014) and is generally not

a concave function of the parameter values.11

Example F.4 (Quarterly-Monthly-Daily DFM Model) We consider n(6d) time series that re-

sult from averaging daily time series over 6 days, yieling 12 observations per quarter that are denoted

as y(6d). Furthermore, we consider n(m) monthly y(m) as well as n(q) quarterly time series y(q). We let

κmax = 72/6 = 12 and update the k-dimensional latent factor process every 6 days in sync with y(6d).

We aggregate 6 days to significantly decrease the computational cost of the factor model. The latent

factors are assumed to have the VAR(1) dynamics,12

vt,s+1|12 = A(1)vt,s|12 +Rut,s+1|12,

for any s, t ∈ N, A(1) ∈Mk,k R ∈Mk and IID k-dimensional standard Gaussian variables ut,s|12. The

averaged daily data is described by

y
(6d)
t,s|12 = β(6d)vt,s|12 + S(6d)w

(6d)
t,s|12

for any s, t ∈ N, β(6d) ∈Mn(6d),k, S
(6d) ∈Mn(6d)

and IID n(6d)-dimensional standard Gaussian variables

w
(6d)
t,s|12. The monthly data in the stock aggregation scheme is modeled as

y
(m)
t,s|3 = β(m)vt,4s|12 + S(m)w

(m)
t,s|3,

with β(m) ∈ Mn(m),k, S
(m) ∈ Mn(m)

and IID n(m)-dimensional standard Gaussian variables w
(m)
t,s|3. Alter-

natively, an Almon aggregation scheme yields the model

y
(m)
t,s|3 = β(m)

3∑
ℓ=0

φ(ψ(m), ℓ)⊙ vt,(4s−ℓ)|12 + S(m)w
(m)
t,s|3,

with β(m) ∈ Mn(m),k, S
(m) ∈ Mn(m)

, IID n(m)-dimensional standard Gaussian variables w
(m)
t,s|3 and

φ(ψ(m), ℓ) =
(
φ(ψ(m)

1, ℓ), . . . , φ(ψ
(m)

k, ℓ)
)⊤ ∈ Rk. The symbol ⊙ stands for the Hadamard or compo-

nentwise matrix product.

The quarterly components can be analogously described as

y
(q)
t = β(q)vt,0|12 + S(q)w

(q)
t

11We compute gradients of the marginal log-likelihood using a Kalman filter implementation for a time-inhomogeneous
linear Gaussian state space model in TensorFlow Probability (Dillon et al., 2017).

12Because of the AR(1) dynamics, we do not write it in the companion form of the latent factor. However, unless
one uses the stock aggregation scheme, one still needs to keep track of the past factor values for modeling monthly or
quarterly observables.
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for a stock aggregation scheme, while the Almon scheme writes as

y
(q)
t = β(q)

11∑
ℓ=0

φ(ψ(q), ℓ)⊙ vt,−ℓ|12 + S(q)w
(q)
t ,

with β(q) ∈Mn(q),k, S
(m) ∈Mn(q)

, IID n(q)-dimensional standard Gaussian variablesw
(m)
t andφ(ψ(q), ℓ) =(

φ(ψ(q)
1, ℓ), . . . , φ(ψ

(q)
k, ℓ)

)⊤ ∈ Rk.

F.1 Mixed-frequency DFM Implementation

This section gives additional details on implementing non-homogeneous dynamic factor models, such

as the mixed frequency model introduced in the main text. We notice that the conditioning notation

in this section should not be confused with our temporal notation in Definition 2.1.

Kalman filtering and computational complexity. The sufficient statistics of the posterior dis-

tribution of the latent factor f t|y0:t can be updated recursively by the Kalman filter updates in the

linear Gaussian setting. First, propagate the prior

f̂ t+1|t,θ = Aθf̂ t|t,θ

Σ̂t+1|t,θ = AθΣ̂t+1|t,θA
⊤
θ + St+1,θS

⊤
t+1,θ.

Compute the innovation covariance

Γt+1,θ = Λt+1Σ̂t+1|t,θΛ
⊤
t+1 +RθR

⊤
θ

and the Kalman gain

Kt+1,θ = Σ̂t+1|t,θΛ
⊤
t+1,θΓ

−1
t+1,θ.

