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Chapter 1

Introduction

This book is about the analysis of randomized response data and the analysis of
data that are subject to the post randomization method (PRAM). The following
introduces randomized response and PRAM, provides an outline of the subsequent
chapters, and describes important assumptions and choices that are made through-
out the book.

1.1 Randomized Response

Randomized response (RR) is an interview technique that can be used when sen-
sitive questions have to be asked and respondents are reluctant to answer directly
(Warner 1965). Examples of sensitive questions are questions about alcohol con-
sumption, sexual behavior or fraud. RR variables can be seen as misclassified cat-
egorical variables where conditional misclassification probabilities are known. The
misclassification protects the privacy of the individual respondent.

The general scheme of RR is given by

−−→
sampling

latent
status −−→

RR

observed
answers

population sample

1
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Assume that a researcher wants to assess a sensitive item and that he uses a ques-
tion to which the answer is either yes or no. After the sample is drawn from the
population, the RR design is applied to the selected respondents. The latent status
of the respondents with respect to the sensitive item are unknown. Observed data
consist of observed answers after RR is applied.

A possible choice of a RR design is the forced response design (Boruch 1971).
In this design, the respondent throws two dice after the sensitive question is asked.
The outcome of the dice is hidden from the interviewer. If the outcome is 2, 3 or 4,
the respondent answers yes. If the outcome 5, 6, 7, 8, 9 or 10, he answers according
to the truth. If the outcome 11 or 12, he answers no.

The RR design can be seen as a misclassification design. Assume that the sensi-
tive question concerns fraud and that respondent Z indeed committed fraud. When
the question ”Did you commit fraud?” is asked in a direct response situation, the
truthful answer of Z is yes. Assume next that the forced response design is applied.
When Z throws the dice and the outcome is 2, 3, 4, 5, 6, 7, 8, 9 or 10, he answers
yes and he is correctly classified as a person that committed fraud. When the out-
come is 11 or 12, the answer of Z is no and Z is misclassified as a person that did
not commit fraud. The misclassification probability conditional on the fact that Z
committed fraud can be computed using the distribution of the outcome of the dice
and is given by

IP ( Z is misclassified| Z committed fraud) = 1/12. (1.1)

When Z did not commit fraud, the misclassification probability is given by

IP ( Z is misclassified| Z did not commit fraud) = 1/6.

Since the interviewer does not know the outcome of the dice, the interviewer does
not know whether the observed answer corresponds with the latent status of Z. In
other words, an observed yes does not necessarily mean that Z committed fraud.
Hence the privacy of Z is protected.

Probability (1.1) is rather small and one might wonder whether the respondent is
satisfied with the privacy protection that is offered. However, Moriarty and Wiseman
(1976) showed that respondents tend to overestimate (1.1) due to an inaccurate idea
of the distribution of the outcome of the two dice.

More formally, let X be the binary RR variable that models the latent status,
X∗ the binary variable that models the observed answer, and yes ≡ 1 and no ≡ 2.
Given the forced response design, the distribution of X∗ is the 2-component finite
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mixture given by

IP (X∗ = x∗) =
2∑

k=1

IP (X∗ = x∗|X = k)IP (X = k), (1.2)

where x∗ ∈ {1, 2}. The conditional probabilities pjk = IP (X∗ = j|X = k) for
j, k ∈ {1, 2} are fixed by the forced response design and the known distribution of
the sum of the two dice. Formulation (1.2) shows that RR variables can be seen
as misclassified variables. The transition matrix of X that contains the conditional
misclassification probabilities pjk for j, k ∈ {1, 2} is given by

P X =

(
p11 p12

p21 p22

)
=

(
11/12 2/12
1/12 10/12

)
.

Similar expressions hold for more that two RR variables or RR variables with more
than two categories.

Other RR designs are possible. A second example is the design where the mis-
classification is based on drawing playing cards from two stacks (Kuk 1990). In
this design, the misclassification is based on chosen distributions of the colors in the
stacks. By choosing different distributions different misclassification probabilities
can be determined.

In recent years, RR techniques have been investigated and applied in the Nether-
lands. Van der Heijden, Van Gils, Bouts, and Hox (2000) compare two RR designs
with face-to-face direct questioning. Boeije and Lensvelt-Mulders (2002) investigate
compliance and non-compliance in RR surveys. Van Gils, Van der Heijden, Laudy,
and Ross (2003) report about rule transgression with respect to social benefits. The
transgression was investigated using the RR design by Boruch (1971). Elffers, Van
der Heijden, and Hezemans (2003) use RR to study rule transgression for two Dutch
instrumental laws. RR has also been studied outside the Netherlands. The mono-
graph on RR by Chaudhuri and Mukerjee (1988) gives an overview of existing theory
and techniques.

The basic idea of RR is that the perturbation induced by the misclassification
design (in the first example, using the dice) protects the privacy of the respondent
and that insight into the misclassification design (in the first example, the known
distribution of the dice) can be used to analyze the data. A researcher who wants
to apply RR should reflect on two issues. The first is about the choice of the RR
design and efficiency. How much protection does the design offer? Will respondents
understand the design? How expensive is the application? And, closely connected
with cost, how many respondents are necessary? The second issue is connected with
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the first and is about the analysis of the RR data. It is obvious that one should take
care of the misclassification due to the use of RR. How should that be done?

1.2 Post Randomization Method

The founder of RR suggested that the idea of RR can also be used to protect
data that have already been collected (Warner 1971). The post randomization
method (PRAM) was introduced by Kooiman, Willenborg and Gouweleeuw (1997)
and can be seen as an application of RR where the misclassification is applied using a
computer. PRAM is designed for the situation in which a statistical institute wants
to release data to researchers outside the institute. When data are released, the
privacy of the respondents should be protected. The field in statistics that studies
the problems in this situation is called statistical disclosure control.

PRAM is a method for statistical disclosure control of microdata files. A micro-
data file is a data matrix where each row, called a record, corresponds to one re-
spondent and where the columns correspond to the variables. PRAM can be applied
to variables in the microdata file that are categorical and identifying. Identifying
variables are variables that can be used to re-identify individuals represented in the
data, e.g., Age, Gender or Ethnic Background. The misclassification of these kind
of identifiers makes re-identification of individuals less likely. An essential aspect of
PRAM is that the recipient of the misclassified data is informed about the misclas-
sification probabilities. Using the probabilities he can adjust his analysis and take
into account the extra uncertainty caused by applying PRAM. The general scheme
of PRAM is given by

−−→
sampling

observed
records −−→

PRAM

released
records

population original sample released sample
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The need for statistical disclosure control of microdata files is illustrated by
the following example. Assume that a general practitioner in the Netherlands is a
respondent in a Dutch survey and that she was born in Bolivia. It is possible that
this doctor is the only respondent in the sample that has the values (GP, Bolivia)
of the combination of variables (Profession, Native Country). This means that her
record might attract attention when the data are released without protection. It
might be that a fellow doctor who happens to browse the sample file recognizes
a former fellow student. Another more aggressive scenario is that someone tries
to match records from the current survey to records from another survey in order
to look for discriminating information. The intentions of such an intruder may be
obscure, yet a statistical institute that releases data should take the possibility of
such an attack into account. Hence the need for statistical disclosure control.

PRAM is not the only way to protect microdata against disclosure. Willen-
borg and De Waal (2001) discuss alternative methods such as global recoding and
local suppression. At Statistic Netherlands, PRAM was introduced by Kooiman,
Willenborg and Gouweleeuw (1997). Subsequent research is presented by De Wolf,
Gouweleeuw, Kooiman, and Willenborg (1997), Gouweleeuw, Kooiman, Willenborg,
and De Wolf (1998), and Van den Hout (1999). PRAM is also one of the methods
discussed by Domingo-Ferrer and Torra (2001) who make a quantitative comparison
of disclosure control methods for microdata.

The two main issues concerning PRAM are comparable to the issues discussed in
the preceding section on RR: First, how to choose the misclassification probabilities
in order to make the released microdata safe? Second, how should statistical analysis
be adjusted in order to take into account the misclassification? It is not difficult to
protect the privacy of respondents by perturbing data, the problem is to perturb
the data in such a way that the privacy is protected and the released data are useful
for research.

1.3 Outline of the Subsequent Chapters

The basis of the subsequent chapters consists of five papers that are written for
individual publication. This structure has the advantage that the chapters are self-
contained, a disadvantage is that there is some overlap in the discussion, especially
in the introduction of the chapters. The outline is as follows.

Given the chosen conditional misclassification probabilities in the RR design or
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the PRAM design, Chapter 2 discusses the estimation of proportions and the esti-
mation of the odds ratio. The methods in this chapter can be used for questions
like: What is the percentage of persons that committed fraud? Or: Is there an as-
sociation between committing fraud and gender? Moment estimates and maximum
likelihood estimates of the proportions are compared and it is proven that they are
the same in the interior of the parameter space. Special attention is paid to the
possibility of boundary solutions.

Chapter 3 can be seen as a generalization of the discussion in Chapter 2. The
method in Chapter 3 can be used to investigate more dimensional association pat-
terns. For example, a study is possible regarding the association between committing
fraud, gender and population size of the place of residence. The chapter describes
the fitting of loglinear models to RR data and PRAM data. The misclassification
is described by a latent class model. Since a latent class model is a loglinear model
with one or more categorical latent variables, it is possible to investigate relations
between misclassified variables. Methods to fit loglinear models for the latent ta-
ble are discussed, including an EM algorithm. Again, attention is paid to problems
with boundary solutions. In an example, RR data are analyzed which were collected
using the RR design by Kuk (1990).

Chapter 4 also discusses the fitting of loglinear models to RR data. There is
some overlap with Chapter 3, but the situation is slightly different since a different
RR design is used and the use of RR is a factor in a 2 × 2 factorial design. Some
of the respondents used the forced response design (Boruch 1971), others did not.
The likelihood for this estimation problem is formulated and it is shown that also
in this situation latent class software can be used to analyze the data. An example
including a power analysis is discussed. This chapter shows the versatility of the
modeling that is presented in Chapter 3.

Chapter 5 is about maximum likelihood estimation of the iid normal linear re-
gression model when some of the independent variables are subject to RR or PRAM.
An example of an application is the investigation of the relation between misclassi-
fied independent variables Age, Gender, and Ethnic Background and non-perturbed
dependent variable Income. The likelihood of the linear regression model with mis-
classified independent variables is derived and a fast and straightforward EM al-
gorithm is developed to obtain maximum likelihood estimates. The basis of the
algorithm consists of elementary weighted least squares steps.

The discussion in Chapter 6 concerns the application of PRAM. The chapter
discusses two variants of the initial idea of PRAM regarding the information about
the misclassification that is given along with the released data. The first variant
concerns calibration probabilities and the second variant concerns misclassification
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proportions. It is shown that the distinction between the univariate case and the
multivariate case is important. In addition, the chapter discusses two measures for
disclosure risk when PRAM is applied.

1.4 Assumptions and Choices

The following describes the main assumptions and choices that are made throughout
the book.

• The emphasis of the book is on analysis of misclassified data. How should we
adjust standard statistical models in order to take into account the misclassifi-
cation induced by either RR or PRAM? Chapter 6, which explicitly discusses
PRAM, is an exception, since one of its topics is the relation between the
choice of the misclassification probabilities and the protection that is offered.

• Throughout the book the assumption is that respondents follow the RR design.
This is a rather strong assumption. It is easy to imagine scenarios where
respondents do not follow the design, either because they do not understand
it or because they do not trust the protection offered. At the end of Chapter
3 this topic is briefly discussed.

• This book contains some real RR data examples. It is assumed that the
research methods underlying the RR data are proper. Issues as sampling,
questionnaires, interviewing, and data editing are not discussed.

• Since this book concerns applied statistics an effort is taken to make the dis-
cussion accessible. Especially Chapters 2 and 3 go at some length to introduce
concepts, methods and solutions. Chapters 3 and 4 contain computer pro-
grams that can be used to analyze the misclassified data. Another way in
which the discussion is made more accessible is the linking of RR and PRAM
to some well-known issues in social statistics such as the analysis of incomplete
data and latent class analysis.
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Chapter 2

Proportions and the Odds Ratio

2.1 Introduction

When scores on categorical variables are observed, there is a possibility of misclassi-
fication. By a categorial variable we mean a stochastic variable which range consists
of a limited number of discrete values called the categories. Misclassification oc-
curs when the observed category is i while the true category is j, i �= j. This
paper discusses analysis of categorical data subject to misclassification with known
misclassification probabilities.

There are four fields in statistics where the misclassification probabilities are
known. The first is randomized response (RR). RR is an interview technique which
can be used when sensitive questions have to be asked. Warner (1965) introduced
this technique and we use a simple form of the method as an introductory example.
Let the sensitive question be ‘Have you ever used illegal drugs?’ The interviewer
asks the respondent to roll a dice and to keep the outcome hidden. If the outcome
is 1,2,3 or 4 the respondent is asked to answer question Q, if the outcome is 5 or 6
he is asked to answer Qc, where

Q = ‘Have you ever used illegal drugs?’

Qc = ‘Have you never used illegal drugs?’

The interviewer does not know which question is answered and observes only yes
or no. The respondent answers Q with probability p = 2/3 and answers Qc with
probability 1 − p. Let π be the unknown probability of observing a yes-response to

1Published as Van den Hout and Van der Heijden (2002). Randomized response, statistical
disclosure control and misclassification: a review, International Statistical Review 70, 269-288.

9
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Q. The probability of a yes-response is λ = pπ+(1−p)(1−π). So with the observed
proportion as an estimate λ̂ of λ, we can estimate π by

π̂ =
λ̂ − (1 − p)

2p − 1
. (2.1)

The main idea behind RR is that perturbation by the misclassification design
(in this case the dice) protects the privacy of the respondent and that insight in the
misclassification design (in this case the knowledge of the value of p) can be used to
analyze the observed data.

It is possible to create RR settings in which questions are asked to get information
on a variable with K > 2 categories (Chaudhuri and Mukerjee 1988, Chapter 3).
We restrict ourselves in this paper to those RR designs of the form

λ = Pπ, (2.2)

where λ = (λ1, ..., λK)t is a vector denoting the probabilities of the observed re-
sponses with categories 1, ..., K, π = (π1, ..., πK)t is the vector of the probabilities
of the true responses and P is the K × K transition matrix of conditional misclas-
sification probabilities pij, with

pij = IP (category i is observed| true category is j).

