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Bayesian Prediction of Jumps in Large Panels
of Time Series Data∗

Angelos Alexopoulos†,‡, Petros Dellaportas†,¶,§, and Omiros Papaspiliopoulos‖

Abstract. We take a new look at the problem of disentangling the volatility and
jumps processes of daily stock returns. We first provide a computational frame-
work for the univariate stochastic volatility model with Poisson-driven jumps that
offers a competitive inference alternative to the existing tools. This methodology
is then extended to a large set of stocks for which we assume that their unobserved
jump intensities co-evolve in time through a dynamic factor model. To evaluate
the proposed modelling approach we conduct out-of-sample forecasts and we com-
pare the posterior predictive distributions obtained from the different models. We
provide evidence that joint modelling of jumps improves the predictive ability of
the stochastic volatility models.

Keywords: dynamic factor model, forecasting stock returns, Markov chain Monte
Carlo, stochastic volatility with jumps, sequential Monte Carlo.

1 Introduction

It has been recognised in the financial literature that jumps in asset returns occur
clustered in time and affect several stock markets within a few hours or days, see for
example Aı̈t-Sahalia et al. (2015). We work with a large panel of stocks from sev-
eral European markets and we aim to identify and predict joint tail risk expressed as
probabilities of jumps in their daily returns. Our modelling assumptions are based on
the well-known paradigms of stochastic volatility (SV) models (Taylor, 1982) combined
with Poisson-driven jumps (Andersen et al., 2002). The estimation of SV models is
preferably conducted by using likelihood-based approaches (Harvey et al., 1994) while
Bayesian methods, in particular, are notably desirable since they deal efficiently with
likelihood intractability problems; see for example Jarquier et al. (1994), Chib et al.
(2002) and Kastner and Frühwirth-Schnatter (2014) for detailed discussions. This mo-
tivates us to utilize the Bayesian approach both for modelling and inference purposes.
Our aim is to provide a general modelling approach for the time and cross-sectional
dependence of jumps in multiple time series. The resulting Bayesian hierarchical mod-
els require careful prior specifications and sophisticated, modern Markov chain Monte
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Carlo (MCMC) inference implementation strategies. To that end, we build the neces-
sary algorithmic framework by developing robust computational methods. To evaluate
the proposed model we focus on forecasting future stock returns. This is a problem of
primary interest in financial statistics since it is closely related with risk management,
portfolio allocation and asset pricing; see for example Aguilar and West (2000), Rapach
and Zhou (2013) and Clements and Liao (2017) for more detailed discussions. We test
the proposed methods in an out-of-sample forecasting scenario with real data.

Our first point of departure is the univariate SV model with jumps. We provide a
new efficient MCMC algorithm combined with careful prior specification that improves
upon existing MCMC strategies. Next, we extend this approach by utilizing the panel
structure of stock returns so that unobserved jump intensities are assumed to propagate
over time through a dynamic factor model. The resulting Bayesian hierarchical model
can be viewed as a generalisation of the Bates (1996), univariate SV model with jumps
since it can be obtained as a special case by just assuming that jump intensities are
independent across time and stocks. Furthermore, our computational techniques are rel-
evant to other scientific areas such as, for example, neuroscience, whereas simultaneous
recordings of neural spikes are often modelled through latent factor models (Buesing
et al., 2014).

To illustrate our motivation, consider the daily returns from the stocks of the STOXX
Europe 600 Index over a period 10/1/2007–11/6/2014. The top panel of Figure 1 has
been created by empirically identifying a jump when the return exceeds three standard
deviations, where the estimators of mean and variance of each series were robustly
estimated as the median and the robust scale estimator of Rousseeuw and Croux (1993)
respectively; see the supplementary material (Alexopoulos et al., 2021) for the details of
the empirical method used for outlier detection. The middle panel depicts a summary
statistic of a SV model with jumps estimated separately for each stock return series:
each dot denotes a stock return in which that particular day the probability of a jump
in the series has been estimated to be greater than .5; by choosing .5 as threshold we
avoid to over- or underestimate the number of jumps for each stock at each day, see
the supplementary material for more details. Compared with the top panel, it provides
a more sparse jump process indicating a successful separation of jumps from persistent
moves modelled by the volatility process, a topic discussed in detail by, for example,
Aı̈t-Sahalia (2004). The notable feature that inspired this work is that clustering and
inter-dependence of jump intensities is evident in the middle panel and, interestingly,
days in which jumps have been simultaneously identified in a large number of stocks
coincide with days of events that affected the financial markets worldwide as pointed out
at the x-axis of the plots. Thus, one may attempt a joint Markovian modelling of jump
intensities across time which might reveal some predictability of jumps. Indeed, the
results of our proposed joint modelling formulation provide strong evidence for better
out-of-sample predictability with estimated jump probabilities higher than .5 depicted
in the lower panel of Figure 1.

We propose a modelling approach for the jump processes of SV models in which
the time and cross-sectional dependence of the jump intensities are driven by a latent,
common across stocks, dynamic factor model. We carefully specify informative prior dis-
tributions to the parameters of the factor model so that the implied priors for the jump
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Figure 1: Each dot indicates a date between 10/1/2007 to 11/6/2014 (x-axis) in which
at least one jump has been identified in observed daily log-returns of 571 stocks from
the STOXX Europe 600 Index. The plot in the top panel is constructed by using an
empirical method for detection of outliers in the data. The dots in the middle and
in the bottom panels represent probabilities of jump greater than .5 for models with
independent and jointly modelled across stocks intensities respectively.

intensities in each stock are in concordance with the well-known (Eraker et al., 2003)
a priori expectation for one jump every few months. To avoid identifiability problems
of the factor models extra assumptions for the form of the loadings matrix are needed.
Nevertheless, it is recognised (Ghosh and Dunson, 2009) that MCMC algorithms devel-
oped under identifiability constraints exhibit slow convergence to the target distribution
of interest. To improve the mixing properties of the proposed MCMC algorithm we fol-
low Bhattacharya and Dunson (2011) and we do not impose the usual (see, e.g., Aguilar
and West, 2000) identifiability constraints on the factor loadings parameters. We also
note that there is a considerable amount of literature dedicated to the modelling of time
series count data; see for example Fokianos et al. (2009), Jung et al. (2011), Pillow and
Scott (2012) and Buesing et al. (2014). Our modelling perspective is applied on unob-
served count data and, thus, the aim of the proposed latent factor model is twofold.
First, since a few jumps are expected to occur during the observation period we bor-
row information across all the stocks in order to learn the unobserved processes that
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drive the evolution of jumps across time and stocks. Second, we exploit the dimension
reduction achieved by the latent factors to preserve the scalability of our method.

Our Bayesian inference implementation strategy is based on an MCMC algorithm
that alternates sampling of the latent volatility process and its parameters with sam-
pling of the jump process and its parameters. Both these steps require drawing of the
high-dimensional paths of the latent volatilities and factors from their full conditional
distributions. By noting that the target distributions are proportional to the product
of intractable, non-linear likelihood functions with Gaussian priors, we utilize the sam-
pler proposed by Titsias and Papaspiliopoulos (2018) to simultaneously draw the whole
path of each latent process at each MCMC iteration. This is an important feature of our
methods for the following reasons. First, updating each state of a volatility process sep-
arately results in Markov chain samplers with slow mixing (Shephard and Kim, 1994).
Second, although Chib et al. (2002) and Nakajima and Omori (2009) use a mixture of
Gaussian distributions approximation to also simultaneously update the whole volatility
path, their methods rely on an importance sampling step which is quite problematic,
see Johannes et al. (2009) for a detailed discussion and Section 4.3 of this paper for a
simulation that illustrates this issue.

To assess the predictive performance of the different models we compare the corre-
sponding posterior predictive distributions by utilizing proper scoring rules (Gneiting
and Raftery, 2007). We provide a full-fledged quantitative evaluation of the obtained
forecasts by calculating logarithmic scores, such as predictive log Bayes factors (Geweke
and Amisano, 2010), interval and continuous ranked probability scores (Gneiting and
Katzfuss, 2014) as well as root mean squared errors. We estimate the posterior predic-
tive distributions by employing sequential Monte Carlo methods such as the particle
filters (Chopin and Papaspiliopoulos, 2020a) and the annealed importance sampling
(Neal, 2001) algorithms.