Then, update the statistics with the new information yt+1,

f̂ t+1|t+1,θ = f̂ t+1|t,θ −Kt+1,θ

(
yt+1 − Λt+1,θf̂ t+1|t,θ

)
Σ̂t+1|t+1,θ = (I−Kt+1,θΛt+1,θ) Σ̂t+1|t,θ.

Notice that the inverse of the log-determinant of the innovation matrices Γt,θ are required for

computing the Kalman gains and the marginal log-likelihood, respectively, which yield a cubic com-

putational complexity in the dimension of the observation process. Alternatively, one can apply matrix

inversion or determinant lemmas to obtain a computational complexity that is cubic in the dimension

of the Markovian factor process f t. For an alternative approach in high-dimensions that imposes

a dynamic factor structure after a projection of the observations onto a low-dimensional space, see

Jungbacker and Koopman (2015), and Bräuning and Koopman (2014) for a collapsed mixed-frequency

DFM.

Model selection. The model parameters θ are learned to jointly maximize the log-likelihood of the

observed data for all frequencies. This is in contrast to the parameter estimation approach for MIDAS,

which minimizes the MSE of low-frequency predictions conditional on observing the high-frequency

series. We remark that a different log-likelihood weighting for the different frequencies in DFMs has

been suggested in Blasques et al. (2016), but requires cross-validation to optimize such weightings.

Nevertheless, the introduced DFM contains several hyperparameters that need to be chosen, such

as the latent state space dimension k or the order p of the latent Markov process. One possibility

is to select such hyperparameters by evaluating the low-frequency predictions on a validation set.
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Approaches for choosing the dimensions of the latent factor process have been under-explored in the

mixed-frequency setting, but see Bai and Ng (2007), Hallin and Lǐska (2007) for possible criteria

in general dynamic factor models. In our implementation, we choose p = 1, as this allows for a

differentiable model parametrization with stationary factor dynamics. We set k = 5 for the small

dataset and k = 10 for the medium dataset.

Parameter estimation and forecasting. Based on the results from the Kalman filtering recur-

sions, the model parameters θ are learned by maximizing the marginal log-likelihood using ℓt(θ) =

− log pθ(y0:t) = −
∑t

s=0 log pθ(ys|y0:s−1) where pθ(ys|y0:s−1) is Gaussian with mean Λs,θf̂ s|s−1,θ and

covariance Γs,θ. Gradients of ℓt(θ) can be computed using algorithmic differentiation.

For fixed θ ∈ Θ and h ∈ N, let

µt+h|t,θ(yt+h|y0:t) =
∫
gt+h,θ(yt+h|f t+h)

h∏
ℓ=1

ht+ℓ,θ(f t+ℓ|f t+ℓ−1)df t+ℓπt|t,θ(f t|y0:t)df t

be the h-step predictive distribution of the data, while πt|t,θ(f t|y0:t) is the filtering distribution of the

latent state f t|y0:t. The mean of µt+h|t,θ(·|y0:t) is ŷt+h|t,θ = Eθ

[
yt+h|y0:t

]
. For some t, τ ≥ 0, let us

write f̂ t+τ |t,θ = Eθ[f t+τ |y0:t] and Σt+τ |t,θ = Covθ[f t+τ − f̂ t+τ |t,θ|y0:t] for the mean and covariance of

the latent process, respectively. For linear Gaussian dynamics, Kalman filtering allows for computing

the filtered mean f̂ t|t,θ and covariance matrices Σ̂t|t,θ analytically.

For fixed θ, the τ -step ahead prediction function Hτ
t,θ(y0:t) = ŷt+τ |t,θ = Λt+τ,θf̂ t+τ |t,θ is lin-

ear due to the Kalman filtering recursion. For s ≤ t, consider also the prediction H⋆τ
s,t(y0:t) =

Eθ⋆(y0:s)
[yt+τ |y0:t] that is based on the sample y0:t, but where θ

⋆(y0:s) = argminθ ℓs(θ) maximizes the

marginal likelihood of data y0:s only. This setting allows to implement different parameter estimation

setups from Section B.1. For instance, the fixed parameter setup corresponds to fixing s, which yields

a fixed training set y0:s to estimate θ. In the expanding window setup, both s and t are expanded,

while a rolling window setting updates the dataset y0:s by rolling over the data.