Note that this means that the columns of P add up to 1. In the Warner model
above we have λ = (λ1, 1 − λ1)

t,

P =

(
p 1 − p

1 − p p

)
,

and π = (π1, 1 − π1)
t . Further background and more complex randomized response

schemes can be found in Fox and Tracy (1986) and Chaudhuri and Mukerjee (1988).
The second field where the misclassification probabilities are known is the post

randomization method (PRAM), see Kooiman, Willenborg and Gouweleeuw (1997).
The idea of PRAM is to misclassify the values of categorical variables after the data
have been collected in order to protect the privacy of the respondents by preventing
disclosure of their identities. PRAM can be seen as applying RR after the data have
been collected. More information about PRAM and a comparison with RR is given
in Section 2.2.

The third field is statistics in medicine and epidemiology. In these disciplines,
the probability to be correctly classified as a case given that one is a case is called
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the sensitivity, and the probability to be correctly classified as a non-case given
that one is a non-case is called the specificity. In medicine, research concerning
the situation with known sensitivity and specificity is presented in Chen (1989)
and Greenland (1980, 1988). In epidemiology, see Magder and Hughes (1997) and
Copeland, Checkoway, McMichael, and Holbrook (1977).

The fourth field is the part of statistical astronomy that discusses rectification
and deconvolution problems. Lucy (1974), for instance, considers the estimation of
a frequency distribution where observations might be misclassified and where the
misclassification probabilities are presumed known.

To present RR and PRAM as misclassification seems to be a logical approach,
but a note must be made on this usage. Misclassification is a well known concept
within the analysis of categorical data and different methods to deal with this kind
of perturbation have been proposed, see the review paper by Kuha and Skinner
(1997), but the situation in which misclassification probabilities are known does
not often occur. In most situations, these probabilities have to be estimated which
makes analyses of misclassified data more complex.

The focus of this paper is on RR and PRAM. The discussion is about the analysis
of the misclassified data, not about the choice of the misclassification probabilities.
The central problem is: Given the data subject to misclassification and given the
transition matrix, how should we adjust standard analysis of frequency tables in
order to get valid results?

Special attention is given to the possibility of boundary solutions. By a boundary
solution we mean an estimated value of the parameter which lies on the boundary of
the parameter space. For instance, in formula (2.1) the unbiased moment estimate
of π is given. It is possible that this estimate is negative and makes no sense. In
this case the moment estimate differs from the maximum likelihood estimate which
is zero and therefore lies on the boundary of the parameter space. This was already
noted by Singh (1976).

The possibility that the moment estimator yields estimates outside the parameter
space is an awkward property, since standard analyses as, e.g., univariate probabil-
ities and the odds ratio, are in that case useless. However, negative estimates are
likely to occur when RR used. Typically, RR is applied when sensitive characteristics
are investigated and often sensitivity goes hand in hand with rareness. Therefore,
some of the true frequencies in a sample may be low and when these frequencies
are unbiasedly estimated, random error can easily cause negative estimates. The
example discussed in Section 2.7 illustrates this situation. Regarding PRAM the
same problem can occur, see Section 2.2.

This analysis of misclassified data has also been discussed by other authors, see
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the references above. Our present aim is to bring together the different fields of
misclassification, compare the different methods, and propose methods to deal with
boundary solutions. Noticeably lacking in some literature is a discussion of the
properties of proposed estimators such as unbiasedness and maximum likelihood.
Where appropriate, we try to fill this gap.

Section 2.2 provides more information about PRAM. A comparison with RR
is made. Section 2.3 discusses the moment estimator of the true frequency table,
i.e., the not-observed frequencies of the correctly classified scores. Point estimates
and estimation of covariances are presented. In Section 2.4, we consider the maxi-
mum likelihood estimation of the true frequency table. Again point estimation and
variances are discussed, this time using the EM algorithm. Section 2.5 relates the
moment estimator to the maximum likelihood estimator. In Section 2.6, we con-
sider the estimation of the odds ratio. In Section 2.7, an example is given with RR
data stemming from research into violating regulations of social benefit. Section 2.8
evaluates the results and concludes.

2.2 Protecting Privacy Using PRAM

The post randomization method (PRAM) was introduced by Kooiman et al. (1997)
as a method for statistical disclosure control of microdata files. A microdata file is
a data matrix where each row, called a record, corresponds to one respondent and
where the columns correspond to the variables. Statistical disclosure control (SDC)
aims at safeguarding the identity of respondents. Because of the privacy protection,
data producers, such as national statistical institutes, are able to pass on data to a
third party.

PRAM can be applied to variables in the microdata file that are categorical
and identifying. Identifying variables are variables that can be used to re-identify
individuals represented in the data. The perturbation of these identifiers makes re-
identification of individuals less likely. The PRAM procedure yields a new microdata
file in which the scores on certain categorical variables in the original file may be
misclassified into different scores according to a given probability mechanism. In
this way PRAM introduces uncertainty in the data: The user of the data cannot
be sure that the information in the file is original or perturbed due to PRAM. In
other words, the randomness of the procedure implies that matching a record in the
perturbed file to a record of a known individual in the population could, with a high
probability, be a mismatch.

An important aspect of PRAM is that the recipient of the perturbed data is
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informed about the misclassification probabilities. Using these probabilities he can
adjust his analysis and take into account the extra uncertainty caused by applying
PRAM.

As with RR, the misclassification scheme is given by means of a K×K transition
matrix P of conditional probabilities pij, with

pij = IP (category i is released|true category is j).

Since national statistical institutes, which are the typical users of SDC methods,
prefer model free approaches to their data, PRAM is presented in the form

IE[T ∗|T ] = PT , (2.3)

where T ∗ is the stochastic vector of perturbed frequencies and T is the vector of the
true frequencies. So instead of using probabilities as in (2.2), frequencies are used
in (2.3) to avoid commitment to a specific parametric model.

PRAM is currently under study and is by far not the only way to protect mi-
crodata against disclosure, see, e.g., Willenborg and De Waal (2001). Two common
methods used by national statistical institutes are global recoding and local suppres-
sion. Global recoding means that the number of categories is reduced by pooling,
so that the new categories include more respondents than the original categories.
This can be necessary when a category in the original file contains just a few re-
spondents. For example, in a microdata file where the variable Profession has just
one respondent with the value mayor, we can make a new category Working for the
Government and include in this category not only the mayor, but also the people
in the original file who have governmental jobs. The identity of the mayor is then
protected not only by the number of people in the survey with governmental jobs,
but also by the number of people in the population with governmental jobs.

Local suppression means protecting identities by making data missing. In the
example above, the identity of the mayor can be protected by making the value
mayor of the variable Profession missing.

When microdata are processed using recoding or suppression, there is always loss
of information. This is inevitable: Losing information is intrinsic to SDC. Likewise,
there will be loss of information when data are protected by applying PRAM.

PRAM is not meant to replace existing SDC techniques. Using the transition
matrix with the misclassification probabilities to take into account the perturbation
due to PRAM, requires extra effort and becomes of course more complex when
the research questions become more complex. This may not be acceptable to all
researchers. Nevertheless, existing SDC methods are also not without problems.
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Especially global recoding can destroy detail that is needed in the analysis. For
instance, when a researcher has specific questions regarding teenagers becoming 18
years old, it is possible that the data he wants to use is globally recoded before it
is released. It is possible that the variable Age is recoded from year of birth to age
categories going from 0 to 5, 5 to 10, 10 to 15 , 15 to 20, etcetera. In that case, the
researcher has lost his object of research.

PRAM can be seen as a SDC method which can deal with specific requests
concerning released data (such as in the foregoing paragraph) or with data which
are difficult to protect using current SDC methods (meaning the loss of information
is too large). PRAM can of course also be used in combination with other SDC
methods. Further information about PRAM can be found in Gouweleeuw, Kooiman,
Willenborg and De Wolf (1998) and Van den Hout (1999).

The two basic research questions concering PRAM are (i) how to choose the
misclassification probabilities in order to make the released microdata safe, and
(ii) how should statistical analysis be adjusted in order to take into account the
misclassification probabilities? As already stated in the introduction, this paper
concerns (ii). Our general objective is not only to present user-friendly methods in
order to make PRAM more user-friendly, but also to show that results in more than
one field in statistics can be used to deal with data perturbed by PRAM. Regarding
(i), see Willenborg (2000) and Willenborg and De Waal (2001, Chapter 5).

Comparing (2.2) with (2.3), it can be seen that RR and PRAM are mathemat-
ically equivalent. Therefore, PRAM is presented in this paper as a special form
of RR. In fact, the idea of PRAM dates back from Warner (1971), the originator
of RR, who mentions the possibilities of the RR procedure to protect data after
they have been collected. PRAM can be seen as applying RR after the data have
been collected. Rosenberg (1979, 1980) elaborates the Warner idea and calls it
additive RR contamination (ARRC). PRAM turns out to be the same as ARRC.
Rosenberg discusses multivariate analysis of data protected by ARRC, he discusses
multivariate categorical linear models and the chi-square test for contingency tables,
in particular.

In the remainder of this section we make some comparisons between PRAM and
RR. Since the methods serve different purposes, important differences may occur
in practice. First, PRAM will be typically applied to those variables which may
give rise to the disclosure of the identity of a respondent, i.e., covariates as, e.g.,
Gender, Age and Race. RR, on the other hand, will be typically applied to response
variables, since the identifying covariates are obvious from the interview situation.
Secondly, the usefulness of the observed response in the RR setting is dependent on
the cooperation of the respondent, whereas applying PRAM is completely mechanic.
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Although RR may be of help in eliciting sensitive information, the method is not a
panacea (Van der Heijden, Van Gils, Bouts, and Hox 2000). The third important
difference concerns the choice of the transition matrix. When using RR the matrix
is determined before the data are collected, but in the case of PRAM the matrix
can be determined conditionally on the original data. This means that the extent
of randomness in applying PRAM can be controlled better than in the RR setting
(Willenborg 2000).

PRAM is similar to RR regarding the possibility of boundary solutions, see
Section 2.1. PRAM is typically used when there are respondents in the sample with
rare combinations of scores. Therefore, some of the true frequencies in a sample
may be low and when PRAM has been applied and these frequencies are unbiasedly
estimated, random error can easily cause negative estimates. So also regarding
PRAM, methods to deal with boundary solutions are important.

2.3 Moment Estimator

This section generalizes (2.1) in order to obtain a moment estimator of the true
contingency table. A contingency table is a table with the sample frequencies of
categorical variables. For example, the 2-dimensional contingency table of two bi-
nary variables has four cells, each of which contains the frequency of a compounded
class of the two variables. Section 2.3.1 presents the moment estimator for a m-
dimensional table (m > 1). In Section 2.3.2 formulas to compute covariances are
presented.

2.3.1 Point Estimation

If P in (2.2) is non-singular and we have an unbiased point estimate λ̂ of λ, we can
estimate π by the unbiased moment estimator

π̂ = P−1λ̂, (2.4)

see Chaudhuri and Mukerjee (1988), and Kuha and Skinner (1997).
In practice, assuming that P in (2.2) is non-singular does not impose much

restriction on the choice of the misclassification design. Matrix P−1 exists when the
diagonal of P dominates, i.e., pii > 1/2 for i ∈ {1, ..., K}, and this is reasonable
since these probabilities are the probabilities that the classification is correct.

In this paper, we assume that the true response is multinomially distributed
with parameter vector π. The moment estimator (2.4) is not a maximum likelihood
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estimator since it is possible that for some i ∈ {1, ..., K}, π̂i is outside the parameter
space (0,1).

In Section 2.1, we have considered the misclassification of one variable. The
generalization to a m-dimensional contingency table with m > 1 is straightforward
when we have the following independence property between each possible pair (A,B)
of the m variables:

IP (A∗ = i, B∗ = k|A = j, B = l) = IP (A∗ = i|A = j)IP (B∗ = k|B = l). (2.5)

Regarding RR, this property means, that the misclassification design is indepen-
dently applied to the different respondents and, when more than one question is
asked, the design is independently applied to the different questions. So in other
words, answers from other respondents or to other questions do not influence the
misclassification design in the RR survey. Regarding PRAM, this property means
that the misclassification design is independently applied to the different records
and independently to the different variables.

In this situation we structure the m-dimensional contingency table as an 1-
dimensional table of the compounded variable. For instance, when we have three
binary variables, we get an 1-dimensional table with rows indexed by 111, 112, 121,
122, 211, 212, 221, 222. (The last index changes first.) Due to property (2.5) it is
easy to create the transition matrix of the compounded variable using the transition
matrices of the underlying separate variables. Given the observed compounded
variable and its transition matrix we can use the moment estimator as described
above.

To give an example, assume we have an observed cross-tabulation of the mis-
classified variables A, and B, where row variable A has K categories and transition
matrix P A, and column variable B has S categories and transition matrix P B.
(When one of the variables is not misclassified, we simply take the identity matrix
as the transition matrix.) Together A and B can be considered as one compounded
variable with KS categories. When property (2.5) is satisfied we can use the Kro-
necker product, denoted by ⊗, to compute the KS × KS transition matrix P as
follows:

P = P A ⊗ P B =


pA

11P B pA
12P B · · · pA

1KP B
...

. . . . . .
...

pA
K1P B · · · · · · pA

KKP B

 ,

where each pA
ijP B, for i, j ∈ {1, ..., K}, is a S × S matrix.
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2.3.2 Covariances

Since the observed response is multinomially distributed with parameter vector λ,
the covariance matrix of (6.3) is given by

V (π̂) = P−1V (λ)
(
P−1

)t

= n−1P−1
(
Diag(λ) − λλt

) (
P−1

)t
, (2.6)

where Diag(λ) denotes the diagonal matrix with the elements of λ on the diagonal.
The covariance matrix (2.6) can be unbiasedly estimated by

V̂ (π̂) = (n − 1)−1P−1
(
Diag(λ̂) − λ̂λ̂

t
)(

P−1
)t

, (2.7)

see Chaudhuri and Mukerjee (1988, Section 3.3).
As stated before, national statistical institutes prefer a model free approach.