The structure of the remaining of the paper is as follows. In Section 2 we provide a
review of the literature related to univariate and multivariate SV models in economet-
rics as well as the modelling of jumps in financial applications. Section 3 presents our
proposed modelling framework and Section 4 describes the methods that we develop to
conduct Bayesian inference for the proposed model. In Section 5 we present the com-
putational techniques that we use to assess the predictive performance of the proposed
model. Section 6 presents results and insights from the application of our methods on
the real dataset and Section 7 concludes with a small discussion.

2 Related work

There are two main classes of models that have been considered in the literature for
the modelling of financial returns. The first class is based on observation-driven mod-
els where the time evolution of the variance of the returns is modelled by using past
observations and variances. These models are known as autoregressive conditional het-
eroscedasticity (ARCH) models and have been developed by Engle (1982). A very popu-
lar parametrization, the generalized ARCH model, introduced later by Bollerslev (1986)
while Bollerslev (1987) and Harvey and Chakravarty (2008) presented modifications that
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account for the heavy tails of the distributions of the observed returns; see also Harvey
(2013) and references therein. Creal et al. (2011) extended this modelling approach in
the multivariate case; for the Bayesian analysis of these models see, for example, Vrontos
et al. (2000) and Vrontos et al. (2003). The second class is known as parameter-driven
models where the time evolution of the variance of the returns is modelled by employ-
ing latent stochastic processes. The models that belong to this class are the SV models
which constitute the base of our proposed modelling approach.

The SV model proposed by Taylor (1982) in order to account for the time evolution
of the volatilities in financial time series while Hull and White (1987) and Chesney
and Scott (1989) have employed the SV model as discretization of continuous time SV
diffusion processes. As mentioned earlier some early works on the Bayesian estimation
of SV models include, but are not limited to, the papers presented by Jarquier et al.
(1994), Kim et al. (1998) and Chib et al. (2002). Omori et al. (2007) dealt with efficient
Bayesian estimation of the SV model by taking into account the correlation between
the observation error and the error of the stochastic variance process; see also Silva
et al. (2006) and Delatola et al. (2011) for other extensions of the basic SV model.
A more recent contribution on the Bayesian analysis of univariate SV models has been
offered by Kastner and Frühwirth-Schnatter (2014) while Zhang et al. (2020) developed
a new class of SV models with autoregressive moving average errors. Considering a jump
component to model the empirically observed fat tails of stock returns proposed, in his
pioneering paper, by Merton (1976) while Bates (1996) and Andersen et al. (2002)
combined jump diffusions with SV models. Bayesian estimation of SV models with
jumps has been considered, among others, by Chib et al. (2002), Nakajima and Omori
(2009) and Eraker et al. (2003) and Johannes et al. (2009) where the latter two papers
account for jumps in the volatility process as well; see also Bandi and Renò (2016) for
more recent research on the occurrence of contemporaneous jumps in the returns and
volatilities.

To conduct joint modelling of the observed financial time series, multivariate SV
models have been considered more than twenty years ago; see for example Harvey et al.
(1994) and Asai et al. (2006) for a review. The existing multivariate SV models assume
either constant correlations over time or some form of dynamic correlation modelling
through factor models with factors being independent univariate stochastic volatility
models. The latter approach has been considered, for example, by Chib et al. (2006),
Kastner et al. (2017) and Kastner (2019). In a similar framework Chan and Eisenstat
(2018) and Kastner and Huber (2020) deal with Bayesian estimation of time varying
parameter vector autoregressive models with stochastic volatility. An alternative mul-
tivariate SV modelling approach proposed recently by Dellaportas et al. (2015) where
all the elements of the covariance matrix of the observed time series evolve over time.
More closely related to the present paper, Bollerslev et al. (2008), Jacod et al. (2009)
and Clements and Liao (2017) study the presence of common or not common jumps in
multiple time series. Aı̈t-Sahalia et al. (2015) model the dependencies of jumps by com-
bining the SV model with a multivariate Hawkes process (Hawkes, 1971) that models
the propagation of jumps over time and across assets by introducing a feedback from
the jumps to their intensities and back. They employ the generalised version method
of moments to estimate the parameters of the model. We close this literature review
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section by noting that tools for the identification of non-observed events that affect the
evolution of time series have been also developed by Hamilton (1989) and Billio et al.
(2012) that deal with the problem of identifying structural changes in time series of
economic indices.

3 Latent jump modelling

3.1 Notation

We denote the univariate Gaussian distribution with mean m and variance s2 by
N (m, s2), and its density evaluated at x byN (x|m, s2);Nd(X|M,S) denotes the density
of the d-variate normal distribution with mean M and covariance matrix S evaluated at
X; Gam(α, β) and IGam(α, β) denote the gamma, with mean α/β, and inverse gamma,
defined as the reciprocal of gamma, distributions respectively; U(α, β) the uniform dis-
tribution on interval (α, β); Γ(·) denotes the gamma function. Index i is used for stocks
and index t for times, e.g., rit is the ith stock return at day t; when we introduce fac-
tor models index k denotes factor. Upper case letters denote vectors and matrices, and
lower case letters denote scalars. For a collection of variables indexed by time or stock
and denoted by a lower case character, the corresponding upper case character denotes
their vector or matrix representation, e.g. R denotes the matrix whose elements are rit;
Ri = (ri1, . . . , riT ), and Rt = (r1t, . . . , rpt) are then generic rows and columns of R; all
vectors are understood as column vectors. A subscript, of the form (t+1) : (t+�), where
� is a positive integer, indicates the collection of vectors with subscripts t+1, . . . , t+ �;
e.g. Rt+1:t+� is the collection of vectors Rt+1, . . . , Rt+�. The transpose of a vector or
matrix is denoted by the superscript �; e.g. R� is the transpose of R; 1{·} denotes an
indicator function that takes value 1 if the event in brackets is true and 0 otherwise; for
a function f(x) we set ∇ =: (∂f/∂x1, . . . , ∂f/∂xd).

3.2 Stochastic volatility with jumps

We model stock returns as

rit = exp(hit/2)εit +

nit∑
κ=1

ξκit, εit ∼ N (0, 1), t = 1, . . . , T, (3.1)

hit = μi + φi(hi,t−1 − μi) + σiηηit, ηit ∼ N (0, 1), t = 1, . . . , T (3.2)

with hi0 ∼ N (μi, σ
2
iη/(1 − φ2

i )) and εit and ηit are independent. The number of jumps
of the ith stock at time t follow a Poisson distribution,

nit ∼ Poisson(Δitλit), (3.3)

where λit denotes the corresponding jump intensity, Δit is a time-increment associated
to each return and ξκit ∼ N (μiξ, σ

2
iξ) is the κth jump size. We explicitly take into account

that stock returns are computed over varying time increments Δit, such as in-between
weekends and holidays, hence λit is the daily jump intensity.
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We model the parameters μi, φi and σ2
iη of each log-volatility process and the pa-

rameters μiξ and σ2
iξ of the jump sizes as independent across stocks. For μi, φi and σ2

iη

we follow the related literature (Kim et al. (1998), Omori et al. (2007), Kastner and
Frühwirth-Schnatter (2014)) and take μi ∼ N (0, 10), (φi + 1)/2 ∼ Beta(20, 1.5) and
σ2
iη ∼ Gam(1/2, 1/2).

For μiξ and σ2
iξ we choose proper priors. In fact, improper priors will lead to improper

posterior. This is due to the fact that according to the model there is positive probability
that there are no jumps for the whole period of time, i.e., the event nit = 0 for all t,
has positive prior probability, and in such an event, μiξ and σ2

iξ are unidentifiable in

the likelihood. Instead, we take σ2
iξ ∼ IGam(3, range2i /18), where rangei = maxt{rit}−

mint{rit}, and μiξ ∼ N (0, 5range2i ). In this specification, E[σ2
iξ] = range2i /36, hence we

match the variance of jump sizes with a quantity that relates to the sample variance of
returns. A same reasoning is followed for setting the prior variance of μiξ and we have
found that the choice of the multiplier, here taken 5, is not crucial in the analysis.