G High-Frequency Forecasts

To better understand how the use of high-frequency data impacts forecasting, as an additional empir-

ical experiment we investigate high-frequency (HF) forecasts of all models in the Small-MD dataset.

We restrict our analysis to this dataset because the computational burden to construct HF forecasts

can be high: when using daily data and using our suggested 24 days-per-month interpolation, one

quarter amounts to 72 daily frequency observations, which means HF forecasts can involve thousands

of data points, and for DFM and M-MFESN models this setup can be quite computationally onerous.

Constructing HF forecasts with MIDAS is trivial once the aggregation weights have been estimated,

even though a practical implementation requires care in constructing the appropriate lag matrices.

Recall for Section E that the MIDAS equation with L regressors (z
(l)
t,s|κl

)t,s with z
(l)
t,s|κl

∈ R, l ∈ [L] for

all t ∈ Z and s ∈ {0, . . . , κl − 1} can be written as

yt = α0 +

p∑
i=1

αiyt−i +

L∑
l=1

βl

Kl∑
k=0

φ(θl, k)z
(l)
t,−k|κl

+ ϵt.

For clarity, we suppress the dynamic autoregressive component, as it has the same frequency as the

target. Now assume that we include n(m) monthly and n(d) daily frequency regressors in the model

that are sampled κ(m) = 3 and κ(d) = 72 times per quarter and hence κmax = 72. Therefore we can
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partition the regression above in the following way

yt = α0 +

p∑
i=1

αiyt−i +

n(m)∑
l=1

βl

Kl∑
k=0

φ(θl, k)z
(l)
t,−k|3 +

L∑
l=n(m)+1

βl

Kl∑
k=0

φ(θl, k)z
(l)
t,−k|72 + ϵt

with L = n(m) + n(d).

Assuming parameter estimates α̂0, α̂1, . . . , α̂p and {(β̂l, θ̂l)}Ll=1 are available, the HF forecast ŷt+1,s|72
is given by

ŷt+1,s|72 = α̂0 +

p∑
i=1

α̂iyt−i +

n(m)∑
l=1

β̂l

Kl∑
k=0

φ(θ̂l, k)z
(l)
t,⌊s/24⌋−k|3 +

L∑
l=n(m)+1

β̂l

Kl∑
k=0

φ(θ̂l, k)z
(l)
t,s−k|72.

For DFMs, high-frequency forecasts can be constructed using (F.6) and (F.7) to iterate factors

forward in time and then aggregate them according to estimated loadings or a weighting scheme.

Multi-frequency ESN models are also able to yield high-frequency forecasts in a straightforward

manner. For simplicity, let us consider the case as in Example 4.1 of an aligned S-MFESN model

that has been fit to a quarterly target with monthly and daily input data. The reservoir is run in

high-frequency, κmax steps per quarter, according to state equation

x
(m,d)
t,s|72 = αx

(m,d)
t,s−1|72 + (1− α)σ(Ax(m,d)

t,s−1|72 + Cz
(m,d)
t,s|72 + ζ).

Suppose a coefficient matrix Ŵ has been estimated. Then, as states between low-frequency periods t

and t+ 1 are collected, we can immediately construct the high-frequency one-step-ahead forecasts

ỹt+1,s|72 = Ŵ⊤x
(m,d)
t,s|72.

For M-MFESN models HF forecasts require slightly more care. For example, when dealing with

the multi-reservoir MFESN model of Example 4.2, we must repeat the most recent monthly state at

daily frequency correctly.

H Robustness Analysis

H.1 MIDAS

As we discuss briefly in the main text, parameter optimization is a principal problem in implementing

any MIDAS model. Even though explicit formulas exist for both gradient and Hessian of the MIDAS

loss objective when an Almon weighting scheme is used (see Kostrov (2021)), there is no known

guarantee that the loss itself is convex or even locally convex. In practice, for a given starting point

(or point set) a numerical optimizer might only converge to a local minimum.