Consequently, Kooiman et al. (1997) present only the extra variance due to applying
PRAM, and do not assume a multinomial distribution. The variance given by
Kooiman et al. (1997) can be related to (2.6) in the following way. Chaudhuri and
Mukerjee (1988, Section 3.3) present a partition of (2.6) in two terms, where the
first denotes the variance due to the multinomial scheme and the second represents
the variance due to the perturbation:

V (π̂) = Σ1 + Σ2, (2.8)

where

Σ1 =
1

n

(
Diag(π) − ππt

)
and

Σ2 =
1

n
P−1

(
Diag(λ) − PDiag(π)P t

) (
P−1

)t
.

Analyzing Σ2 it turns out that it is the same as the variance due to PRAM given
in Kooiman et al. (1997), as was to be expected, see Appendix 2.A.

2.4 Maximum Likelihood Estimator

As already noted in Sections 2.1 and 2.2, it is possible that the moment estimator
yields estimates outside the parameter space when the estimator is applied to RR
data or PRAM data. Negative estimates of frequencies are awkward, since they do
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not make sense. Furthermore, when there are more than two categories and the
frequency of one of them is estimated by a negative number, it is unclear how the
moment estimate must be adjusted in order to obtain a solution in the parameter
space. This is a reason to look for a maximum likelihood estimate (MLE). Another
reason to use MLEs is that in general, unbiasedness is not preserved when functions
of unbiased estimates are considered. Maximum likelihood properties on the other
hand, are in general preserved, see Mood, Graybill and Boes (1985).

This section discusses first the estimation of the MLE of the true contingency
table using the EM algorithm and, secondly, in 2.4.2, the covariances of this estimate.

2.4.1 Point Estimation

The expectation-maximization (EM) algorithm (Dempster, Laird and Rubin 1977)
can be used as an iterative scheme to compute MLEs when data are incomplete, i.e.,
when some observations are missing. The EM algorithm is in that case an alternative
to maximizing the likelihood function using methods as, e.g., the Newton-Raphson
method. Two appealing properties of the EM algorithm relative to Newton-Raphson
are its numerical stability and, given that the complete data problem is a standard
one, the use of standard software for complete data analysis within the steps of
the algorithm. These properties can make the algorithm quite user-friendly. More
background and recent developments can be found in McLachlan and Krishnan
(1997).

We will now see how the EM algorithm can be used in a misclassification setting,
see also Bourke and Moran (1988), Chen (1989), and Kuha and Skinner (1997). For
ease of exposition we consider the 2×1 frequency table of a binary variable A. As
stated before, we assume multinomial sampling.

When the variable is subject to misclassification, say with given transition matrix
P = (pij), we do not observe values of A, but instead we observe values of a
perturbed A, say A∗. Let A∗ be tabulated as follows.

A∗

1 n∗
1

2 n∗
2

Total n

In this table, number n∗
i , for i = {1, 2}, is the observed number of values i of A∗

and n∗
1 + n∗

2 = n is fixed. Let π = IP (A = 1) and λ = IP (A∗ = 1). When transition
probabilities are given, we know λ = p11π + p12(1 − π). So ignoring constants, the
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observed data loglikelihood is given by

log l∗(π) ∝ n∗
1 log λ + n∗

2 log(1 − λ)

∝ n∗
1 log (p11π + p12(1 − π)) + n∗

2 log (p21π + p22(1 − π)) . (2.9)

The aim is to maximize log l∗(π) for π ∈ (0, 1).
In this simple case of a 2×1 frequency table, the maximization of log l∗(π) is no

problem. By computing the analytic solution to the root of the first derivative, we
can locate the maximum. Nevertheless, in the case of a K×1 frequency table, finding
the analytic solution can be quite tiresome and we prefer an iterative method. The
2×1 table will serve as an example.

To explain the use of the EM algorithm, we can translate the problem of max-
imizing (2.9) into an incomplete-data problem. We associate with each observed
value of A∗ its not-observed non-perturbed value of A. Together these pairs form
an incomplete-data file with size n. In the framework of Rubin (1976): The missing
data are missing at random, since they are missing by design. When we tabulate
this incomplete-data file we obtain the following table.

A
A∗ 1 2 Total
1 n11 n12 n∗

1

2 n21 n22 n∗
2

Total n1 n2 n

In this table, number nij, for i, j ∈ {1, 2}, is the frequency of the combination
A∗ = i and A = j . Only the marginals n∗

1 and n∗
2 are observed. When we would

have observed the complete data, i.e., nij for i, j ∈ {1, 2}, we would only have to
consider the bottom marginal and the complete-data loglikelihood function of π
would be given by

log l(π) ∝ n1 log π + n2 log(1 − π), (2.10)

from which the maximum likelihood estimate π̂ = n1/n follows almost immediately.
The idea of the EM algorithm is to maximize the incomplete-data likelihood by

iteratively maximizing the expected value of the complete-data loglikelihood (2.10),
where the expectation is taken over the distribution of the complete-data given the
observed data and the current fit of π at iteration p, denoted by π(p). That is, in
each iteration we look for the π which maximizes the function

Q
(
π, π(p)

)
= IE

[
log l(π)|n∗

1, n
∗
2, π

(p)
]
. (2.11)
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In the EM algorithm it is not necessary to specify the corresponding represen-
tation of the incomplete-data likelihood in terms of the complete-data likelihood
(McLachlan and Krishnan 1997, Section 1.5.1). In other words, we do not need
(2.9), the function which plays the role of the incomplete-data likelihood, but we
can work with (2.10) instead.

Since (2.10) is linear with respect to ni, we can rewrite (2.11) by replacing the
unknown ni’s in (2.10) by the expected values of ni’s given the observed n∗

i ’s and
π(p). Furthermore, since n = n∗

1 + n∗
2, and n is known, n∗

2 does not contain extra
information. Therefore, (2.11) is equal to:

Q
(
π, π(p)

)
= IE

[
N1|n∗

1, π
(p)
]
log π + IE

[
N2|n∗

1, π
(p)
]
log(1 − π), (2.12)

where N1 and N2 are the stochastic variables with values n1 and n2, and, of course,
N1 + N2 = n.

The EM algorithm consists in each iteration of two steps: the E-step and the M-
step. In this situation, the E-step consists of estimating IE

[
N1|n∗

1, π
(p)
]
. We assume

that (n11, n12, n21, n22) are values of the stochastic variables (N11, N12, N21, N22)
which are multinomially distributed with parameters (n, π11, π12, π21, π22). A prop-
erty of the multinomial distribution is that the conditional distribution of (Ni1, Ni2)
given ni+ = n∗

i is again multinomial with parameters (n∗
i , πi1/πi+, πi2/πi+), for

i ∈ {1, 2}. So we have

IE [Nij|n∗
1, π11, π12, π21, π22] = n∗

i

πij

πi+

.

And consequently

IE [N1|n∗
1, π11, π12, π21, π22] =

π11

π1+

n∗
1 +

π21

π2+

n∗
2. (2.13)

See also Schafer (1997, Section 3.2.2.).

In order to use the updates π(p) of π = IP (A = 1) and the fixed misclassification
probabilities we note that

πi1 = IP (A∗ = i, A = 1) = IP (A∗ = i|A = 1)IP (A = 1). (2.14)

and

πi+ = IP (A∗ = i) =
2∑

k=1

IP (A∗ = i|A = k)IP (A = k). (2.15)
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Next, we use (2.13), (2.14) and (2.15) to estimate IE
[
N1|n∗

1, π
(p)
]

by

n
(p)
1 =

2∑
i=1

pi1π
(p)

pi1π(p) + pi2 (1 − π(p))
n∗

i ,

which ends the E-step.
The M-step gives an update for π, which is the value of π that maximizes (2.12),

using the current estimate of IE
[
N1|n∗

1, π
(p)
]
, which also provides an estimate of

IE
[
N2|n∗

1, π
(p)
]

= n−IE
[
N1|n∗

1, π
(p)
]
. Maximizing is easy due to the correspondence

between the standard form of (2.10) and the form of (2.12): π(p+1) = n
(p)
1 /n.

The EM algorithm is started with an initial value π(0). The following can be
stated regarding the choice of the initial value and convergence of the algorithm.
When there is a unique maximum in the interior of the parameter space, the EM
algorithm will find it, see the convergence theorems of the algorithm as discussed
in McLachlan and Krishnan (1997, Section 3.4). Furthermore, as will be explained
in Section 2.5, in the RR/PRAM setting, the incomplete-data likelihood is from a
regular exponential family and is therefore strictly concave, so finding the maximum
should not pose any difficulties when the starting point is chosen in the interior of
the parameter space and the maximum is also achieved in the interior.

In general, let A have K categories and for i, j ∈ {1, 2, ..., K}, let πj = IP (A = j),
let nij denote the cell frequencies in the K × K table of A∗ and A, let nj denote
the frequencies in the K × 1 table of A, and let n∗

i denote the frequencies in the
observed K × 1 table of A∗. The observed data loglikelihood is given by

log l∗(π) =
K∑

i=1

n∗
i log λi + C (2.16)

where λi =
∑K

k=1 pikπk and C is a constant.
The EM algorithm in this situation and presented as such in Kuha and Skinner

(1997) is

Initial values: π
(0)
j =

n∗
j

n

E-step: n
(p)
ij =

pijπ
(p)
j∑K

k=1 pikπ
(p)
k

n∗
i

n
(p)
j =

K∑
i=1

n
(p)
ij
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M-step: π
(p+1)
j =

n
(p)
j

n
.

Note that π
(p)
j < 0 is not possible for j ∈ {1, 2, ..., K}.

This section discussed the misclassification of one variable, but as shown in
section 2.3, the generalization to a m-dimensional contingency table with m > 1 is
straightforward when we have property (2.5) for each possible pair of the m variables.
In that case, we create a compounded variable, put together the transition matrix
of this variable and use the EM algorithm as described above.

2.4.2 Covariances

Consider the general case where A has K categories and the observed data log-
likelihood is given by (2.16). Assuming that the MLE of π lies in the interior of
the parameter space, we can use the information matrix to estimate the asymp-
totic covariance matrix of the parameters. Using πK = 1 −∑K−1

i=1 πi, we obtain for
k, l ∈ {1, ..., K − 1} the kl-component of the information matrix:

− ∂

∂πk∂πl

log l∗(π) =
K∑

i=1

n∗
i

λ2
i

(pil − piK)(pik − piK). (2.17)

Incorporating the estimate λ̂i = n∗
i /n in (2.17) we get an approximation of the

information matrix where for k, l ∈ {1, ..., K − 1} the kl-component is given by

K∑
i=1

n

λ̂i

(pik − piK)(pil − piK), (2.18)

see Bourke and Moran (1988). The inverse of this approximation can be used as an
estimator of the asymptotic covariance matrix.

When the MLE of π is on the boundary of the parameter space, using the in-
formation matrix is not appropriate and we suggest to use the bootstrap percentile
method to estimate a 95% confidence interval. Regarding the bootstrap, see, e.g.,
Efron and Tibshirani (1993). The bootstrap scheme we propose is the following.
Draw B bootstrap samples from a multinomial distribution with parameter vector
π̂ = (π̂1, ..., π̂K)t. For each bootstrap sample the RR design is applied using a com-

puter. Using the B simulated observed tables, parameters π̂boot
b =

(
π̂boot

b1 , ..., π̂boot
bK

)t
,

b = 1, ..., B, are estimated. Next, the bootstrap estimates are sorted, i.e., for each
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i ∈ {1, .., K}, estimates π̂boot
1i , ..., π̂boot

Bi are sorted from small to large. A confidence
interval for π̂i is constructed by deleting 5% of the sorted values: 2.5% of the smallest
estimates and 2.5% of the largest.

Note that this scheme incorporates the double stochastic scheme of the RR set-
ting: The variance due to the multinomial distribution and the extra variance due to
applying RR. A disadvantage of the bootstrap in this setting is that computations
can take some time since the bootstrap is combined with the EM algorithm.

2.5 The MLE Compared to the Moment Estimate

In this section, we prove that the observed loglikelihood function log l∗(π) given in
(2.16) is the loglikelihood of a distribution from a regular exponential family. Using
this property of l∗(π), the uniqueness of a solution of the likelihood equations is
established when this solution is found in the interior of the parameter space. Fur-
thermore, we prove that when the MLE is in the interior of the parameter space, the
MLE is equal to the estimate provided by the moment estimator. This equality has
been observed by several authors (Schwartz 1985, Appendix A, Bourke and Moran
1988, and Chen 1989) but theoretic proof is not given. By using the exponential
family we prove this equality and thus provide an alternative to results in Lucy
(1974) as far as they apply to misclassification of categorical variables.

First, to determine that l∗(π) is from an exponential family, we have to show
that this function can be written in the following form

l∗(π) = a(π)b(n∗) exp{θt(π)t(n∗)}, (2.19)

see Barndorff-Nielsen (1982).
Let

a(π) = 1,

b(n∗) =
n!

n∗
1! · · ·n∗

K !
,

the sufficient statistic

t(n∗) = (t1(n
∗), ..., tK(n∗))t = (n∗

1, ..., n
∗
K)t,

and the canonical parameter

θt(π) = (θ1(π), .., θK(π))

= (log λ1, ..., log λK)

= (log
K∑

j=1

p1jπj, ..., log
K∑

j=1

pKjπj).
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Due to the affine constraint n∗
1 + ... + n∗

K = n, the exponential representation in
(2.19) where the functions are defined as above, is not minimal, i.e., it is possible
to define t and θ in such a way that their dimensions are smaller than K. Since we
need a minimal representation in order to establish regularity, we provide alternative
definitions of the functions in (2.19).

A minimal representation is obtained by taking

t(n∗) = (n∗
1, ..., n

∗
K−1)

t (2.20)

and

θt(π) = (θ1(π), .., θK−1(π)) = (log
λ1

λK

, ..., log
λK−1

λK

), (2.21)

where again λi =
∑K

j=1 pijπj. We get as a minimal representation

l∗(π) =
(
1 + eθ1 + ... + eθK−1

)−n n!

n∗
1! · · ·n∗

K !
exp{θ1n

∗
1 + ... + θK−1n

∗
K−1}, (2.22)

where θi stands for θi(π), i ∈ {1, ..., K − 1}.
Having established that l∗(π) is from a exponential family, we now prove, using

(2.22), that the function is from a regular exponential family. We follow the defi-
nitions of regularity as given by Barndorff-Nielsen (1982). Let Ω be the domain of
variation for π and Θ = θ (Ω) the canonical parameter domain. We must prove two
properties:

(i) Θ is an open subset of IRK−1, and

(ii)

Θ = {θ|θ ∈ θ (Ω) |
∫

X

n!

x1! · · ·xK !
eθtt(x)dx < ∞}, (2.23)

where X = {x|x = (x1, ..., xK)t|x1, ..., xK > 0, x1 + ... + xK = n} and θ and t are
given in (6.11) and (2.20) respectively .