Modelling jumps independently across stocks and time

By modelling Λi as independent random vectors, we obtain p independent univariate
SV with jumps models. Additionally, each vector can be taken as one of independent
elements, λit ∼ Gam(δ, c), in which case one obtains the models described, among
others, by Bates (1996), Chib et al. (2002) and Eraker et al. (2003). It follows that nit

has, marginally with respect to λit, a negative binomial distribution with density

p(nit) =
Γ(δ + nit)

Γ(δ)nit!
βδ(1− β)nit , (3.4)

where β = c/(c+Δit). The mean of the distribution is δ(1− β)/β and the variance is
δ(1 − β)/β2. Taking δ ≤ 1 ensures that the density is monotonically decreasing. This
is a feature we are interested in: jumps are meant to capture infrequently large price
movements, and a priori we expect that with highest probability there is no jump and
it is more likely to have less than more jumps, if any. We can choose c such that the
probability of no jump at a given time increment Δit, is at least γ ∈ (0, 1), a user-
specified threshold. Taking for example δ = 1 and c = 50 results in γ = 0.98 with
E(λit) = 0.02. These choices are consistent with the prior expectation, in financial
applications, for one jump every few months; see for example Eraker et al. (2003) for a
more detailed discussion.

3.3 Joint modelling of jumps

To capture the dependence of the jumps over time and across stocks we model λit by
using a dynamic factor model which is specified as follows. We first transform λit to yit
via

λit = λ∗(1 + e−yit)−1, (3.5)

which implies that λit < λ∗. The parameter λ∗ is, thus, the upper bound for the
jump intensities of all the stocks at any time point. This is an important feature of
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our modelling approach since it allows to incorporate the necessary (Chib et al., 2002;
Eraker et al., 2003) prior information about the expected number of jumps which are
typically described as large but infrequent moves. Furthermore, as discussed below,
by carefully choosing this upper bound we are able to construct a prior for the jump
intensities which is similar to the Gam(1, 50) distributions that we used in the case of
univariate SV models with jumps. We also note that this type of information is not
necessary only in Bayesian applications; see for example Honore (1998) for a similar
discussion related to maximum likelihood estimation of models with jumps. Then, we
model the time-dependence of jumps via K latent factors Ft modelled as independent
autoregressive processes. The cross-sectional dependence of jumps is captured by a
p×K matrix of factor loadings W and a p× 1 vector B. The joint model specification
is

Yt = B +WFt, (3.6)

Ft = AFt−1 + Et, t = 1, . . . , T, (3.7)

F0 ∼ NK(0,ΣF ) Et ∼ N (0, I), (3.8)

where A is a K × K diagonal matrix with elements α1, . . . , αK and ΣF is a K × K
diagonal matrix with elements 1/(1− α2

1), . . . , 1/(1− α2
K).

It is known that parameters of latent factor models are only identifiable up to certain
transformations, such as orthogonal rotations and sign changes (Aguilar and West,
2000). However, latent factor models are also used as low-rank predictive models in
which case the out-of-sample prediction is of prior importance; see Bhattacharya and
Dunson (2011). This is the perspective we adopt here, where we try to borrow strength
from the information in large panels of stocks in order to predict with higher accuracy
individual jumps by using a parsimonious factor model. Therefore, our prior specification
imposes no identifiability constraints on the parameters of the factor model and are

taken as wik
iid∼ N (0, σ2

w), bi
iid∼ N (μb, σ

2
b ), and αk

iid∼ U(−1, 1).

The specification of the hyperparameters of the priors assigned on the parameters
A,B and W require extra care because they affect, through (3.5), the imposed prior
on λit. The fact that our modelling formulation of Section 3.2 was based on informa-
tive priors Gam(1, 50) provides a way to elicit informative prior specification of the
hyperparameters σ2

w, σ
2
b and μb. We first set λ∗ = 0.15 which is the 0.0005 upper quan-

tile of the Gam(1, 50) density. As discussed earlier, this an important characteristic of
our modelling approach since it penalizes the estimation of a large number of jumps
which is not consistent with the prior information for one or two jumps every 100 days.
A small sensitivity analysis, not reported here, confirms that choosing a value consid-
erably greater than 0.15 does not allow the efficient separation of the jumps from the
underlying volatility process of the stock daily returns. Moreover, by using values no-
tably smaller than 0.15 we estimate quite low jump intensities and this can result in
less accurate prediction of future stock returns; in the supplementary material we com-
pare predictions obtained under different prior assumptions for the expected number
of jumps. We have concluded that a value for λ∗ between 0.1 and 0.2 does not have
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Prior for λit Mean Variance Mode
Gam(1, 50) 0.020 0.00040 0

Factor model 0.003 0.00004 0.0001

Table 1: Mean, variance and mode of the Gam(1, 50) prior distribution assumed for the
jump intensities λit in the independent model and for the prior induced by the dynamic
factor model.

a substantial effect on the results presented in the rest of the paper. Then, we choose
the hyperparameters σ2

w, μb and σ2
b to be such that the mean, the variance and the

mode for the resulting prior on each λit in (3.5) are comparable with the corresponding
quantities of the Gam(1, 50) distribution. Based on calculations presented in the sup-
plementary material we set σ2

w = 0.5, σ2
b = 1 and μb = −5. In Table 1 we display the

quantities of interest in the two prior distributions. To evaluate the differences between
the two priors we also examine the impact of different choices for their hyperparameters
in the forecasts of future observations. See the supplementary material for the related
results.

4 Sampling from the posterior of interest

Let Θi = (μi, φi, σ
2
iη, μiξ, σ

2
iξ, bi). Our interest lies on the joint posterior of parameters

and latent states p(H,N,Ξ,W,Θ, F,A|R). To draw samples from the posterior of interest
we design an MCMC algorithm which proceeds as follows. At each MCMC iteration we
perform stock-specific updates of Hi, Ni, Ξi, Wi, Θi and then we update the latent
factors F and their parameters A.

An important characteristic of the designed MCMC algorithm is that before updat-
ing the log-volatilitiesHi and the number of jumpsNi we integrate out the jump sizes Ξi.
This results in an efficient simultaneous update of the log-volatilities vector and direct
sampling of the full conditional of the number of jumps Ni. Algorithm 1 summarizes
the steps of the MCMC sampler. The algorithm presents how the full conditional den-
sities of vectors of parameters are sampled by exploiting the conditional independence
structure of the hierarchical model defined by equations (3.1)–(3.3) and (3.5)–(3.8). In
Sections 4.1 and 4.2 we will describe in detail the more elaborate steps 4, 6, 7 and 12
of Algorithm 1 whereas the details of the other sampling steps are given in the supple-
mentary material.

We also emphasize that by switching off certain steps of Algorithm 1 we obtain
a novel MCMC sampler for existing models. More precisely, Bayesian inference for
univariate SV with jumps models can be conducted if the step in the 10th line is skipped
and the step in the 12th line replaced with the step of drawing the independent jump
intensities of the model. Switching off the steps in lines 6–10 and 12 results in an MCMC
algorithm for univariate SV without jumps models. By removing the steps in lines 4–9
of Algorithm 1 we obtain a sampler for a Cox model (Cox, 1955) with intensities driven
by latent factors.
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Algorithm 1 MCMC that targets p(H,N,Ξ,W,Θ, F,A|R).

1: Set the number of iterations S.
2: for s = 1, . . . , S do
3: for i = 1, . . . , p do
4: Sample from p(Hi, φi, σ

2
iη|μi, μiξ, σ

2
iξ, Ni, Ri) by using Metropolis-Hastings.

5: Sample from p(μi|Hi, φi, σ
2
iη) which is a Gaussian density.

6: Sample from p(Ni|Hi,Wi, F,Ri, bi, μiξ, σ
2
iξ) by using rejection sampling.

7: Sample from p(Ξi|Hi, Ni, Ri, μiξ, σ
2
iξ) which is a Gaussian density.