We observe this in practice, and we explore its effects on the robustness of MIDAS forecasts. We

report summary results for our simulations in Figure 20. Our proposal is, given a MIDAS model

specification and a set of starting points for evaluating the loss, to run an optimizer (for example,

L-BFGS-B with explicit gradient) and select the smallest local minimum. By repeating this procedure

multiple times, we collect a set of MIDAS parameters and study both the variation between the

parameter vectors and the implied one-step ahead forecasts.

To be precise, our procedure is as follows:

1. For a total of B repetitions:

(a) Choose M initialization points for the optimizer. We draw 64 points inside the hypercube

of edge length 0.025 using a low-discrepancy Sobol sequence. The choice of a down-scaled
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hypercube as a domain comes from the empirical fact that the Almon exponential scheme

may produce extremely large values even for relatively small coefficients. A straightforward

way to see this is to notice that given any arbitrary small value for θ1 and θ2 in (E.2), for

lag index k sufficiently large weight exp(θ1k + θ2k
2) will overflow at any given numerical

precision. This means that one should adjust the MIDAS optimization domain based on

the number of lags in the model.

(b) For each initialization point, run the optimizer of choice.

(c) Among the resulting M (local) loss minimizers, select and store the one with the lowest

loss value.

2. With the resulting B stored minimizer:

• Construct a low-dimensional projection of the high-dimensional minima to see their relative

location in the parameter space and to compare their gradient and loss values, see Figure

20 (a)-(b).

• Use each minimizer to produce MIDAS one-step ahead forecasts and plot quantile frequency

plots of the forecast variation due to initialization; see Figure 20 (c).

Figure 20 shows that the best minimizers among initial Sobol sets are clustered together. To

construct this 2D projection of the high-dimensional Almon coefficient space (including autoregressive

lags and intercept), we use the well-known t-SNE procedure developed in van der Maaten (2009),

which is an unsupervised dimensionality reduction algorithm capable of preserving the latent high-

dimensional structure. This approach naturally implies that the Euclidean distances in the plot are

suggestive of “clustering” rather than the actual latent distance between points. In Figures 20 (a)-(b),

we see that the L-BFGS-B optimizer with explicit gradient achieves good convergence in terms of

gradient norm and also that the resulting cluster of minimizers has close loss values. However, one

can see that there is no single loss minimum: Figure 20 instead suggests that the local structure of

the MIDAS loss function is very uneven, and therefore many distinct local minima can be achieved

even when choosing a large number of initialization values for the optimizer. This means that the

“multi-start” strategy suggested in Kostrov (2021) to alleviate issues in MIDAS model estimation is

insufficient.

The effects of non-negligible variation in parameter values on forecasts appear to be significant.

Looking at Figure 20 (c), we can see wide frequency bands for the one-step ahead forecasts constructed

using the Small-MD dataset and fixed parameter values. In particular, the Financial Crisis period

seems to induce larger deviations in forecasts, consistent with the intuition that data with larger

variation causes stronger model sensitivity when making forecasts.

H.2 MFESN

Since ESN models, and thus MFESN models, require random sampling of parameter matrices, the size

of which is often large, there is inherent variability in any ESN model forecast. In theory, because all

MFESN state parameters (Ã, C̃, ζ̃) are drawn independently of each other, one could try to decompose

the variance of any MFESN into the share due to parameter sampling and the share due to data

sampling. Unfortunately, in practice, such decomposition is hard to derive. Cross-validation of ridge

penalties and rolling and expanding window estimation are non-trivial data-dependent operations that

complicate inference. In this work, we limit ourselves to numerically evaluating the effect of reservoir

coefficient sampling on MFESN forecast variance.

Our approach is straightforward: given an MFESN model specification, c.f. Table 5.2, and a

forecasting setup (fixed parameters, expanding or rolling window), we resample the reservoir state

matrix parameters, perform cross-validation and possibly train-test sample windowing, and finally

construct pointwise forecasts. Once a sufficiently large set of resampling forecasts has been computed,
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we plot frequency intervals in Figures 22 and 24. From Figure 22, we can see that the single-reservoir

MFESN model with reservoir size 30 produces forecasts with a meaningful amount of variability

induced by parameter resampling. Forecasts exhibit more variation when using an expanding or

rolling window estimation strategy, even though the overall forecasts align with the GDP realizations.