Regarding property (i): Ω = {π|π ∈ (0, 1)K |π1 + ... + πK = 1}. Since pij ≥ 0
and πj > 0 for i, j ∈ {1, ..., K}, and no column in the transition matrix P = (pij)
consists only of zeroes, it follows that λi > 0 for i ∈ {1, ..., K}. Furthermore, again
using the properties of the transition matrix, from π1 + ... + πK = 1 it follows that
λ1 + ... + λK = 1. So Θ = {θ|θi = log λiλ

−1
K |λ1 + ... + λK = 1, λi > 0}. For each

r = (r1, ..., rK−1) ∈ IRK−1, there is a choice for λ1, ..., λK such that λ1 + ...+λK = 1,
λi > 0 for i ∈ {1, ..., K}, and log λiλ

−1
K = ri for i ∈ {1, ..., K − 1}. So property (i) is

satisfied by the equality Θ = IRK−1.
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Regarding property (ii):∫
X

n!

x1! · · · xK !
eθtt(x)dx ≤ n!

∫
X

(
λ1

λK

)x1

· · ·
(

λK−1

λK

)xK−1

dx

= n!
∫

X
λx1

1 · · ·λxK
K

1

λn
K

dx

≤ n!
∫

X

(
1

λK

)n

dx < ∞,

for every λK ∈ (0, 1) and n = x1 + ... + xK . This means that (2.23) is satisfied.
Having shown that the observed data loglikelihood l∗(π) is from a regular expo-

nential family, we can use the powerful theory that exists for this family. A property
that is of practical use is that the maximum of the observed data likelihood is unique
when found in the interior of the parameter space, since the likelihood is strictly
concave (Barndorff-Nielsen 1982). This justifies the use of the maximum found by
the EM algorithm in Section 2.4.1.

A second property concerns the comparison of the MLE and the estimate pro-
vided by the moment estimator. The two estimates are equal when both are in the
interior of the parameter space. The equality can be proved as follows. We con-
tinue to use the minimal representation as given in (2.22) where θ is the canonical
parameter and where a(π) is given by

a(π) =
(
1 + eθ1 + ... + eθK−1

)−n
,

When log l∗(π) is maximized, we solve the likelihood equations

∂

∂θ
log l∗(π) = 0.

That is
∂

∂θ
(θtt(n∗)) =

∂

∂θ
(− log a(π)). (2.24)

We have
∂

∂θ
(θtt(n∗)) = (n∗

1, ..., n
∗
K−1)

t (2.25)

and according to the theory of the exponential family (Barndorff-Nielsen 1982)

∂

∂θ
(− log a(π)) = IE [t(N∗)] = n


p11 p12 · · · p1K
...

. . . . . .
...

pK−1,K · · · · · · pK−1,K




π1

π2
...

πK

 , (2.26)
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where N∗ is the random variable which has value n∗. Combining (2.25) and (2.26)
in (2.24) shows that the likelihood equations (2.24) are equal to the equations (2.2)
on which the moment estimator is based. So in the interior of the parameter space,
the MLE is equal to the ME.

Of course, the above properties of l∗(π) can be derived without references to ex-
ponential families. Lucy (1974) discusses the estimation of a frequency distribution
where observations are subject to measurement error and the error distribution is
presumed known. The difference with our setting is that the observed variable is
a continuous one. However, the observations are categorized in intervals and cor-
rection of the observations is on the basis of these intervals, so measurement error
can be easily translated to misclassification of categorical variables. Lucy (1974)
advocates an EM algorithm comparable with the EM algorithm given above. Fur-
thermore, it is proven that in the interior of the parameter space the MLE is equal
to the moment estimate and the maximum of the likelihood is unique. In Appendix
2.B we have translated Lucy’s proof regarding the equivalence between the MLE
and the moment estimate to our setting.

2.6 Odds Ratio

This section discusses the estimation of the odds ratio when data are perturbed
by PRAM or RR. The odds ratio θ is a measure of association for contingency
tables. We will not go into the rationale of using the odds ratio, information about
this measure can be found in most textbooks on categorical data analysis, see, e.g.,
Agresti (2002).

Section 2.6.1 discusses point estimation both in the situation without and with
misclassification. Two estimates of the odds ratio given by different authors are the
same, but are not always the MLE. Section 2.6.2 discusses the variance. Again, it
is important whether the estimates of the original frequencies are in the interior of
the parameter space or not.

2.6.1 Point Estimation

We start with the situation without misclassification. Let πij = IP (A = i, B = j)
for i, j ∈ {1, 2} denote the probability that the scores for A and B fall in the cell in
row i and column j, respectively. The odds ratio is defined as

θ =
π11π22

π12π21

.
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With nij the observed frequency in the cell with probability πij. The sample odds
ratio equals

θ̂ =
n11n22

n12n21

. (2.27)

For multinomial sampling, this is the MLE of the odds ratio (Agresti 1996). The
value 1 means independence of A and B. When any nij = 0, the sample odds ratio
equals 0 or ∞. The sample odds ratio is not defined if both entries in a row or
column are zero.

It is possible to use sample proportions to compute the sample odds ratio. With
pA|B(i|j) = nij/(n1j + n2j) we get

θ̂ =
pA|B(1|1)

1 − pA|B(1|1)

(
pA|B(1|2)

1 − pA|B(1|2)

)−1

. (2.28)

Next, we consider the situation with misclassification. Two estimates of the odds
ratio are proposed in the literature. Let only variable A be subject to misclassifi-
cation, and the 2×2 transition matrix be given by P = (pij). First, Magder and
Hughes (1997) suggest to adjust formula (2.28) as

θ̂1 =
pA∗|B(1|1) − p12

p11 − pA∗|B(1|1)

(
pA∗|B(1|2) − p12

p11 − pA∗|B(1|2)

)−1

, (2.29)

where pA∗|B(i|j) = n∗
ij/(n

∗
1j + n∗

2j) with n∗
ij the observed cell frequencies. This

formula can be used only if all the numerators and denominators in the formula are
positive. If one of these is negative, the estimate is 0 or ∞. According to Magder
and Hughes (1997), (2.29) is the MLE of θ. Assuming that θ̂1 is not equal to zero
or infinity, it will always be further from 1 than the odds ratio θ̂ which is computed
in the standard way using the observed table. Incorporating the information of
the transition matrix in the estimation process compensates for the bias towards 1
(Magder and Hughes 1997).

Secondly, Greenland (1988) suggests to estimate the probabilities of the true
frequencies using the moment estimator, yielding estimated frequencies n̂ij = nπ̂ij,
and then estimate the odds ratio using its standard form:

θ̂2 =
n̂11n̂22

n̂12n̂21

. (2.30)

This procedure can also be used when A and B are both misclassified.
In order to compare (2.29) and (2.30), we distinguish two situations concerning

the misclassification of only A. First, the situation where estimated frequencies
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are in the interior of the parameter space, or, in other words, where the moment
estimate of the frequencies is equal to the MLE. In this case, (2.29) and (2.30) are
identical, which can be easily proved by writing out. Furthermore, (2.30), and thus
(2.29), is the MLE due to the invariance property of maximum likelihood estimation
(Mood et al. 1985).

Secondly, if the moment estimator yields probabilities outside the parameter
space, we should compute (2.30) using the MLE, and consequently (2.29) and (2.30)
differ. In fact, (2.29) is not properly defined, since it might be a negative value
corresponding to the negative cell frequencies estimated by the moment estimator.
Therefore, as noted in Magder and Hughes (1997), the estimate of the odds ratio
should be adjusted to be either 0 or ∞.

The advantage of formula (2.29) is that we can use the observed table. A disad-
vantage is that (2.29) is not naturally extended to the situation where two variables
are misclassified.

2.6.2 Variance

We now turn to the variance estimator of the odds ratio. First we describe the
situation without misclassification. Since outcomes nij = 0 have positive probability,

the expected value and variance of θ̂ do not exist. It has been shown that

θ̃ =
(n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)

has the same asymptotic normal distribution around θ as θ̂ (Agresti 2002). Note
that θ̃ has a variance. The close relation between θ̃ and θ̂ is the reason we will
discuss asymptotic standard error (ASE) of log θ̂, although it is not mathematically
sound to do so.

There are at least two methods available to estimate the ASE of log θ̂. The first
method is using the delta method. The estimated ASE is then given by

ASE(log θ̂) =
(

1

n11

+
1

n12

+
1

n21

+
1

n22

)1/2

,

see Agresti (2002, Sections 3.1.5 and 14.1).
The second method to estimate the ASE in the situation without misclassification

is to use the bootstrap. For instance, we can use the bootstrap percentile method to
estimate a 95% confidence interval. When we assume the multinomial distribution,
we take the vector of observed cell proportions as MLE of the cell probabilities.
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With this MLE we simulate a large number of multinomial tables and each time
compute the odds ratio. Then we estimate a 95% confidence interval in the same
way as described in Section 2.4.2.

Next, we consider the situation with misclassification. Along the line of the two
methods described above, we discuss two methods to estimate the variance of the
estimate of the odds ratio. First, when the moment estimator is used, the delta-
method can be applied to determine the variance of the log odds ratio. Greenland
(1988) shows how this can be done when the transition matrix is estimated with
known variances. Our situation is easier, since the transition matrix is given. We use
the multivariate delta method (Bishop, Fienberg and Holland 1975, Section 14.6.3).
The random vector is π̂ = (π̂11, π̂12, π̂21, π̂22)

t with 4 × 4 asymptotic covariance-
variance matrix V (π̂), see Section 2.3. We take the function f to be

f(π) = log
(

π11π22

π12π21

)
,

which has a derivative at π ∈ (0, 1)4. The delta method provides the asymptotic
variance Vf for f(π̂):

Vf = (Df)tV (π̂)Df ,

where Df is the gradient vector of f at π̂ and V (π̂) is given by (2.6).
The problem with this method is that it makes use of the moment estimator

which only makes sense when this estimator yields a solution in the interior of
the parameter space. A second way to estimate the variance is using the bootstrap
method as explained in Section 2.4.2. in combination with the EM algorithm. Given
that B is the number of bootstraps, the bootstrap will yield θ̂ boot

1 , .., θ̂ boot
B and the

bootstrap percentile method can be used to estimate a 95% confidence interval.

2.7 Example

This section illustrates the foregoing by estimating tables of true frequencies on the
basis of data collected using RR. Also, in Section 2.7.2, an estimate of the odds
ratio will be discussed. The example makes clear that boundary solutions can occur
when RR is applied and that we need to apply methods such as the EM algorithm
and the bootstrap.

2.7.1 Frequencies

The RR data we want to analyze stem from a research into violating regulations of
social benefit (Van Gils, Van der Heijden, and Rosebeek 2001). Sensitive items were
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Table 2.1: Frequencies of observed answers to questions Q1 and Q2.

Q2

Q1 Red Black Total
Red 68 52 120
Black 103 189 292
Total 171 241 412

binary: Respondents were asked whether or not they violated certain regulations.

The research used the RR procedure introduced by Kuk (1990) where the mis-
classification design is constructed using stacks of cards. Since the items in the
present research were binary, two stacks of cards were used. In the right stack the
proportion of red cards was 8/10, and in the left stack it was 2/10. The respondent
was asked to draw one card from each stack. Then the sensitive question was asked,
and when the answer was yes, the respondent should name the color of the card of
the right stack, and when the answer was no, the respondent should name the color
of the card of the left stack.

We associate violations with the color red. In this way the probability to be
correctly classified is 8/10 both for respondents who violated regulations and for
those who did not. The transition matrix is therefore given by

P =

(
8/10 2/10
2/10 8/10

)
, (2.31)

We discuss observed frequencies of the colors red or black regarding two ques-
tions, Q1 and Q2, which were asked using this RR procedure. Both questions concern
the period in which the respondent received a benefit. In translation, question Q1:
Did you turn down a job offer, or did you endanger on purpose an offer to get a job?
And Q2: Was the number of job applications less than required? In our discussion,
we deal first with the frequencies of the separate questions, and secondly, we take
them together, meaning that we tabulate the frequencies of the four possible profiles:
red-red, red-black, black-red, black-black, and we want to know the true frequencies
of the profiles violation-violation, violation-no violation, no violation-violation and
no violation-no violation.

We assume that the data are multinomially distributed, so the correspondence
between the probabilities and the frequencies is direct, given n = 412, the size of



2.7. Example 31

Table 2.2: Estimated frequencies of true answers to questions Q1 and Q2 using the
moment estimator.

Q2

Q1 Violation No violation Total
Violation 73.00 -10.33 62.67
No violation 74.67 274.66 349.33
Total 147.67 264.33 412

Table 2.3: Estimated frequencies of true answers to questions Q1 and Q2 using the
MLE.

Q2

Q1 Violation No violation Total
Violation 67.98 0.00 67.98
No violation 78.33 265.69 344.02
Total 146.31 265.69 412

the data set. Univariate observed frequencies are

Q1

Red 120
Black 292

and
Q2

Red 171
Black 241

The moment estimate of the true frequencies is equal to the MLE since the
solution is in the interior of the parameter space:

Q1

Violation 62.67
No violation 349.33

and
Q2

Violation 147.67
No violation 264.33

Since we have for each respondent the answers to both RR questions, we can
tabulate the frequencies of the 4 possible response profiles, see Table 2.1. Using
the Kronecker product to determine the 4 × 4 transition matrix, see Section 2.3.1,
the moment estimate yields a negative cell entry, see Table 2.2. The MLE can be
computed using the EM algorithm as described in Section 2.4.1 and is given by
Table 2.3.

There is a discrepancy which shows up in this example. From Table 2.3, we can
deduce estimated univariate frequencies of answers to Q1 and Q2. These estimates,
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which are based on the MLE of the true multivariate frequencies are different from
the univariate moment estimates which are also MLEs. Differences however are
small.