8: Sample from p(μiξ|Ni,Ξi, σ
2
iξ) which is a Gaussian density.

9: Sample from p(σ2
iξ|Ni,Ξi, μiξ) which is an inverse Gamma density.

10: Sample from p(bi,Wi|Ni, F ) by using Metropolis-Hastings.
11: end for
12: Sample from p(F,A|N,B,W ) by using Metropolis-Hastings.
13: end for

4.1 Sampling the number of jumps and jump sizes

To sample each nit we first integrate out the jump sizes ξit and then we construct a
rejection sampling algorithm to draw from p(nit|hit, μiξ, σ

2
iξ, bi,Wi, Ft, rit). This algo-

rithm is based on Proposition 1. Notice also that a discrete distribution with pmf p(n)
is called log-concave if p(n)2 ≥ p(n − 1)p(n + 1) is satisfied for all n; see for example
Devroye (1986) for more details. For the remaining of this subsection the unnormalized
p(nit|hit, μiξ, σ

2
iξ, bi,Wi, Ft, rit) is denoted by p̃(n).

Proposition 1. For each i = 1, . . . , p and t = 1, . . . , T the discrete distribution with
probability mass function p(nit|hit, μiξ, σ

2
iξ, bi,Wi, Ft, rit) is log-concave for nit ≥ 1.

Proof. See the supplementary material.

Due to Proposition 1, the target distribution is a unimodal distribution (Devroye,
1986). Let m be an integer at the right of the mode of the distribution. We define the
probability mass function (pmf)

qm(n) =

⎧⎨
⎩

p̃(n)
c , if n < m

p̃(m)
c

(
p̃(m+1)
p̃(m)

)n−m

, if n ≥ m

with c =
∑m−1

n=0 p̃(n) + p̃(m)2/(p̃(m) − p̃(m + 1)). The pmf qm(n) is proportional to
p̃(n) for n < m and proportional to the geometric pmf with parameter, (p̃(m) −
p̃(m + 1))/p̃(m), for n ≥ m. By noting that if a random variable X follows the
exponential distribution with parameter, log(p̃(m)) − log(p̃(m + 1)), then 	X
 fol-
lows the geometric distribution with parameter (p̃(m) − p̃(m + 1))/p̃(m), we observe
that qm(n), for n ≥ m, corresponds to an exponential density that goes through
the points (m, p̃(m)) and (m + 1, p̃(m + 1)). Log-concavity of the distribution implies
that cqm(n) ≥ p̃(n), for n ≥ m, since any straight line that goes through the points
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Figure 2: p̃(n) and its bounding line in the log-scale. Circles: log(p̃(n)), stars: log(qm(n)).

Algorithm 2 Rejection sampler for the number of jumps.

Generate u ∼ U(0, 1)

if v ≤
∑m−1

n=0 p̃(n)
c then

generate n from qm(n) truncated from the right at the point m−1, by using the
inversion method.
else

repeat:
generate V ∼ U(0, 1)
generate n from the geometric pmf with parameter (p̃(m) − p̃(m + 1))/p̃(m),

truncated from the left at the point m.
until V cqm(n) ≤ p̃(n)

end if
return n

(m, log(p̃(m))) and (m + 1, log(p̃(m + 1))) bounds from above the logarithm of p̃(n).
See Figure 2 for an illustration. A rejection algorithm to sample from the distribution
with pmf p(nit|hit, μiξ, σ

2
iξ, bi,Wi, Ft, rit) proceeds as summarized by Algorithm 2. Note

that Algorithm 2 implies the evaluation of p̃(0), . . . , p̃(m + 1) at each iteration of the
proposed MCMC algorithm.

Jump sizes

Drawing the jump sizes ξit given the number of jumps nit is based on the following
proposition. Let In and 111n be the n × n identity matrix and an n-dimensional vector
with ones respectively.

Proposition 2. According to the model defined by equations (3.1) and (3.2) we have
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that p(ξit|nit, hit, μiξ, σ
2
iξ, rit) is equal to the Gaussian density

Nnit

(
ξit

∣∣∣ (μiξ
ehit

ehit+nitσ2
iξ

+
rit

ehit + nitσ2
iξ

nitσ
2
iξ)111nit , σ

2
iξInit −

σ4
iξ

ehit + nitσ2
iξ

111nit111
′
nit

)
,

for each i = 1, . . . , p.

Proof. See the supplementary material.

4.2 Log-volatilities and factors: MCMC for latent Gaussian models

In the 4th and 12th lines of Algorithm 1 we sample the paths of the log-volatilities Hi

and factors F respectively. Moreover, each path is updated jointly with the parameters
of the corresponding autoregressive models defined by equations (3.2) and (3.8). These
steps correspond to the joint sampling of latent paths and parameters of latent Gaussian
models. A latent Gaussian model is defined in terms of a non-Gaussian likelihood and a
latent Gaussian field controlled by some parameters. By denoting with X a d-dimensional
random vector that corresponds either to a latent log-volatility or to a factor path, with
x its realization and with θ any parameters we target the density

p(x, θ) ∝ exp{g(x)}N (x|0, Cθ)π(θ), (4.1)

where g(x) is the log-likelihood function, Cθ denotes the covariance matrix of the latent
Gaussian field, parametrized in terms of θ and π(θ) denotes the density of the prior
for θ. We have assumed, without loss of the generality, that the latent Gaussian field
has zero mean. We also note that only throughout the present Section we violate our
notation and we use lower-case letters to denote the realizations of a random vector;
the dependence on any data has been suppressed.

To draw samples from the target in (4.1) two approaches have dominated in the
literature. One of them is to alternate sampling from the conditionals p(x|θ) and p(θ|x).
Sampling from p(x|θ) is quite challenging since usually corresponds to a high dimensional
distribution. To draw the desired samples several well-established methods, based on the
Metropolis-Hastings algorithm, have been used, see e.g. Roberts and Stramer (2002),
Murray et al. (2010), Girolami and Calderhead (2011) and Cotter et al. (2013); in the
latter approach the proposal distribution utilizes information both from the likelihood
and the Gaussian prior of the latent states and this is an important feature of the
proposed sampler (Titsias and Papaspiliopoulos, 2018). Sampling from p(θ|x) is also
challenging since the parameters θ are highly correlated with the Gaussian latent states
of the model. See, for example, Papaspiliopoulos et al. (2007), Murray and Adams
(2010) and Yu and Meng (2011) for efficient methods that have been developed for
the update of θ, conditional on the latent Gaussian field, in a more general class of
Bayesian hierarchical models. In the second approach, joint sampling of the latent states
x and the parameters θ is conducted. This perspective is considered, among others, by
Knorr-Held and Rue (2002) where the latent states and the parameters are updated in,
carefully selected, blocks and by Titsias and Papaspiliopoulos (2018) where a sampler
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which utilizes auxiliary variables to perform updates that are both prior and likelihood
informed has been constructed.

In the present paper we follow the latter approach and we update jointly the latent
states and the parameters of a given model by combining the methods proposed by
Yu and Meng (2011) and Titsias and Papaspiliopoulos (2018). Following Yu and Meng
(2011) we interweave the so-called (Papaspiliopoulos et al., 2007) centred and non-
centred parametrization of the latent states and by utilizing the algorithm developed
by Titsias and Papaspiliopoulos (2018) we sample jointly x and θ under each one of the
two parametrizations. We show that by utilizing the proposed Metropolis-Hastings step
we find efficiency gains relative to alternative samplers that can be used to update the
latent log-volatilities, the factor paths and their parameters. In the rest of the Section
we present the proposed methodology in the case of a general latent Gaussian model
and in the supplementary material we provide the details for the application of the
method in order to sample the latent factors F as well as each log-volatility path Hi

and their parameters.