A similar discussion to that of MIDAS applies here: forecast sensitivity increases with underlying data

variation, exacerbated in periods of systemic economic crisis.

Figure 24 suggests that larger MFESN models produce significantly more stable forecasts regard-

ing model resampling. Note that the M-MFESN model [A] has a monthly frequency reservoir that

is approximately 3 times the size of the S-MFESN model [A]. This stability is preserved even in ex-

panding or rolling window settings, even though a slightly higher variation is apparent at the height

of the 2008 Financial Crisis. We hypothesize that this reduction in variance due to model parameter

sampling is due to the concentration of measure phenomena that prevail in high-dimensional spaces.

Figure 24 suggests that larger MFESN models produce significantly more stable forecasts regarding

model resampling. Note that the M-MFESN model [A] has a monthly frequency reservoir that is ap-

proximately 3 times the size of the S-MFESN model [A]. This stability is preserved even in expanding

or rolling window settings, even though a slightly higher variation is apparent at the height of the 2008

Financial Crisis. We hypothesize that this reduction in variance due to model parameter sampling is

due to the concentration of measure phenomena that prevail in high-dimensional spaces.
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I Additional Figures

Figure 12

Figure 13
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Figure 14: 1-Step-ahead GDP Forecasting – Modified Diebold-Mariano – Small-MD Dataset

(a) Fixed 2007 (b) Fixed 2011

(c) Expanding 2007 (d) Expanding 2011

(e) Rolling 2007 (f) Rolling 2011

Figure 15: p-values of the pairwise Modified Diebold-Mariano tests between models of Table 5.4.
Tests are one-sided and carried out row-wise: the null hypothesis for row i and column j reads as “the
ith-row model forecasts more accurately than the jth-column model”. Rejections at the 10% level are
highlighted in red.
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Figure 16: 1-Step-ahead GDP Forecasting – Modified Diebold-Mariano – Medium-MD Dataset

(a) Fixed 2007 (b) Fixed 2011

(c) Expanding 2007 (d) Expanding 2011

(e) Rolling 2007 (f) Rolling 2011

Figure 17: p-values of pairwise Modified Diebold-Mariano tests between models of Table 5.4. Tests
are one-sided and carried out row-wise: the null hypothesis for row i and column j reads as “the
ith-row model forecasts more accurately than the jth-column model”. Rejections at the 10% level are
highlighted in red.
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Figure 18: 1-Step-ahead High-Frequency GDP Forecasting – 2007 Sample – Small-MD Dataset

(a) Fixed
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(b) Expanding
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(c) Rolling
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Note: Forecasts for the 2007 sample are presented up to Q4 2013 to better display the high-frequency behavior
of models during the Financial Crisis period.
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Figure 19: 1-Step-ahead High-Frequency GDP Forecasting – 2011 Sample – Small-MD Dataset

(a) Fixed
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(b) Expanding
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(c) Rolling

2012 2013 2014 2015 2016 2017 2018 2019 2020

0.000

0.005

0.010

0.015
1-Step-ahead High-Frequency Forecast [RW]

Data
MIDAS

DFM [A]
DFM [B]

singleESN [A]
singleESN [B]

multiESN [A]
multiESN [B]

68



Figure 20: MIDAS Robustness Plots – 2007 Sample – Small-MD Dataset

(a) MIDAS Loss t-SNE Embedding: Gradient Norm

(b) MIDAS Loss t-SNE Embedding: Loss Norm
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Figure 21: MIDAS Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 22: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 23: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 24: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 25: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 26: 1-Step-ahead GDP Forecasting, Fixed Parameters - Small-MD Dataset

(a) Pre-crisis model
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(b) Post-crisis model
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Figure 27: 1-Step-ahead GDP Forecasting, Expanding Window - Small-MD Dataset

(a) Pre-crisis model
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(b) Post-crisis model
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Figure 28: 1-Step-ahead GDP Forecasting, Rolling Window - Small-MD Dataset
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(b) Post-crisis model
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