Next, we turn to the estimation of variance. First, the univariate case, where we
only discuss question Q1. The estimated probability of violation is π̂ = 62.67/412 =
0.152. The estimated standard error of π̂ can be computed using (2.7) and is esti-
mated to be 0.037. Secondly, we compute the variance of the four estimated proba-
bilities concerning profiles of violation. From Table 2.3 we obtain π̂ = (π̂1, ..., π̂4)

t =
(0.17, 0.00, 0.19, 0.64)t. Since the MLE is on the boundary of the parameter space,
estimating a 95% confidence interval is more useful than estimating standard errors.
We use the bootstrap percentile method as explained in Section 2.4.2. and with
B = 500 we obtain the four intervals [0.09, 0.23], [0.00, 0.08], [0.11, 0.28], and [0.53,
0.72], for π̂ = (π̂1, ..., π̂4)

t.

2.7.2 Odds Ratio

To determine whether the items corresponding to Q1 and Q2 are associated, we
want to estimate the odds ratio. The starting point is the 2×2 contingency table of
observed answers to Q1 and Q2, given by Table 2.1. Without any adjustment, the
estimated odds ratio is (68 · 189)/(103 · 52) = 2.40.

Since we have two misclassified variables, we cannot use (2.29) to estimate the
odds ratio. Instead, we estimate the 2× 2 contingency table of the true frequencies
and then compute the odds ratio in the standard way, as in (2.30). The moment
estimate in Table 2.2 of the true frequencies yields a negative frequency, so the MLE
in Table 2.3 is used. The estimate of the odds ratio is θ̂2 = ∞. This means, that
given that rule 1 is violated, the probability that rule 2 is also violated is estimated
to be 1. The bootstrap percentile method is used to construct a 95% confidence
interval, see Section 2.4.2. In this case the interval is infinite and we are interested
in the lower bound. We delete the smallest 5% of the 500 bootstrap estimates of the
odds ratio and obtain the 95% confidence interval [5.78,∞〉. So there is no reason
to believe in independence between the answers to the questions. Furthermore,
adjusting for the misclassification shows that the estimate of the odds ratio is much
further away from 1 than the estimate based on the observed table alone.
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2.8 Conclusion

The aim of this paper is to review the different fields of misclassification where mis-
classification probabilities are known, and to compare estimators of the true con-
tingency table and the odds ratio. Special attention goes out to the possibility of
boundary solutions. The matrix based moment estimator is quite elegant, but there
are problems concerning solutions outside the parameter space. We have explained
and illustrated with the example that these problems are likely to occur when ran-
domized response or PRAM is applied, since these procedures are often applied to
skewed distributions. The maximum likelihood estimator is a good alternative to
the moment estimator but demands more work since the likelihood function is maxi-
mized numerically using the EM algorithm. When boundary solutions are obtained,
we suggest the bootstrap method to compute confidence intervals.

The proof of the equality of the moment estimate and the maximum likelihood
estimate, when these estimates are in the interior of the parameter space, is interest-
ing because it establishes theoretically what was conjectured by others on the basis
of numerical output.

Regarding PRAM, the results are useful in the sense that they show that fre-
quency analysis with the released data is possible and that there is ongoing research
in the field of RR and misclassification which deals with the problems that are en-
countered. This is important concerning the acceptance of PRAM as a SDC method.

Regarding RR, the example illustrates that a boundary solution may be encoun-
tered in practice. This possibility was also noted by others but is, as far as we know,
not investigated in the multivariate situation with attention to the estimation of
standard errors.

Appendix 2.A

As stated in Section 2.3.2, V (π̂) can be partitioned as

V (π̂) = Σ1 + Σ2, (2.32)

where

Σ1 =
1

n

(
Diag(π) − ππt

)
and

Σ2 =
1

n
P−1

(
Diag(λ) − PDiag(π)P t

) (
P−1

)t
. (2.33)
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To understand (2.32):

Σ1 + Σ2 =
1

n

(
Diag(π) − ππt + P−1Diag(λ)

(
P−1

)t − Diag(π)
)

=
1

n

(
P−1Diag(λ)

(
P−1

)t − ππt
)

=
1

n
P−1

(
Diag(λ) − PππtP t

) (
P−1

)t

=
1

n
P−1

(
Diag(λ) − λλt

) (
P−1

)t

= V (π̂)

The variance due to PRAM as given in Kooiman et al. (1997) equals

V
(
T̂ |T

)
= P−1V (T ∗|T )

(
P−1

)t

= P−1

 K∑
j=1

T (j)V j

(
P−1

)t
(2.34)

where for j ∈ {1, ..., K}, T (j) is the true frequency of category j, and V j is the
K ×K covariance matrix of two observed categories h and i given the true category
j:

V j(h, i) =


pij(1 − pij) if h = i

−phjpij if h �= i
, for h, i ∈ {1, ..., K}, (2.35)

(Kooiman et al. 1997).
In order to compare (2.33) with (6.5), we go from probabilities to frequencies in

the RR data. This is no problem since we assume the RR data to be distributed
multinomially. So we have V

(
T̂ |T

)
= n2V (π̂|π) where, analogous to the PRAM

data, T denotes the vector with the true frequencies.
In order to prove that n2Σ2 is the same as (6.5), it is sufficient to prove that

K∑
j=1

T (j)V j = Diag(T ∗) − PDiag(T )P t

=



∑
j p1jT (j) 0 · · · 0

0
∑

j p2jT (j)
...

...
. . . 0

0 · · · 0
∑

j pKjT (j)

− PDiag(T ) (P )t ,

which follows by writing out.
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Appendix 2.B

As stated in Section 2.5, Lucy (1974) proves that in the interior of the parameter
space the MLE of the true frequencies is equal to the moment estimate. In the
following we have translated this proof to our setting and put in some explanatory
steps.

The function we want to maximize for π ∈ (0, 1)K under the constraint
∑K

j=1 πj =
1, is

log l∗(π) =
K∑

i=1

n∗
i log λi + C (2.36)

where n∗
i is given, λi =

∑K
k=1 pikπk, for i ∈ {1, ..., K}, and C is a constant.

We start by maximizing for π ∈ IRK and we look for the stationary points of
the function

G(π, µ) =
K∑

i=1

n∗
i log λi − µ

 K∑
j=1

πj − 1

 (2.37)

where µ is the Lagrange multiplier. Setting the derivatives of G with respect to πj

and µ equal to zero, we obtain

∂

∂πj

G(π, µ) =
K∑

i=1

n∗
i

pij

λi

+ µ = 0 (2.38)

and
∂

∂µ
G(π, µ) =

K∑
j=1

πj − 1 = 0. (2.39)

Multiplying (2.38) with πj and summing over j yields

K∑
j=1

K∑
i=1

n∗
i

pijπj

λi

= −µ
K∑

j=1

πj.

Using (2.39) we find that µ = −∑K
i=1 n∗

i = −n. With this result it follows that the
equality in (2.38) holds if πj for j ∈ {1, ..., K} is such that

K∑
i=1

λ̂i
pij

λi

= 1,

where λ̂i = n∗
i /n for i ∈ {1, ..., K}. Since the transition matrix P has the property

that
∑K

i=1 pij = 1, the equality in (2.38) holds if πj, for j ∈ {1, ..., K}, is such that

λ̂i = λi for i ∈ {1, ..., K}.
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In other words, a stationary point of (2.37) is found for such π that

λ̂ = Pπ.

To conclude, when (2.36) has one maximum under the constraint
∑K

j=1 πj = 1,

this maximum is attained at the moment estimator π̂ = P−1λ̂.
When we include the constraint π ∈ (0, 1)K and we maximize under this extra

constraint, the MLE is not equal to the moment estimate when the moment estimate
is outside the parameter space (0, 1)K .



Chapter 3

Loglinear Analysis

3.1 Introduction

Randomized response (RR) is an interview technique that can be used when sensitive
questions have to be asked (Warner 1965; Chaudhuri and Mukerjee 1988). RR data
can be seen as misclassified data where conditional misclassification probabilities
are known. The main purpose of this paper is to show how research questions
concerning association patterns in multivariate RR data can be assessed using latent
class models (Haberman 1979; Hagenaars 1993). Describing the RR design by a
latent class model (LCM) is an advantage in practice since software to assess LCMs
is widely available, e.g, the program �EM (Vermunt 1997).

In addition, this paper considers problems with respect to boundary solutions in
the loglinear models that we want to fit. As far as we know, these problems are not
discussed in the literature. As will be shown by examples, boundary solutions can
occur when analyzing RR data and in that situation one should take care regarding
the formulation of the EM algorithm. We review the discussion in Kuha and Skinner
(1997) and Chen (1989), in which the EM algorithm is used for loglinear analysis of
misclassified data.

As an example, RR data concerning violations of regulations for social benefit
are analyzed. Sensitive items were binary: Respondents were asked whether they
had violated certain regulations (Van Gils, Van der Heijden and Rosebeek 2001).

The outline of the paper is as follows. Section 3.2 introduces the RR design
and misclassification designs that are closely related. Section 3.3 discusses the chi-

1Published as Van den Hout and Van der Heijden (2004). The analysis of multivariate misclas-
sified data with special attention to randomized response data, Sociological Methods and Research
32, 310-336.
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square test of independence and introduces some of the techniques that are used in
the following sections. In Section 3.4, the RR design is described by a latent class
model and consequently loglinear models for RR data are presented and an example
is given. Section 3.5 presents techniques for fitting the loglinear models to RR data.
The likelihood is given, and the EM algorithm in the literature is discussed. In
Section 3.6, attention is paid to boundary solutions and bias in RR data. Section
3.7 concludes.

3.2 The Randomized Response Design

The research by Van Gils et al. (2001) used the RR design introduced by Kuk
(1990). In this design, there are two stacks of cards each containing black and red
cards. In the right stack the proportion of red cards is 8/10, and in the left stack
2/10. The respondent is asked to draw one card from each stack and to keep the
color of the cards hidden from the interviewer. Next, the sensitive question is asked.
Instead of answering the question directly with yes or no, the respondent names
the color of the card he took from the related stack, i.e., when the answer is yes,
the respondent names the color of the card he or she took from the right stack, and
when the answer is no, he or she names the color of the card from the left stack.

RR data can be described as misclassified data. We associate violations with
the color red. In this way, the probability to be correctly classified is 8/10 both for
respondents who violated regulations and for those who did not. The RR matrix
that contains the conditional misclassification probabilities

pij = IP (category i is observed| true category is j) (3.1)

is therefore given by

P =

(
p11 p12

p21 p22

)
=

(
8/10 2/10
2/10 8/10

)
. (3.2)

The main idea behind RR is that the perturbation induced by the misclassi-
fication design (in this case, the red and black cards) protects the privacy of the
respondent and that insight in the misclassification design (in this case, the knowl-
edge of the proportions red/black) can be used to analyze the observed data.

It is possible to create RR designs in which questions are asked to get information
about a variable with K > 2 categories, see, e.g., Chaudhuri and Mukerjee (1988,
Chapter 3). The general form of the RR designs we discuss is

θ∗ = Pθ, (3.3)
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where θ∗ = (θ∗1, ..., θ
∗
K)t is a vector denoting the probabilities of the observed answers

with categories 1, ..., K; θ = (θ1, ..., θK)t is the vector of the probabilities of the true
answers; and P is the K × K transition matrix of conditional misclassification
probabilities pij, as given in (3.1). Note that this means that the columns of P add
up to 1. Further background and more complex randomized response designs can
be found in Chaudhuri and Mukerjee (1988) and Fox and Tracy (1986).

Since we are dealing with the general form of misclassification as given in (3.3),
the methods discussed in this paper can also be used in categorical data analysis
where misclassification occurs and the probabilities given by (3.1) are known. An
example is known sensitivity and specificity in epidemiologic research, see, e.g.,
Magder and Hughes (1997).

There is also a similarity between RR designs and the post randomization method
(PRAM), introduced by Kooiman, Willenborg, and Gouweleeuw (1997) as a method
for statistical disclosure control of data matrices. Statistical disclosure control aims
at safeguarding the identity of respondents. Because of the privacy protection,
data producers, such as national statistical institutes, are able to pass on data
to a third party. The PRAM procedure yields a new data matrix in which the
values of certain categorical variables in the original matrix may be misclassified into
different values according to a given probability mechanism. In this way, PRAM
introduces uncertainty in the data: The user of the data cannot be sure whether
the information in the matrix is original or perturbed due to PRAM. As with RR,
the misclassification scheme is given by means of a K × K transition matrix P of
conditional probabilities pij, where

pij = IP (category i is released|true category is j).

The role of the transition matrix in the analysis of PRAM data is the same as the
role of the transition matrix in the analysis of RR data. More about PRAM and
the similarity with RR can be found in Van den Hout and Van der Heijden (2002).

A third field that may benefit from results regarding misclassification with known
misclassification probabilities is data mining. In this field, huge amounts of data are
collected from surfers on the web, and privacy concerns initiated research into ways
to protect the privacy of surfers by intentional statistical perturbation (Evfimievski,
Srikant, Agrawal, and Gehrke 2002).

Specific to the misclassification induced by RR is that it is nondifferential and
independent. Let A and B denote two categorical variables, where A has I categories
and B has J categories. Let A∗ and B∗ be the misclassified versions of A and B.
Misclassification of A is called nondifferential with respect to B if

IP (A∗ = k| A = i, B = j) = IP (A∗ = k| A = i), (3.4)
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where k, i ∈ {1, 2, ..., I} and j ∈ {1, 2, ..., J}, see Kuha and Skinner (1997). The
notion of independence is used when there are more than two misclassified variables.
The misclassification is independent if

IP (A∗ = k, B∗ = l| A = i, B = j) = IP (A∗ = k| A = i, B = j)

× IP (B∗ = l| A = i, B = j), (3.5)

where k, i ∈ {1, 2, ..., I} and l, j ∈ {1, 2, ..., J}.
If P in (3.3) is non-singular and we have an unbiased estimate θ̂

∗
of θ∗, we can

estimate θ by the unbiased moment estimator

θ̂ = P−1θ̂
∗
, (3.6)

(Chaudhuri and Mukerjee 1988; Kuha and Skinner 1997). In practice, assuming
that P in (3.3) is non-singular does not impose much restriction on the choice of the
misclassification design. Matrix P−1 exists when the diagonal of P dominates −−
that is, pii > 1/2 for i ∈ {1, ..., K} −− and this is reasonable since these probabilities
are the probabilities that the classification is correct.