Metropolis-Hastings for the joint update of latent paths and parameters

To construct a Metropolis-Hastings step in order to sample jointly x and θ we work
as in Titsias and Papaspiliopoulos (2018) and we introduce auxiliary variables u ∼
Nd(x, (δ/2)Id). We consider, thus, the expanded target

p(x, θ, u) ∝ exp{g(x)}Nd(x|0, Cθ)Nd(u|x, (δ/2)Id)π(θ). (4.2)

Samples from the expanded target can be drawn by first drawing u from p(u|x) =
Nd(u|x, (δ/2)Id) and then employing the Metropolis-Hastings algorithm to draw from
the intractable p(x, θ|u). To perform the latter update we utilize a proposal distribution
of the form

q(x′, θ′|x, θ, u) = q(x′|x, θ′, u)q(θ′|θ). (4.3)

To construct q(x′|x, θ′, u) we approximate the intractable log-likelihood g(·) by employ-
ing a first order Taylor expansion of g(·) around the current value x. We obtain, then,
the proposal density

q(x′|x, θ′, u) ∝ exp{g(x) +∇g(x)�(x′ − x)}Nd(x
′|0, Cθ′)Nd(u|x′, (δ/2)Id)

∝ Nd

(
x′|2

δ
Qθ′(u +

δ

2
∇g(x)), Qθ′

)
, (4.4)

where Qθ′ = (C−1
θ′ + 2

δ Id)
−1. To reduce the costs of generating from the proposal in (4.4)

as well as evaluating the resulting acceptance ratio we follow Titsias and Papaspiliopou-
los (2018) and we define new auxiliary variables z by using the reparametrization

z ≡ u + (δ/2)∇g(x) ∼ Nd(x + (δ/2)∇g(x), (δ/2)Id).

The expanded target in (4.2) becomes now

p(x, z, θ) ∝ exp{g(x)}Nd(x|0, Cθ)Nd(z|x + (δ/2)∇g(x), (δ/2)Id)π(θ),
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Algorithm 3 Auxiliary gradient-based sampler to draw samples from (4.1).

1. Sample z ∼ Nd(x + (δ/2)∇g(x), (δ/2)Id).
2. Propose θ′ ∼ q(θ′|θ) and x′ ∼ q(x′|θ′, z) and accept them according to the
Metropolis-Hastings ratio in (4.6).

while the proposal in (4.4) can be written as

q(x′|θ′, z) = Nd

(
x′| 2δQθ′z, Qθ′

)
=

1

Z(z, θ′)
Nd(x

′|0, Cθ′)Nd(z|x′, Cθ′), (4.5)

where Z(z, θ′) = Nd(z|0, Cθ′ + (δ/2)Id). Notice that, importantly, the proposed x′ be-
comes conditionally independent from the current x given the auxiliary variable z. In
particular, the proposal q(x′, θ′|x, θ, u) in (4.3) becomes

q(x′, θ′|x, θ, z) = q(x′|θ′, z)q(θ′|θ),

and the acceptance ratio of the move is

exp {g(x′)− g(x) + ν(z, x′)− ν(z, x)} × Z(z, θ′)π(θ′)q(θ|θ′)
Z(z, θ)π(θ)q(θ′|θ) , (4.6)

where ν(z, x) = (z− x− (δ/4)∇g(x))
� ∇g(x). In our application we choose q(θ′|θ) to be

a simple random walk proposal distribution with step-size κ. Algorithm 3 summarizes
the proposed Metropolis-Hastings step for the joint update of x and θ. Finally, we note
that following Titsias and Papaspiliopoulos (2018) we learn κ and δ during the burn-in
period by decomposing step 2 in Algorithm 3 in two sub-steps. We first update x alone
and tune δ in order to achieve an acceptance ratio between 50% and 60%. Then, we
update (x, θ) jointly and we tune κ to obtain acceptance ratio in the range of 20% to
30%.

Interweaving strategy for the parameters

Although drawing the latent path x jointly with the parameters θ aims to overcome con-
vergence problems that occurring due to their high dependence, it is well-known that
the parametrization of latent Gaussian models as well as of more general Bayesian hier-
archical models plays a key role in the efficiency of MCMC algorithms (Papaspiliopoulos
et al., 2007). To address convergence issues that arise from the parametrizations of the
latent log-volatility models and from the latent factor model for the jump intensities we
employ the, so-called, ancillarity–sufficiency interweaving strategy (ASIS) developed by
Yu and Meng (2011); see also Kastner and Frühwirth-Schnatter (2014) for the benefits
of the ASIS in the case of univariate SV models and Simpson et al. (2017) where the
ASIS has been applied in more general dynamic linear models. In the case of a latent
Gaussian model with latent states x and parameters θ the application of ASIS is briefly
described as follows. After the joint update of x and θ with the Metropolis-Hastings step
described by Algorithm 3 we transform the latent path x to its non-centred parametriza-
tion x̃ by using an one-to-one transformation. We re-draw then the parameters θ from
p(θ|x̃) before transforming x̃ back to x by using the inverse transformation.
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To employ ASIS in our application we first note that equations (3.1)–(3.2) and (3.5)–
(3.8) define the centred parametrizations (Papaspiliopoulos et al., 2007) of the corre-
sponding models. The non-centred parametrization for the latent states of a latent
Gaussian model can be found by following the reasoning developed by Yu and Meng
(2011): under a non-centred parametrization x has to be an ancillary statistic for θ, i.e.,
the distribution of x needs to be free of θ. We note that there are cases where a many-to-
one transformation is needed (Papaspiliopoulos et al., 2003) but this is not required in
our application. It is easy to see that in the case of the latent log-volatilities hit defined
in (3.2) the variables h̃it = (hit − μi)/σiη are in a non-centred parametrization while
in the case of the latent factors defined by (3.7) the transformation Γt = Ft − AFt−1

results in a non-centred factor model for the jump intensities. ASIS is completed by
re-drawing the log-volatility parameters μi, φi and σ2

iη and the factor parameters A un-
der the non-centred parametrizations and by using the inverse transformation to return
back to hit and Ft.

In the supplementary material we provide all the details for our implementation
of ASIS along with simulation studies which emphsize the gains obtained by using
the ASIS. By describing briefly the results we note that combining ASIS with the
auxiliary gradient-based sampler (Algorithm 3) improves substantially the efficiency of
the proposed MCMC algorithm (Algorithm 1) in drawing samples from the parameters
μi and σ2

iη of the log-volatility processes (see Figures S.2 and S.3 in the supplementary
material) as well as from the parameters in the matrix A of the latent factor model for
the jump intensities; see Figure S.4 in the supplementary material.

4.3 Approximation by using a mixture of Gaussian distributions

For a given stock, sampling the whole path of the latent log-volatilities Hi at each
MCMC iteration could be performed by utilizing the methodology developed by Chib
et al. (2002) and Nakajima and Omori (2009). Their methods are based on the idea
of Kim et al. (1998) to approximate a SV without jumps model by using a mixture of
Gaussian distributions.

The advantage of their approach is that the update of Hi can be conducted by
drawing samples directly from its full conditional distribution which is a (T +1)-variate
Gaussian with tridiagonal inverse covariance matrix. The jumps sizes and their param-
eters should be updated after integrating out the mixture component indicators from
the likelihood of the approximated model, otherwise convergence of the corresponding
MCMC algorithm will be slow (Nakajima and Omori, 2009). Integrating out the mix-
ture component indicators results in a partially collapsed Metropolis-Hastings within
Gibbs sampler which has to be implemented with care since permuting the order of
the updates can change the stationary distribution of the chain (Van Dyk and Jiao,
2015). If, for example, the update of the mixture indicators is conducted in the step
which is intermediate between the update of the latent log-volatilities and the update
of their parameters, then the Markov chain will not converge to the desired stationary
distribution.
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More importantly, by using the methods developed in Chib et al. (2002) and Naka-
jima and Omori (2009), samples from the posterior of the parameters of the exact model
are obtained with an importance sampling step. In this step, weights that are equal to
the ratio between the likelihood of the exact and the approximated model, are assigned
to the MCMC samples obtained from the approximated model. Although in the case of
SV models without jumps the described importance sampling step works without prob-
lems, it is known (Johannes et al., 2009) that in the case of models with jumps such
weights may have large variance since a few or only one of them could be much larger
than the others. Thus, the output of the importance sampling step will not be suitable
for any Monte Carlo calculation. For an illustration of the problem we conducted a sim-
ulation experiment in which we calculated the required importance sampling weights for
SV models with and without jumps. In particular, we simulated p = 1 time series with
T = 1,500 log-returns from each model by utilizing equations (3.1)–(3.2) and omitting
the jump component in (3.1) to simulate from the model without jumps. In the case of
the SV model with jumps we assumed independent jump intensities over time following
the modelling approach presented in Section 3.2. We chose values for the parameters
of the log-volatility process which are common in the financial literature (Kim et al.,
1998); μ1 = −0.85, φ1 = 0.98 and σ1η = 0.15 and we simulated the sizes of possible
jumps from the Gaussian distribution with μ1ξ = 0 and σ1ξ = 3.5 (Eraker et al., 2003).
Then, we drew 3,000 (thinned) posterior samples of the parameters and latent states of
the approximated models by using the corresponding MCMC algorithms.

Figure 3 displays the log-normalised importance sampling weights plus the logarithm
of their number. The variance of the normalized importance sampling weights should
become smaller as the importance sampling approximation improves. This implies that
the histograms in Figure 3 should be centered at zero in the case of an accurate enough
approximation; see the corresponding plots in Kim et al. (1998) and Omori et al. (2007).
The left panel of Figure 3 indicates that there is little effect of the mixture approximation
in the case of the model without jumps, but the right panel points out that this is not
true in the case of the SV with jumps model. The bad performance of the approximation
strategy in models with jumps is due to the fact that the mixture model has been
proposed by Kim et al. (1998) and improved by Omori et al. (2007) for SV models
without jumps. By adding a jump component in the model the mixture approximation
has to take into account the uncertainty in the estimation of the jump process and
this is not the case in the approximation used by Chib et al. (2002) and Nakajima and
Omori (2009).

5 Out-of-sample forecasting

To compare the predictive performance of different SV models we develop a compu-
tational framework for out-of-sample forecasting. Based on T in-sample and � out-
of-sample observations we assess the forecasts obtained from the various models by
calculating proper scoring rules (Gneiting and Raftery, 2007). A scoring rule assigns a
numerical score to a probabilistic forecast by taking into account the posterior predictive
distribution and the realized observation and it is proper if the expected score is max-
imized when the estimated predictive distribution coincides with the true distribution.
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Figure 3: Histograms of normalized weights multiplied by their number, in the log-scale,
calculated as the ratio between the likelihood of the exact and the approximated, by a
mixture of Gaussian distributions, model in the case of stochastic volatility (SV) models
with and without jumps.

Proper scoring rules allow for the joint evaluation of the calibration (compatibility of
forecasts and observations) and the sharpness (concentration of the predictive distribu-
tions); see, for example, Geweke and Amisano (2010) and Krüger et al. (2020) for more
detailed discussions. We focus on three proper scoring rules: (i) logarithmic scores, and
particularly, the predictive log Bayes factors which compare the models with respect to
their marginal likelihoods, (ii) continuous ranked probability scores which are employed
for the assessment of the predictive cumulative distribution functions (CDFs) and (iii)
interval scores which are utilized for the evaluation of the prediction credible intervals.
We complete a full-fledged assessment of the predictive performance of the different
models by calculating root mean squared errors of the obtained forecasts.

To calculate these summary measures we draw samples from the posterior predictive
distributions of interest and we estimate their densities by utilizing sequential Monte
Carlo methods (Chopin and Papaspiliopoulos, 2020b). In the rest of the Section we
present the computational framework that we built in order to conduct out-of-sample
forecasts with univariate SV models with and without jumps as well as by using the
proposed joint modelling approach for the jump intensities. To evaluate the accuracy
of the obtained estimators we calculate the effective sample size of the samples drawn
from the posterior predictive distributions. The effective sample size of a given sam-
ple is commonly employed (Neal, 2001; Chopin et al., 2013) to assess the variance of
estimators obtained from weighted rather than independent samples; see in the supple-
mentary material for more details. For the remaining of this section we assume that the
parameters Θ, A and W are fixed to their in-sample estimated posterior means and we
omit them from our notation.

5.1 Prediction with independent SV models

Let Msvj and Msv be the model that consists of p independent, univariate SV models
with and without jumps respectively. Let also R1:T and RT+1:T+� denote in-sample and
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out-of-sample observations. To calculate predictive Bayes factors and the continuous
ranked probability and interval scores we consider the posterior predictive distributions
with densities p(rit|ri,1:t−1), t = T + 1, . . . , T + �. The predictive log Bayes factors are
defined as

log(p(RT+1:T+j |R1:T ,Msvj))− log(p(RT+1:T+j |R1:T ,Msv)), j = 1, . . . , �, (5.1)

where for both Msvj and Msv we have that

p(RT+1:T+j |R1:T ) =

p∏
i=1

T+j∏
t=T+1

p(rit|ri,1:t−1).

Moreover, if lit and uit denote the α/2 and 1 − α/2 quantiles of a (1 − α) × 100%
prediction interval for the value of rit then its interval score is given by the formula

(uit − lit) +
2

α
(lit − rit)1{rit < lit}+

2

α
(rit − uit)1{rit > uit}. (5.2)

We note, finally, that the calculation of the continuous ranked probability scores that we
employ for the evaluation of predictive CDFs is also based on samples from p(rit|ri,1:t−1);
see the supplementary material for details.

We draw the desired samples and we estimate the densities p(rit|ri,1:t−1) based on
the formula

p(hi,0:t|ri,1:t) =
p(hi,0:t−1|ri,1:t−1)p(rit|hit)p(hit|hi,t−1)

p(rit|ri,1:t−1)
, (5.3)

and by utilizing sequential Monte Carlo methods also known as particle filters (Chopin
and Papaspiliopoulos, 2020a). From the output of a particle filter algorithm that tar-
gets the posterior in (5.3) we are able to draw samples from the posterior predictive
distribution of rit and to estimate the normalizing constants p(rit|ri,1:t−1). See in the
supplementary material for more details and for the pseudocode of the particle filter
algorithm.

5.2 Prediction by using joint modelled jump intensities

Let Mmvj be our proposed SV with jumps model, defined by equations (3.1)–(3.3)
and (3.5)–(3.8). To compare the predictive performance ofMmvj with the performance of
competing models we need to estimate the predictive densities p(RT+j |R1:T+j−1,Mmvj),
for each j = 1, . . . , �. This could be achieved with a particle filter algorithm, constructed
similarly to the case of independent SV models, as described in Section 5.1. However,
in the case of Mmvj, particle filter algorithms deliver poor estimations of the marginal
likelihoods since the importance weights, calculated at each of their steps, have large
variance.

We develop an alternative sequential importance sampling algorithm to obtain the
desired estimates which is based on the annealed importance sampling (AIS) proposed
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by Neal (2001). AIS utilizes the method of simulated annealing (Kirkpatrick et al.,
1983) to construct an importance sampling algorithm for drawing weighted samples
from an unnormalized target distribution. The proposal distribution of the algorithm
is based on a sequence of auxiliary distributions and Markov transition kernels that
leave them invariant. As in any importance sampling algorithm, the sample mean of the
importance weights is an estimation of the ratio between the normalizing constants of
the target and proposal distributions. Moreover, the output of AIS can be used for the
estimation of expectations with respect to any of the auxiliary distributions used for the
construction of the algorithm. Here we exploit these features of AIS to draw samples
from the posterior predictive distributions of interest and to estimate their densities. In
the rest of the section we provide a detailed description of how we apply AIS, Mmvj is
suppressed throughout except when it is necessary.