Due to the fact that the misclassification in a RR design is independent and
nondifferential, the generalization to an m-dimensional contingency table with m >
1 is straightforward. First, the m-dimensional contingency table is structured as
an 1-dimensional table of a compounded variable. For instance, when we have
three binary variables, we obtain an one-dimensional table with rows indexed by
111, 112, 121, 122, 211, 212, 221, 222 (the last index changes first). Second, due
to the properties (3.4) and (3.5), it is possible to create the transition matrix of
the compounded variable using the transition matrices of the underlying variables.
Given the observed compounded variable and its transition matrix, we can use the
moment estimator as described above.

3.3 Chi-Square Test of Independence

This section discusses testing independence between two categorical variables where
one variable or both variables are subject to misclassification due to a RR design
such as (3.3).

Consider the cross-tabulation of the variables A and B, which are defined in
the previous section. Let πij = IP (A = i, B = j) for each i ∈ {1, 2, .., I} and
j ∈ {1, 2, .., J}. The data are assumed to be distributed multinomially. The null
hypothesis of independence is H0 : πij = πi+π+j, where the plus sign denotes sum-
mation over the related index, e.g., πi+ = πi1 + ... + πiJ . In the standard situation



3.3. Chi-Square Test of Independence 41

Table 3.1: (a) Classification by Gender (G) and RR Answer (F ∗) and (b) estimated
classification by Gender (G) and True Answer (F ).

(a)

F ∗

G Red Black Total
Male 218 500 718
Female 152 438 590
Total 370 938 1308

(b)

F
G Yes No Total
Male 124.00 594.00 718
Female 56.67 533.33 590
Total 180.67 1127.33 1308

without misclassification, the expected frequencies in the (i,j) cell under H0 are es-
timated by m̂ij = ni+n+j/N , where nij denotes the observed frequencies in the (i,j)
cell of the cross-tabulation of A and B, and N is the sample size. The test statistic
is the standard chi-square test of independence.

When one or two variables are misclassified and the misclassification is nondiffer-
ential and independent, the Collapsibility Theorem (Bishop, Fienberg and Holland
1975) can be used to show that the standard chi-square test of independence can
be applied to the observed table (Korn 1981). As a result, when the misclassifica-
tion is due to RR, and A∗ and B∗ denote the misclassified versions of A and B, it
is possible to make inference about the independence between A and B by apply-
ing the chi-square test to the observed cross-classification of A∗ and B∗. The test
has the correct significance level, but power is reduced compared to the situation
without misclassification. Several other authors discussed the chi-square test when
one or more variables are misclassified −− see, for example, Mote and Anderson
(1965), Assakul and Proctor (1967), who give attention to the reduction of power,
and Rosenberg (1979).

An example shows how this works with RR data. In Table 3.1 (a), two variables
are cross-classified that come from research into violating regulations of social ben-
efit (Van Gils et al. 2001). The variable G denotes gender. The observed red/black
answers to the RR question are denoted by F ∗. The question is whether the re-
spondents earned money by doing some odd jobs without informing the office that
provides their social benefit. This is a sensitive question since not informing the of-
fice is against regulations. Let the binary variable F denote the not-observed yes/no
answers that we will call the true answers.

Applying the chi-square test to the observed values in Table 3.1 (a) yields X2 =
3.377 with 1 degree of freedom and p value of 0.066. When we choose a significance
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level of α = 0.05, the data do not give a reason to reject the null hypothesis.
We now show that ignoring the results of Korn (1981) and taking the misclas-

sification into account leads to the same value of X2. Let n∗ = (n∗
11, n

∗
12, n

∗
21, n

∗
22)

t

denote the observed frequencies in Table 3.1 (a). To use the moment estimator (6.3),
we first define the transition matrix P GF of the compounded variable. Since the
RR design for F is applied with matrix (3.2) and gender (G) is not perturbed, we
obtain

P GF =


8/10 2/10 0 0
2/10 8/10 0 0

0 0 8/10 2/10
0 0 2/10 8/10

 . (3.7)

This matrix is used to estimate frequencies n̂ = (n̂11, n̂12, n̂21, n̂22)
t in the classifica-

tion by G and F by
n̂ = P−1

GF n∗,

see Table 3.1 (b). Next, we estimate the expected frequencies in this table, denoted
by m̂= (m̂11, m̂12, m̂21, m̂22)

t, under the model of independence by m̂ij = n̂i+n̂+j/N .
Since we want to fit the model of independence, we compute the fitted frequencies
under this model, denoted by m̂∗, by

m̂∗ = P GF m̂

and compare them with the observed n∗. Again we get X2 = 3.377.
When measuring the association between G and F by estimating the odds ratio,

the misclassification should be taken into account explicitly. To show this, we will
first ignore the misclassification and, second, give the adjusted estimate of the odds
ratio.

Using only Table 3.1 (a) to compute an estimate of the odds ratio η in the
standard way, yields η̂∗ = (218×438)/(500×152) = 1.26. The large-sample standard
error of log η̂∗ is (1/218 + 1/500 + 1/152 + 1/438)1/2 = 0.12, see Agresti (2002), so
that η̂∗ has the 95% confidence interval [0.99; 1.61]. This interval includes 1 and
does therefore not justify rejecting the null hypothesis of independence. However,
this estimate of η is biased towards 1 (Magder and Hughes 1997) and is therefore
not trustworthy.

An adjusted estimate can be deduced from Table 3.1 (b): η̂ = (124.00×533.33)/
(594.00×56.67) = 1.96. The logarithm of this estimate has a large-sample standard
error of 0.40, so that η̂ has 95% confidence interval [0.90; 4.29], see Greenland (1988)
and Van den Hout and Van der Heijden (2002). As expected, the interval is larger
than the interval of η̂∗ since the extra variance due to the RR design is taken into
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account. We see that, in accordance with the chi-square test to the observed values
in Table 3.1 (a), the adjusted estimation of the odds ratio does not justify rejecting
H0.

3.4 The Loglinear Model

This section discusses loglinear analysis where one or more categorical variables
are observed using a RR design such as (3.3). This section can be seen as an
extension to Section 3.3 since testing the loglinear model of independence for two
variables is equal to the chi-square test of independence. First, we use the loglinear
parameterization of the LCM to show that the RR design can be described by a
LCM. Second, we give an example of loglinear analysis where one of the variables
is an RR variable. The link between RR and LCMs is useful since it turns out that
widely available latent class software can be used to fit loglinear models that contain
RR variables.

When one or more variables in the standard loglinear model concern observed
values in a RR design, loglinear analysis using only the observed table may lead to
wrong inference about the parameters. Consider, for instance, the variables G and
F ∗ that are cross-classified in Table 3.1 (a). The standard saturated model (GF ∗)
to describe this table is given by

log mgf∗ = λ0 + λG
g + λF ∗

f∗ + λGF ∗
gf∗ ,

where mgf∗ denotes the expected frequency in the (g, f ∗) cell, and g, f ∗ ∈ {1, 2}.
The λ terms are restricted by

2∑
g=1

λG
g =

2∑
f∗=1

λF ∗
f∗ =

2∑
g=1

λGF ∗
gf∗ =

2∑
f∗=1

λGF ∗
gf∗ = 0.

The estimate exp(4λ̂GF ∗
11 ) is equal to the estimate of the odds ratio η̂∗ = 1.26 as

given in Section 3.3 It was already noted that this estimate is biased.

In order to apply loglinear models correctly, we should take into account the
misclassification due to the RR design. In the standard application of LCMs there
are two kinds of variables: directly observed manifest variables and indirectly ob-
served latent variables. The general idea is that the latent variables explain rela-
tionships among the manifest variables. Say we have one latent variable, X, and
three manifest variables, S, T , and U . An important assumption in LCMs is local
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independence: Given the latent variable, manifest variables are independent. The
loglinear parameterization of the LCM is therefore

log mstux = λ0 + λS
s + λT

t + λU
u + λX

x + λSX
sx + λTX

tx + λUX
ux , (3.8)

where the possible values x of the latent variable X and the number of categories
of X is not known beforehand. An example of latent class analysis is the situation
where the manifest variables concern attitudes towards political issues and the latent
variable is binary and indicates political orientation, for instance, left wing vs. right
wing. The idea here is that the latent variable explains dependencies between the
attitudes. More about this example and the general LCM can be found Hagenaars
(1993).

The RR situation is rather different from the standard latent class situation. Say
we have an observed red/black variable A∗ that is the misclassified version of the
yes/no variable A. The relation between the variables is one to one: Manifest vari-
able A∗ corresponds to latent variable A, and the assumption of local independence
does not apply since there are no other manifest variables besides A∗. Furthermore,
we do not have to investigate how many categories A has, since the number is equal
to the number of categories of A∗. The loglinear parameterization of this LCM is

log ma∗a = λ0 + λA∗
a∗ + λA

a + λA∗A
a∗a , (3.9)

where a∗, a ∈ {1, 2}. An important property of (3.9) is that λA∗
a∗ and λA∗A

a∗a are fixed
since the conditional probabilities IP (A∗ = a∗| A = a) are fixed by the RR design.
The relations between these terms and conditional probabilities are, given in, for
example, Heinen (1996, Chapter 2); see also Section 3.5.

Once we have a loglinear parameterization of the RR design, we can add manifest
variables that are not RR variables and investigate different loglinear models. We
elaborate the social benefit example by considering, besides variables F and G, the
categorical variable P , which denotes the population size of the place of residence
and has five levels. Consider Table 3.2, which cross-classifies F ∗ with G and P , and
the loglinear model (FGP, FF ∗), given by

log mf∗gpf = λ0 + λF ∗
f∗ + λG

g + λP
p + λF

f

+λFG
fg + λFP

fp + λGP
gp + λF ∗F

f∗f + λFGP
fgp , (3.10)

where λF ∗
f∗ and λF ∗F

f∗f are fixed by the RR design, and f ∗, g, f ∈ {1, 2}, p ∈ {1, .., 5}.
We call (3.10) the saturated model for the latent table FGP . In what follows,
we will assess different loglinear models for the latent table FGP . All the models
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Table 3.2: Classification by RR Answer (F ∗), Gender (G), and Population Size of
the Place of Residence (P ).

P (×1000)
F ∗ G ≥ 400 100-400 50-100 20-50 ≤ 20
Red Male 12 34 51 79 42

Female 19 30 33 47 23
Black Male 32 89 79 198 102

Female 35 101 105 150 47

Table 3.3: Goodness-of-fit statistics for loglinear models for table FGPF ∗.

Model df X2 p value L2 p value
1. (FG,FP,GP, FF ∗) 4 6.78 0.15 6.70 0.15
2. (FG,GP, FF ∗) 8 11.54 0.17 11.10 0.20
3. (FP,GP, FF ∗) 5 10.34 0.07 10.39 0.06
4. (GP,FF ∗) 9 14.85 0.10 14.49 0.11

include the fixed terms λF ∗
f∗ and λF ∗F

f∗f since the RR design should always be taken
into account.

The preceding discussion shows that we can use latent class software when this
software allows for restrictions on conditional probabilities. The program �EM (Ver-
munt 1997) is an example of this kind of software. Since the LCMs that correspond
to the RR design are very restricted, estimation of the models become less complex
when they describe RR data. Using �EM to estimate loglinear models for RR data
is easy and fast. The code that we used for the example with variables F ∗, G and
P is given in Appendix 3.A. Apart from the fixed interaction terms, the models
for the RR data also differ from standard loglinear models because they concern
an incomplete contingency table, i.e., in table FGPF ∗ variable F is not observed.
Because of this incompleteness, the EM algorithm (Dempster, Laird, and Rubin
1977) is applicable. The estimation of the models and the formulation of the EM
algorithm are discussed in Section 3.5.

Since we are not interested in the relation between G and P , we only consider
models that contain G and P jointly. In Table 3.3, the values of the test statistics of
several models are given. Estimating the frequencies under the saturated loglinear
model for the latent table FGP yields the estimates in Table 3.4. This table can
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Table 3.4: Estimated classification by True Answer (F ), Gender (G), and Population
Size of the Place of Residence (P ).

P (×1000)
F G ≥ 400 100-400 50-100 20-50 ≤ 20
Yes Male 5.3 15.7 41.7 39.3 22.0

Female 13.7 6.3 9.0 12.7 15.0
No Male 38.7 107.3 88.3 237.7 122.0

Female 40.3 124.7 129.0 184.3 55.0

Table 3.5: Hypothesis test for various pairs of nested models in Table 3.3.

Comparison models ∆df ∆L2 p value
2 versus 1 4 4.40 0.36
4 versus 2 1 3.39 0.07
3 versus 1 1 3.69 0.05
4 versus 3 4 4.10 0.39

also be estimated by using the unbiased moment estimator (6.3).
We partitioned the likelihood ratio goodness-of-fit statistic to find the best model,

see Table 3.5, and this leads to model (GP,FF ∗). This means that there is no
convincing evidence for the dependence between F , on one hand, and G and P ,
taken jointly, on the other hand. Estimated λ terms and their estimated standard
errors for model (GP,FF ∗) are given in Table 3.6. The data indicate that not
informing the social benefit office about money earned, is independent of gender
and population size of the place of residence taken together.

In the remainder of this section, we make some general remarks with respect
to the loglinear models for RR data. Certain loglinear models for RR data can be
tested when standard loglinear analysis is applied to observed variables, even when
some of the variables are misclassified. Korn (1981) showed that a hierarchical
model is preserved by misclassification if the misclassified variable appears only
once in the specification of the model. Preserved means that the misclassification
will not change the fact that the observed table satisfies the model. When testing
the model to the observed table, the same significance level is achieved, but power
is reduced. An example is applying the chi-square test to a two-dimensional table,
see Section 3.2. Another example is the model (AB,BC) that is preserved under
misclassification in A and in C but not under misclassification in B.

In practice, it often will be the case that we want to investigate loglinear mod-
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Table 3.6: Estimates of λ parameters in model (GP,FF ∗) and their estimated stan-
dard errors.

Parameter Estimate
Standard
errors Parameter Estimate

Standard
errors

λF
1 -0.92 0.09 λP

4 0.72 0.05
λG

1 0.07 0.03 λGP
11 -0.18 0.08

λP
1 -0.85 0.08 λGP

12 -0.10 0.06
λP

2 0.11 0.06 λGP
13 -0.10 0.06

λP
3 0.16 0.06 λGP

14 0.10 0.05

els that do not meet the criterion formulated by Korn (1981), and we still need
the adjustments described by the methods above. Also, even when a model is pre-
served, the estimation of the λ terms in the model should take the misclassification
into account. In the example, only model (FG,FP,GP, FF ∗) does not satisfy the
assumptions of Korn.