Let g0, . . . , g� be the required sequence of auxiliary distributions. By noting that
each gj must be proportional to a computable function and satisfies gj = 0 wherever
gj−1 = 0 we set g�(H0:T+�, F0:T+�) = p(H0:T+�, F0:T+�|R1:T+�) and

gj(H0:T+�, F0:T+�) = p(H0:T+�, F0:T+�|R1:T+j)

= p(H0:T+j , F0:T+j |R1:T+j)

T+�∏
t=T+j+1

p(Ht|Ht−1)p(Ft|Ft−1),

for j = 0, . . . , � − 1. Samples from gj , j ≥ 1, are obtained by drawing samples from
gj−1 using a few iterations of Algorithm 1 and the transition densities p(HT+j |HT+j−1)
and p(FT+j |FT+j−1). To sample from g0 we utilize samples from p(H0:T , F0:T |R1:T ).
We compute the importance weights of the obtained samples by first noting that gj are
proportional to the computable functions

g∗j (H0:T+�, F0:T+�) = p(H0:T+j , F0:T+j , R1:T+j)

T+�∏
t=T+j+1

p(Ht|Ht−1)p(Ft|Ft−1), j < �,

and g∗� (H0:T+�, F0:T+�) = p(H0:T+�, F0:T+�, R1:T+�). Therefore, the importance weight
for every sampled point is

Ωs
T+j = Ωs

T+j−1

g∗j (H
s
0:T+�, F

s
0:T+�)

g∗j−1(H
s
0:T+�, F

s
0:T+�)

= Ωs
T+j−1p(RT+j |Hs

T+j , F
s
T+j), j ≥ 2,

and Ωs
T+1 = p(RT+1|Hs

T+1, F
s
T+1), s = 1, . . . , S, where S is the number of samples

obtained by AIS and

p(Rt|Hs
t , F

s
t ) =

p∏
i=1

p(rit|hs
it, F

s
t )

=

p∏
i=1

∞∑
nit=0

N (rit|nitμiξ, exp(h
s
it) + nitσ

2
iξ)p(nit|Δitλ

s
it). (5.4)

We also note that the infinite sum in (5.4) can be truncated without affecting the results
of the algorithm (Johannes et al., 2009). We refer to the supplementary material for the
pseudocode that we used to construct the described AIS algorithm.
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The sample means of the weights calculated at each step of AIS provide estimators
of the marginal likelihoods p(RT+1:T+j |R1:T ). However, the resulting weights have large
variance and the corresponding estimates will be inaccurate. Nevertheless, and in con-
trast with a particle filter that targets p(H0:T+�, F0:T+�|R1:T+�), we can use the samples
{Hs

0:T+j , F
s
0:T+j}Ss=1 to estimate the quantities p(ri,T+1:T+j |R1:T ) for each stock sepa-

rately. We propose the following sampling procedure. First, note that

p(rit|R1:t−1) =

∫
p(rit|hit, Ft)p(hit|hi,t−1)p(Ft|Ft−1)

× p(hi,0:t−1, F0:t−1|R1:t−1)dhi,0:tdF0:t.

This implies that by using only the ith element of the product in (5.4) we obtain an es-
timator of the ith marginal of p(RT+1:T+j |R1:T ) as follows. We set p̂(ri,T+1:T+j |R1:T ) =∑S

s=1 ω
s
i,T+j/S, where

ωs
it = ωs

i,t−1p(rit|hs
it, F

s
t ),

and ωs
i,T+1 = 1. Thus, p(ri,T+1:T+j |R1:T ,Mmvj) is estimated by p̂(ri,T+1:T+j |R1:T ) ac-

curately since the latter is based on importance sampling weights with reduced variance
and can be used for the estimation of log Bayes factors of the form

log(p(ri,T+1:T+j |R1:T ,Mmvj))− log(p(ri,T+1:T+j |R1:T ,Msvj)), (5.5)

where p(ri,T+1:T+j |R1:T ,Msvj) can be estimated with the methods presented in Sec-
tion 5.1. We also note that by assuming that the joint predictive density of all returns
is estimated by the product of their marginal predictive densities, as in the independent
across stocks SV with jumps models, we estimate the approximate log Bayes factors

p∑
i=1

log(p(ri,T+1:T+j |R1:T ,Mmvj))−
p∑

i=1

log(p(ri,T+1:T+j |R1:T ,Msvj)). (5.6)

Finally, {hs
i,0:T+j , F

s
0:T+j}Ss=1 can be utilized in order to draw samples from the posterior

predictive distributions needed to calculate the continuous ranked probability and the
interval scores; see the supplementary material for details.

6 Real data application

Here we present results from the application of the developed methodology on real data.
In the supplementary material we present results from simulation studies used to test
our methodology. Further specifics of the data analysis, such as parameter estimates for
the log-volatility processes, can be also found in the supplementary material as well as
in Alexopoulos (2017).

6.1 Data and MCMC details

We applied the developed methods on time series consisted of daily log-returns from
stocks of the STOXX Europe 600 Index downloaded from Bloomberg between 10/1/2007
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Figure 4: First row: posterior mean of the paths of the three autoregressive factors F1,
F2 and F3 that we used to model the evolution of the jump intensities across stocks and
across time. Second row: posterior (solid lines) and prior (dotted lines) distributions of
the persistent parameters α1, α2 and α3.

to 11/6/2014. We removed 29 stocks by requiring each stock to have at least 1000
traded days and no more than 10 consecutive days with unchanged price. The final
dataset consisted of p = 571 stocks and 1947 traded days. We used daily log-returns
observed in the first T = 1917 days as in-sample observations to estimate all models
described through our article and the last � = 30 observations to test their predictive
ability. In our dynamic factor model we used K = 3 factors. We ran all the MCMC
algorithms for 250,000 iterations using a burn-in period of 100,000 sampled points and
we collected 1,000 (thinned) posterior samples. In the supplementary material we give
the computing times for the real and simulated data analysis that we have implemented
and we evaluate the accuracy of the sequential Monte Carlo methods that we used to
conduct the assessment of the predictive performance of the different models.

6.2 Results

Bayesian inference for parameters and latent states

Figure 4 depicts the posterior means of the factor paths along with the posterior distri-
butions of their persistent parameters α1, α2 and α3. The posterior densities of α1 and
α2 indicate strong evidence of autocorrelation in the first two factor processes while that
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Figure 5: 95% credible intervals of the posterior distributions of the temporal averages
of the volatility processes. Each dotted blue line corresponds to a different stock.

of α3 suggests that a model with only K = 2 factors adequately captures the depen-
dence of the jumps over times and across stocks. Therefore, all results in the following
are based on K = 2 factors.

By noting that we have applied our methods on a very high-dimensional dataset we
present posterior distributions for summary statistics related to the latent volatility and
jump processes. Figure 5 shows, for each stock, the 95% credible interval of the temporal
average of the volatility process. From the visual inspection of the Figure we note that
the stocks can be separated in those with low, medium and high volatilities. More pre-
cisely, the posterior temporal average of the volatilities for the majority of the stocks is
estimated lower than 5, for a few number of stocks the temporal average ranges between
5 and 15 while for less than 10 stocks the posterior temporal average has 95% credible
interval with lower limit greater than 15. See also the supplementary material for addi-
tional results regarding Bayesian inference about the log-volatility processes and their
parameters. Figure 6 presents the 95% credible intervals for the posterior distribution
of the temporal sum of jumps for each stock with respect to the economic sector that it
belongs to. The Figure indicates that for each stock have been identified 100 jumps on
average between 10/1/2007 and 11/6/2014. We also note that the number of stocks for
which almost no jumps have been estimated is very small and such stocks mainly belong
to the financial, the industrial and the consumer- cyclical and non-cyclical, the energy
and the communications sectors. In the supplementary material we present more results
related to the Bayesian analysis of the jump processes of the SV models while Figure 1
offers a visual illustration of the estimated jumps underlying the time evolution of the
stock returns.