Another important point is whether local maxima of the likelihood at hand are
possible. In the standard hierarchical loglinear model, the likelihood function has
a unique maximum when the solution is in the interior of the parameter space,
see Birch (1963). Regarding the general LCM, it is known that it is possible that
the likelihood function has local maxima (Haberman 1979). However, the restricted
LCM in this paper that describes the RR variables seems to have different properties
than the general LCM. In the example above and in other not reported loglinear
analyses, we did not encounter local maxima of the likelihood functions. As an
illustration, Figure 3.1 depicts the likelihood given by (3.12) of the independence
model for latent table FG denoted by (G,FF ∗) and applied to Table 3.1 (a). As
can be seen in Figure 3.1, the parameter space of the likelihood seems to have one
maximum. We obtain (λ̂G

1 , λ̂F
1 ) = (0.098,−0.92) as the point where the maximum

is attained.

We conjecture that the loglinear models for RR data have a unique maximum
if there is a solution in the interior of the parameter space. With respect to the
saturated model for the latent table, this is true since the saturated model is just a
reparametrization of the multinomial distribution and Van den Hout and Van der
Heijden (2002) prove that in that case there is a unique maximum. The conjecture
for more parsimonious models might be investigated using research concerning prod-
uct models (Haberman 1977) or research into marginal models, see, e.g., Bergsma
and Rudas (2002). Both fields seem to address related problems. We hope to provide
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λ1
Fλ1

G

Figure 3.1: Likelihood of model (G,FF ∗)

a decisive answer in future research.

3.5 Estimating The Loglinear Model

This section presents techniques for estimating the loglinear models for RR data dis-
cussed in Section 3.4. First, we specify the likelihood. Second, we discuss the EM
algorithm that can be used to maximize the likelihood. For loglinear models with
latent variables, the algorithm was formulated by Haberman (1979). Both Chen
(1989) and Kuha and Skinner (1997) use the algorithm in the situation of misclas-
sification when misclassification probabilities are known, although the formulations
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of the algorithm differ. Chen (1989) explicitly discusses RR data. We will review
the two formulations since the difference is important when a boundary solution is
encountered. By a boundary solution, we mean an estimated expected cell frequency
in the latent table that equals zero. Section 3.6 will give examples of RR data where
boundary solutions occur.

To give the general formula of the likelihood, let the latent frequencies n =
(n1, ..., nD)t be multinomially distributed with parameters N and θ = (θ1, ..., θD)t.
We specify loglinear models by ηd = log θd, d ∈ {1, ..., D}, and η = Mλ, where
η = (η1, ..., ηD)t, M is the D × r design matrix that defines the loglinear model,
and λ = (λ1, ..., λr)

t is the parameter vector of the model. Ignoring constants, the
likelihood is given by

L(λ|n∗) =
D∏

i=1

(θ∗i )
n∗

i = exp{
D∑

i=1

n∗
i log(pi1e

η1 + .. + piDeηD)}, (3.11)

where n∗ is the vector with observed frequencies, and pij, i, j ∈ {1, ..., D}, are the
entries of the transition matrix that describe the misclassification with respect to
θ. Since n is assumed to be multinomially distributed, n∗ is also multinomially
distributed due to the specific form of the transition matrix (Van den Hout and Van
der Heijden 2002, Section 5).

As an example, consider the likelihood of the independence model (G,F ) applied
to Table 3.1 (a), given by

L(λ|n∗) =
4∏

i=1

(θ∗i )
n∗

i = exp{
4∑

i=1

n∗
i log(pi1e

η1 + pi2e
η2 + pi3e

η3 + pi4e
η4)}, (3.12)

where n∗ are the frequencies in Table 3.1 (a); pij, i, j ∈ {1, ..., 4}, are the entries in
P GF given by (3.7); and the non-redundant parameters are λG

1 and λF
1 . Note that

parameter λ0 is not a free parameter in the loglinear model −− in this case

λ0 = − log
∑
gf

exp(λG
g + λF

f ),

where g, f ∈ {1, 2}.
We can maximize (4.6) directly using the Newton-Raphson method, but we can

also maximize it using an EM algorithm. The program �EM (Vermunt 1997) uses
both procedures. The program starts with an EM algorithm and uses Newton-
Raphson when close to the maximum. The applicability of the EM algorithm to RR
data becomes clear when RR data are viewed as incomplete data. For each respon-
dent, we can associate with the observed value of F ∗ the not-observed nonperturbed
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value of F . Together, these pairs form an incomplete data matrix. In the framework
of Rubin (1976): The missing data are missing at random since they are missing by
design.

Next we review the formulations of the EM algorithm given by Chen (1989) and
Kuha and Skinner (1997). We use the example in the preceding section and start
with the formulation by Chen (1989). Say we want to fit model (FGP, FF ∗). With
v = 0, 1, 2... denoting the cycles, the algorithm is given by

Initial estimate: m
(0)
fgp

E-step: n
(v)
f∗gpf = nf∗gp

(
m

(v)
fgpπf∗|f

)/(∑2
t=1 m

(v)
tgpπf∗|t

)
M-step: Fit (FGP, FF ∗) to n

(v)
f∗gpf and use estimated

expected frequencies to compute m
(v+1)
fgp ,

where m
(0)
fgp is the initial estimate of the frequencies in latent table FGP , nf∗gp

are the observed frequencies in the F ∗GP table, and in each step f ∗, g, f ∈ {1, 2},
p ∈ {1, .., 5}. The conditional probabilities πf∗|f are fixed and provided for by the
transition matrix for F given by (3.2).

To test the model after convergence, compare m
(∞)
f∗gp+ with nf∗gp using, for in-

stance, the chi-square test or the likelihood ratio test. The degrees of freedom of
the chi-square distributions of these test statistics are the number of cells that are
compared minus the number of parameters fitted. For model (FGP, FF ∗), we have
20 - 20 = 0 degrees of freedom since the λF ∗

f∗ and λF ∗F
f∗f are fixed due to the RR

design.

Chen (1989) is not explicit with respect to the fixed λ -terms in models such as
(FGP, FF ∗). We think that it is important to stress that when fitting a loglinear
model in the M-step, one should check whether the restrictions due to the RR design
are maintained. The relations between λ terms and conditional probabilities in our
example are

πf∗|f =
exp(λF ∗

f∗ + λF ∗F
f∗f )∑

f∗ exp(λF ∗
f∗ + λF ∗F

f∗f )
, (3.13)

where f ∗, f ∈ {0, 1}, and the summation is over values f ∗ ∈ {0, 1}, see, e.g., Heinen
(1996, Chapter 2). The relation (3.13) is the same for more parsimonious models
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for the latent table FGP . Using (3.13), we obtain

λF ∗
1 = −1/4

(
log π2|1 − log π1|1 − log π1|2 + log π2|2

)
= 0

λF ∗F
11 = −1/4

(
log π2|1 − log π1|1 + log π1|2 − log π2|2

)
= 0.69. (3.14)

When fitting (FGP, FF ∗) in the M-step in a standard way without maintaining
the restrictions, λ̂F ∗

1 and λ̂F ∗F
11 converge to the fixed values of λF ∗

1 and λF ∗F
11 . However,

when there is a boundary solution, this may not be the case. In Section 3.6, we will
give examples of RR data with boundary solutions. When the restrictions are not
maintained, estimated expected frequencies m

(∞)
f∗gp+ are wrong; consequently, the

value of the test statistic is wrong. This means that the formulation of the EM
algorithm in Chen (1989) does not always yield the EM algorithm that we want.

To apply the EM algorithm correctly −− that is, in such a way that it also yields
the right estimates in the case of boundary solutions −− there are two possible
adjustments. We will explain these two adjustments and show that they are one
and the same due to the Collapsibility Theorem. First, we can fit (FGP, FF ∗) in the
M-step using the fixed values of λF ∗

f∗ and λF ∗F
f∗f , given by (3.14). The disadvantage

is that this is not completely standard loglinear analysis since we should take care
of these restrictions in estimating expected frequencies.

Second, we can use the E-step and M-step as given in Kuha and Skinner (1997),
who refer to Chen (1989) but nevertheless give a different formulation of the algo-
rithm −− namely

E-step: n
(v)
f∗gpf = nf∗gp

(
m

(v)
fgpπf∗|f

)/(∑2
t=1 m

(v)
tgpπf∗|t

)
n

(v)
fgp = n

(v)
+gpf

M-step: Fit (FGP ) to n
(v)
fgp to obtain estimated

expected frequencies m
(v+1)
fgp .

The advantage is that the M-step is standard. With respect to the testing of the
model after convergence, Kuha and Skinner (1997) do not explicitly give a procedure,
but we suggest doing the following. Structure the estimated frequencies m̂fgp in the
three-dimensional latent table FGP as a one-dimensional table of a compounded
variable −− say m̂ −− and compute the fitted frequencies under this model, denoted
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F ∗ F G

P

Figure 3.2: Saturated model for the latent table FGP

by m̂∗, by

m̂∗ = P FGP m̂, (3.15)

where P FGP is the transition matrix of the compounded variable. Next, m̂∗ can be
compared with the observed n∗.

The above adjustments yield one and the same EM algorithm. This follows
from the applicability of the Collapsibility Theorem (Bishop et al. 1975). The
theorem states that the interaction between F , G and P in model (FGP, FF ∗) can
be measured from the table of sums obtained by collapsing table F ∗GPF over F ∗,
see Figure 3.2.

This is why, in the EM algorithm, we can collapse the estimated complete table
in the E-step before we apply loglinear analysis in the M-step.

To test the fitted model after convergence of the EM algorithm formulated in
Kuha and Skinner (1997), we can combine the estimated λ terms of the latent table
FGP , i.e., the main effects and the interactions, with the fixed λ terms given by
(3.14), compute λ0, and estimate the complete table F ∗GPF to which the model
(FGP, F ∗F ) exactly fits. However, since the information of the fixed λ terms is
completely given by the transition matrix of F , we can also proceed after the EM
algorithm as described by (3.15). In this way, we can stay away from the estimation
of λ terms and work with cell frequencies instead.

When the reader wants to implement the EM algorithm, we advocate using the
EM algorithm in Kuha and Skinner (1997) and testing the models using (3.15).
Note, however, that the EM algorithm does not yield estimated standard errors for
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Table 3.7: (a) Classification by RR Answers F ∗
1 and F ∗

2 , and (b) estimated classifi-
cation by True Answers F1 and F2.

(a)

F ∗
2

F ∗
1 Red Black Total

Red 133 237 370
Black 147 791 938
Total 280 1028 1308

(b)

F2

F1 Yes No Total
Yes 107.21 66.22 173.43
No 0.00 1134.57 1134.57
Total 107.21 1200.79 1308

the estimated λ terms. For estimated standard errors, one could use a method like
Newton-Raphson, as is done in �EM .

3.6 Boundary Solutions

This section discusses boundary solutions that we encountered in the RR data con-
cerning violations of regulations for social benefit (Van Gils et al. 2001). On the
basis of these examples, a more general discussion is given with respect to boundary
solutions in RR data and in PRAM data. This section generalizes the discussion of
boundary solutions in Van den Hout and Van der Heijden (2002) to the situation
with more than one variable.

A boundary solution is encountered when an estimated cell frequency in the
latent table equals zero. This situation might occur when we combine several RR
variables. From the research concerning violations of regulations for social benefit,
we consider three binary RR variables −− F ∗

1 , F ∗
2 , and F ∗

3 −− with latent counter-
parts that are denoted by F1, F2 and F3. Variable F ∗

1 is the same as F ∗ in the
Sections 3.3 and 3.4. Variable F ∗

2 denotes observed answers concerning the question
of whether the respondents had a (temporary) legal job without informing the office
that provides their social benefit. Variable F ∗

3 concerns the question of whether the
respondent had an illegal job without informing the office. One transition matrix is
used for each of the three variables and is given by (3.2).

As an example, consider Table 3.7 (a), which contains observed frequencies of
RR variables F ∗

1 and F ∗
2 , and the estimated latent Table 3.7 (b), which contains

estimated expected frequencies under model (F1F2, F1F
∗
1 , F2F

∗
2 ). Testing the satu-

rated model for the latent table F1F2 yields X2 = 18.67 and L2 = 20.12. If there
would not have been estimated zeroes in Table 3.7 (b), X2 and L2 would have been
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Table 3.8: (a) Classification by RR Answers F ∗
1 , F ∗

2 and F ∗
3 , and (b) estimated

classification by True Answers F1, F2 and F3.

(a)

F ∗
3

F ∗
1 F ∗

2 Red Black
Red Red 66 67

Black 68 169
Black Red 52 95

Black 123 668

(b)

F3

F1 F2 Yes No
Yes Yes 101.92 11.07

No 18.56 45.38
No Yes 0.00 0.00

No 0.00 1131.06

zero.

A second example is given by Table 3.8 (a), which contains observed frequen-
cies, and Table 3.8 (b), which contains estimated expected frequencies under model
(F1F2F3, F1F

∗
1 , F2F

∗
2 , F3F

∗
3 ). The sample size is again 1308. Testing the saturated

model for the latent table F1F2F3 yields X2 = 38.53 and L2 = 41.61. It is clear
from Table 3.8 (b) that the questions are strongly related.

Boundary solutions might occur due to random error. When some of the latent
frequencies are close to zero, an estimate of these frequencies after RR has been
executed might result in a boundary solution. As an example, consider the binary
latent variable H with latent frequencies (98, 2)t and assume that the transition
matrix is given by (3.2). Possible frequencies of H∗ due to the misclassification by
the RR design are (85, 15)t, and on the basis of these frequencies, the latent fre-
quencies are estimated as (100, 0)t −− a boundary solution. When fitted frequencies
are estimated by left-multiplying the transition matrix with (100, 0)t, we get fitted
frequencies (80, 20)t and X2 > 0.