As already noted in the introduction of the paper the top panel of Figure 1, which
has been created by using an empirical method for jump identification, visualizes a
dense estimation of the underlying jump process. The middle panel which corresponds to



A. Alexopoulos, P. Dellaportas, and O. Papaspiliopoulos 673

Figure 6: 95% credible intervals of the posterior distributions of the temporal sum of
jumps. Each dotted blue line corresponds to a different stock and each plot is consisted
of credible intervals for the stocks that belong to the economic sector indicated by its
title.

independent modelling of jumps depicts a very sparse jump process whereas the bottom
panel indicates less number of jumps than the empirical method but more than the
independent SV models. To evaluate the estimation of the jump processes in the three
panels we first emphasize that the true jumps in the stock prices are unobserved events.
Therefore, drawing conclusions for the accuracy of the jumps estimation by only visually
inspecting the Figure is difficult. We note, however, that the dense jump structure
obtained from the empirical method can be explained by the fact that the time evolution
of the volatility of the stock returns is not taken into account; resulting in a possible
overestimation of the number of jumps. The latter combined with the more narrow
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Figure 7: Left: Log Bayes factors (BF) in favour of univariate SV models with jump
intensities modelled independently across time and stocks against univariate SV without
jumps models; see (5.1) for the corresponding formula. Right: Logarithm of approximate
BF for SV models with jointly (numerator) and independently (denominator) modelled
jumps intensities; see (5.6) for the corresponding formula. The x-axis in both plots refers
to the � = 30 out-of-sample time points.

credible intervals for the log-volatilities delivered by SV models with jumps (see Figure
S.12 in the supplementary material) indicates that an efficient jump identification results
in accurate estimation of the log-volatility process without increasing unnecessarily its
level due to the presence of large price movements and, thus, more precise forecasts
of future returns are expected. See also the following Section where we compare the
predictive performance of SV models with and without jumps. To assess the jump
structures estimated by employing independent and joint models for the jump intensities
of SV models we rely on their forecasting performance. In particular, as also described
below, the proposed joint modelling approach for the jump intensities results in a more
accurate prediction of future returns. We conclude, therefore, that the estimation of the
underlying jumps process depicted by the third panel of Figure 1 is closer to the real
jump activity of the stock prices allowing further improvement in the estimation of the
log-volatilities and more accurate prediction of future stock returns.

Predictive performance

Here we evaluate the predictive performance of the proposed SV model with jointly
modelled jump intensities as well as the corresponding performance of univariate SV
models with and without jumps which are also specified by equations (3.1)–(3.3) by
making suitable assumptions. In the supplementary material we compare the forecasting
performance of the proposed model with alternative SV models which account for the
heavy tails of the distribution of the observed returns.

The left panel of Figure 7 compares the predictive performance of independent,
univariate SV models with and without jumps by presenting predictive log Bayes factors.
The Figure is constructed by considering the log Bayes factors defined in (5.1) for
the � = 30 out-of-sample observations of our dataset. Thus, positive log Bayes factor
indicates that the predictions obtained with univariate SV models with jumps are more
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Figure 8: First column: proportion of stocks for which the interval scores for the 95%
prediction intervals of the SV model with jointly modelled jumps is lower than the
corresponding score for the SV models without (top) and with independent (bottom)
jumps. Second column: medians of interval scores across the 571 stocks. Third column:
proportion of stocks for which the continuous ranked probability score (CRPS) for the
SV model with jointly modelled jumps is lower than the corresponding score for the
SV models without (top) and with independent (bottom) jumps. The x-axis in all plots
refers to the � = 30 out-of-sample time points.

accurate than those of SV models without jumps. According to Kass and Raftery (1995)
a value of the log Bayes factor greater than 5 provides strong evidence in favour of the
model with jumps. The increasing nature of the log Bayes factor reassures that as more
data are collected and as more jumps are identified in stock returns, the evidence that
the model with jumps outperforms the model without jumps increases. In the right
panel of Figure 7 we compare the predictive performance of our proposed SV with
jumps model in which the jump intensities are modelled by using a dynamic factor
model with SV models in which the jump intensities are independent over time and
across stocks. The Figure compares the two models by presenting the logarithms of
the approximate log Bayes factors in (5.6). Clearly, there is strong evidence that our
proposed model outperforms the independent modelling of stock returns with a SV with
jumps formulation.

Figure 8 compares the forecasts of the proposed model with those obtained from
SV models without jumps and with independent jumps respectively by employing their
probabilistic evaluation (Gneiting and Raftery, 2007). Joint modelling of the intensities
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leads to 95% prediction credible intervals with the lowest interval scores at each one
of the out-of-sample points for the vast majority of the stocks. The definition of the
interval score in (5.2) rewards the forecaster that delivers narrow prediction intervals
and when the observation is outside the predicted interval a penalty proportional to
the significance level of the interval is incurred. It is thus indicated that the proposed
SV model delivers the most accurate prediction intervals compared to those obtained
from univariate SV models with and without jumps. The fact that Figure 8 displays
the median instead of the mean of the 571 interval scores emphasizes an important
characteristic of our modelling approach. The efficient identification of the in-sample
jumps has resulted in estimating lower volatilities for the stock returns; see Figures
S.11 and S.12 in the supplementary material. This is depicted in the conducted out-of-
sample exercise by more narrow prediction intervals for a given coverage probability.
Moreover, since the prediction of future jumps is based on common across the stocks,
autoregressive factors, we expect that jumps that occur suddenly in a small number of
stocks at a given day are not easily predictable. On the other hand, the large volatility
intervals delivered from SV models without jumps or models with less accurate jump
identification can accidentally predict more efficiently these types of movements. The
median is chosen to avoid taking into account such predictions. The superiority of
the proposed approach is also emphasized by Figure 8 by the lower continuous ranked
probability scores that correspond to the proposed SV model than those of the univariate
SV models. This implies that the posterior predictive distributions of the proposed
model are more concentrated than those obtained from univariate SV models with and
without jumps while deliver predictions that are not easily distinguishable from the
materialized observations. This is a desired property of probabilistic forecasts described
as the main goal of probabilistic forecasting; see for example Gneiting and Katzfuss
(2014). Finally, Figure S.14 in the supplementary material which presents root mean
squared errors for the predictions obtained from the different models indicates that joint
modelling of the jump intensities improves slightly the point forecasts. We conclude
that the proposed modelling approach offers a more accurate identification of jumps
and consequently a more precise estimation of the returns volatility compared to the
one conducted by using SV models without or with independent jumps. As a result,
the predictive performance of the proposed model outperforms the other models. This
makes the suggested model a competitive alternative for practitioners who are interested
in obtaining accurate predictions for the stocks of large portfolios.

7 Discussion

We have developed a general modelling framework together with carefully designed
MCMC algorithms to perform Bayesian inference for SV models with Poisson-driven
jumps. We have shown that for the data we applied our models there is evidence that,
with respect to predictive Bayes factors, (i) univariate SV models with jumps outper-
form univariate SV models without jumps and (ii) models that jointly model jump
intensities with a dynamic factor model outperform SV models with jumps that are
applied independently across stocks. We feel that (ii) is an interesting result that adds
considerable insight to the growing literature of modelling financial returns with jumps,
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adding to the observation by Aı̈t-Sahalia et al. (2015) that there is indeed predictability
in jump intensities.

There are various issues that have not been addressed in this paper. The proposed
MCMC algorithms can be easily extended in order to conduct inference for the more
realistic (Harvey and Shephard, 1996) class of SV models which allow for correlation
between the error terms εit and ηit in (3.1) and (3.2), a phenomenon which is commonly
known as leverage effect. In this case samples from their full conditional distributions can
be obtained by using the auxiliary gradient-based sampler (Titsias and Papaspiliopoulos,
2018) to draw each correlation parameter jointly with φi, σ

2
iη and Hi. Other modelling

aspects include the relaxing of independence of Et in (3.8) or the assumption that A is
lower diagonal as in the models proposed in Dellaportas and Pourahmadi (2012).

Finally, a series of interesting financial questions can be addressed with our models
by exploiting the fact that panel of stock returns carries additional, possibly important,
information. For example, in our dataset one can explore the effects of country and
sector effects or could investigate whether the joint tail risk dependence does or does
not change before, during and after the financial crisis in Europe. We feel that our
proposed models together with our algorithmic guidelines will serve as useful tools for
such future research pursuits in financial literature.

Supplementary Material

Web-based supporting material for “Bayesian prediction of jumps in large panels of
time series data” by A. Alexopoulos, P. Dellaportas and O. Papaspiliopoulos (DOI:
10.1214/21-BA1268SUPP; .pdf). The supplementary material contains proof of results
provided in the main text, simulation experiments and additional results from the real
data analysis.
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