So, the fact that X2 > 0 for the saturated model for the latent table is in itself
not an indication that something is amiss. However, if the difference between zero
and the X2 of model (F1F2F3, F1F

∗
1 , F2F

∗
2 , F3F

∗
3 ) is large, it might be an indica-

tion that the perturbation of the latent frequencies is not due to misclassification
alone. This can be shown by two reasonings. First, a parametric bootstrap in
which data are sampled from the estimated expected frequencies under the model
can show that the large value of X2 is unlikely when only misclassification is taken
into account. We carried out such a bootstrap to investigate X2 = 38.53 for the
model (F1F2F3, F1F

∗
1 , F2F

∗
2 , F3F

∗
3 ) given the RR design. To describe the bootstrap,

we switch to binary RR variables H∗
1 , H∗

2 , and H∗
3 . From the estimated expected

frequencies in the latent table F1F2F3 under model (F1F2F3, F1F
∗
1 , F2F

∗
2 , F3F

∗
3 ), we
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sampled 100 tables H1H2H3 and next simulated 100 tables H∗
1H

∗
2H

∗
3 using the RR

design. For each of these tables H∗
1H

∗
2H

∗
3 the test statistic X2 is computed. The

mean value of the 100 simulated X2’s is 2.00, and the maximum is 9.25. This max-
imum is not even close to the X2 = 38.53 of model (F1F2F3, F1F

∗
1 , F2F

∗
2 , F3F

∗
3 ).

Results for the likelihood ratio test L2 are very similar.
A second way to investigate whether the RR data can be described by mis-

classification alone is the following. Continuing with the example: Assume that
none of the respondents committed fraud, or in other words, that the latent score
is 2 for each variable F1, F2, and F3. Under this assumption, the expected num-
ber of respondents with observed score black for each variable F ∗

1 , F ∗
2 , and F ∗

3 is
(8/10)3 × 1308 = 669.70. The observed number in the survey is 668. This might
suggest that the assumption is correct and that there are no frauds at all in the
survey. However, this is contradicted by the 66 respondents who have the score
red for each variable F ∗

1 , F ∗
2 , and F ∗

3 −− a frequency that is much higher than the
expected (2/10)3 × 1308 = 10.46 under the assumption of no fraud at all.

The two reasonings show that, given the RR design in the research and the
estimated expected frequencies in Table 3.8 (b), it is rather unlikely that Table 3.8
(a) is the observed table. However, since the observed data are the starting point
of statistical inference, we should state the conclusion the other way around: Given
Table 3.8 (a) and the RR design, Table 3.8 (b) is probably not a good estimate
of the latent frequencies. The cause for this estimation problem is probably that
some respondents do not always follow the RR design and answer black too often,
irrespective of the question asked. A reason for this might be that some respondents
do not trust the privacy protection offered by the RR design and answer black since
black is associated with no. These respondents bring about a second perturbation
of the latent frequencies besides the misclassification due to the RR design. In the
conclusion, we will return to this problem.

To make the discussion more general, note that when the statistical disclosure
method PRAM is applied, X2 > 0 for the saturated model for the latent table
can only occur due to random error since the misclassification is executed by the
computer. Also, in the case where RR data are not unlikely in the sense as discussed
above, a method is needed to deal with the fact that X2 might be unequal to zero.
In the related field of incomplete data it also may occur that X2

0 > 0 (Schafer 1997).
We suggest following Schafer (1997), who proposes taking the deviation from the
null as a baseline for assessing nonsaturated models and defines an adjusted test
statistic

X2
adj = X2 − X2

0 ,

where X2
0 is the X2 of the saturated model. The likelihood ratio test is adjusted in
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the same way. The behavior of this adjusted test might be studied using Gelman,
Meng and Stern (1996), who use Bayesian analysis to assess model fit in situations
when X2 > 0 but when X2 is expected to be zero if the model is true.

3.7 Conclusion

This paper discusses loglinear analysis of randomized response data. It is shown
that this kind of analysis can be executed using existing latent class software.

The RR data from the example in this paper are difficult data. The problem is
not the theoretic misclassification due to the RR design since this paper shows that
we can handle this misclassification. The problem is that some respondents do not
follow the RR design and −− of course −− that we cannot identify these ”cheaters”.
To some extent we can use X2

0 , i.e., the test statistic for the saturated model for the
latent table, as a measure of the bias of the RR data but it provides not a decisive
answer.

Asking sensitive questions will always produce incomplete or biased data. So one
must make do with what one has got, and our idea is that RR performs relatively well
(Van der Heijden, Van Gils, Bouts, and Hox 2000). Analysis of RR data in the future
might profit from research into more methodological aspects of RR designs, see
Boeije and Lensvelt-Mulders (2002), who discuss cheating in RR designs. A possible
form of cheating is when a respondent answers black, irrespective of the question
asked since he or she does not trust the privacy protection. When respondents
understand the privacy protection offered by the RR design better, data might be
less biased. Another approach might be to add extra parameters to the model in
order to describe cheating behavior. This is not straightforward since it is difficult
to model cheating behavior, and also we might run into identifiability problems, see,
e.g., Goodman (1974).

The question of how the bias in the data influences the analysis is difficult to an-
swer. Obvious is that results should be interpret with care and that cross-classifying
several RR questions might increase the bias of the results. We suggest the follow-
ing: When the saturated model fits perfectly, i.e., X2

0 = 0, we advocate the loglinear
modeling as described in Section 3.4. When X2

0 > 0, one should be more careful,
and the reasonings used in Section 3.6 can be used to assess bias in the RR data due
to the ”cheaters”. When the parametric bootstrap in Section 3.6 makes the value of
X2

0 unlikely, it is unclear how to interpret the results of the loglinear analysis. When
X2

0 is not too large, i.e., the deviation from the null can be explained by random
error, an adjusted test statistic can be used to test the fitting of loglinear models.
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Appendix 3.A

We present two input files that can be use in �EM to fit the models in Sec-
tion 3.4. The program �EM and the manual can be downloaded for free from
www.kub.nl/faculteiten/fsw/ organisatie/departementen/mto/software2.html. The
symbol * denotes comment. By removing and adding this symbol in the text, dif-
ferent models can be fitted. The first input fits the saturated model for the latent
table FGP and follows the loglinear parameterization of the LCM.

lat 1 * 1 latent variable

man 3 * 1 manifest variable

dim 2 2 2 5 * dimensions of variables

lab F R G P * labels:

* F = fraud, R = observed RR answer

* G = gender, R = pop. size of place of residence

mod {FGP,wei(FR)} * sat. mod. with weighted interaction FR

*mod {FG,FP,PG,wei(FR)} * no 3-way interaction model

*mod {FG,PG,wei(FR)} * conditional independence

*mod {FP,GP,wei(FR)} * conditional independence

*mod {F, GP,wei(FR)} * model of joint independence

sta wei(FR) [.8 .2 .2 .8] * misclassification prob. determine weights

dat [12 34 51 79 42 19 30 33 47 23 * observed data

32 89 79 198 102 35 101 105 150 47]

The second input also fits the saturated model for the latent table FGP but follows
the loglinear modified path model parameterization (Goodman 1973; Hagenaars
1993, p.15). We only give the input for the the saturated model for the latent table
FGP , but restrictive models can easily be formulated.

lat 1 * 1 latent variable

man 3 * 1 manifest variable

dim 2 2 2 5 * dimensions of variables

lab F R G P * labels
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mod FGP {FGP} * saturated model

R|F {wei(RF)} * specifying weights

sta wei(RF) [.8 .2 .2 .8] * using misclassification probabilities

dat [12 34 51 79 42 19 30 33 47 23 * observed data

32 89 79 198 102 35 101 105 150 47]



Chapter 4

Randomized Response in a 2 × 2
Factorial Design

4.1 Introduction

Randomized response (RR) is an interview technique that can be used when sensitive
questions have to be asked (Warner 1965; Chaudhuri and Mukerjee 1988). Examples
of sensitive questions are questions about alcohol consumption, sexual behavior or
fraud. Respondents might be reluctant to answer sensitive questions directly. RR
techniques have in common that the true status of the individual respondent is not
revealed since his observed answer depends not only on his status but also on a
specified probability mechanism.

As an example, assume that the sensitive question is whether the respondent has
committed fraud. The RR technique introduced by Boruch (1971), the force response
method, goes as follows. After the sensitive question is asked, the respondent throws
two dice and keeps the outcome hidden from the interviewer. If the outcome of the
dice is 2, 3 or 4, the respondent answers yes. If the outcome 5, 6, 7, 8, 9 or 10,
he answers according to the truth. If the outcome 11 or 12, he answers no. The
observed answer depends both on the true status of the respondent and on the dice
as the probability mechanism. Due to the use of the probability mechanism, the
privacy of the individual respondent is guaranteed. RR techniques have been applied
in the Netherlands (Van Gils, Van der Heijden, Laudy, and Ross 2003; Elffers, Van
der Heijden, and Hezemans 2003).

Chen (1989) used the concept of misclassification to describe RR data that are
collected using the RR design by Warner (1965). With each RR variable a transition
matrix is associated that contains conditional misclassification probabilities. When

59
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the true status regarding the sensitive question is modeled by the discrete stochastic
variable X with sample space {1, 2, ..., J}, only the misclassified values of X are
observed. The misclassified version of X is denoted X∗ and it has the same sample
space as X. The distribution of X∗ is the J-component finite mixture given by

IP (X∗ = i) =
J∑

j=1

IP (X∗ = i|X = j)IP (A = j), (4.1)

where i = 1, ..., J , and IP (X∗ = i|X = j) for all i, j ∈ {1, 2, ..., J} are fixed and
given by the transition matrix of X.

The basis for this paper is a survey where some respondents were asked sensitive
questions about fraudulent behavior directly and others were asked the same ques-
tions using RR. The RR was performed using the forced response method. Besides
the use of RR as a factor, the use of a PC was a second factor, i.e., some respondents
were asked sensitive questions using a PC and others were asked the same questions
without the use of a PC. Research questions concern the association between fraud
and the PC/RR-classification. For instance, is fraud more easily admitted when RR
is used?

Due to the fact that the use of RR induces a misclassification, standard statistical
models cannot be used since they do not take into account the misclassification. This
paper discusses the adjustment of the standard loglinear model so that the model
can deal with the particulars of the current survey. The approach consists of two
steps. First, the paper shows that the forced response method can be described using
a transition matrix with conditional misclassification probabilities. Understanding
the forced response method as a misclassification design generalizes for instance
the two formulations of the likelihood of the logistic regression model for RR data
in Van der Heijden and Van Gils (1996). Second, the paper shows that, with an
adaptation regarding the misclassification, the current survey can be analyzed using
the framework in Van den Hout and Van der Heijden (2004), in which the general
RR design is described by a restrictive latent class model. To illustrate the theory,
the paper discusses an example. The example includes a power analysis for testing
loglinear models for RR data. The power analysis is important since using RR
causes extra variability in the data and extra variability decreases power.

The outline of the paper is as follows. Section 4.2 introduces the survey. Section
4.3 describes the forced response method as a misclassification design. Section 4.4
discusses the estimation of loglinear models and shows how the design of the current
survey fits into the latent class framework. Section 4.5 illustrates the theory by
analyzing the RR data of the survey, and investigates the power of testing loglinear
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Table 4.1: Observed classification by F ∗, P and R.

R
F ∗ P 1 2
Yes 1 246 24

2 246 24

No 1 628 226
2 604 193

models. Section 4.6 concludes. Appendix 4.B contains code for the latent class
software �EM (Vermunt 1997).

4.2 The Survey

The sample size of the survey is n = 2191. All respondents receive a social benefit
due to inability to work. Several sensitive questions were asked about whether the
respondent committed fraud with respect to his or her social benefit. An example
of fraud is doing odd jobs without reporting the extra income. The survey is a 2×2
factorial design where the 4 groups were formed according to two binary variables
P and R. Variable P denotes the use of a PC, i.e., P = 1 means a PC was used,
both to ask the questions and to answer them, and P = 2 means no PC was used.
Variable R denotes the use of RR by way of the forced response method, i.e., R = 1
means RR was used, and R = 2 means no RR was used.

The objective of the survey was to study whether the use of a PC and/or the
use of RR is associated with reporting fraud. Note that in general RR surveys are
expensive. There is extra variance due to the misclassification and this is reflected in
the need for a relatively large sample size. When the use of a PC does not influence
reporting fraud, cost of future RR surveys can be reduced by using PCs.

One of the RR question in the survey was ”Have you ever done some odd job
for family or acquaintances and received money for this job without reporting the
extra income?” This is a sensitive question since the reporting is obligatory and
can influence the benefit. Let binary F ∗ denote the observed answer with respect
to this question. Table 4.1 presents observed frequencies in the table F ∗PR. (The
equality between the first two rows is not a typo.) Since all variables in the survey
are discrete, loglinear analysis is the appropriate tool, see, e.g., Fienberg (1980).
The standard loglinear model however does not take the misclassification due to the
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RR design into account. The following sections discuss how to adjust the loglinear
model when the use of RR is a factor. Note that adjustment does not concern R
itself, but the observed answers concerning fraud when R = 1.

4.3 Misclassification

Consider the forced response method (Boruch 1971) as described in the introduction.
Let X be the binary RR variable, and yes ≡ 1 and no ≡ 2. Given the forced response
method where D models the outcome of the sum of the two dice, it follows that

IP (X∗ = 1) = IP (D = 2, 3 of 4) + IP (X = 1)IP (D = 5, 6, 7, 8, 9 of 10)

and

IP (X∗ = 2) = IP (D = 11 of 12) + IP (X = 2)IP (D = 5, 6, 7, 8, 9 of 10).

An alternative formulation is

IP (X∗ = i) = IP (X∗ = i|X = 2)IP (X = 2) + IP (X∗ = i|X = 1)IP (X = 1)

(4.2)

where i = 1, 2, and the conditional misclassification probabilities are given by the
forced response method and the known distribution of the sum of the two dice. Note
that (4.2) has the same structure as (5.2). It follows that the transition matrix of X
that contains the conditional misclassification probabilities pij = IP (X∗ = i|X = j)
is given by

P X =

(
p11 p12

p21 p22

)
=

(
11/12 2/12
1/12 10/12

)
.

In P X , columns sum up to one.
From the fact that this forced response method can be described by misclassifi-

cation and a transition matrix, it follows that the results in Van den Hout and Van
der Heijden (2002, 2004) can be used to analyze data that have been collected using
this method.

4.4 Loglinear Analysis

Van den Hout and Van der Heijden (2004) describe the misclassification due to RR
using a restrictive latent class model and show how the software �EM (Vermunt
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1997) can be used to fit loglinear models for RR data. The use of �EM follows
from the fact that this environment is very suitable for the analysis of latent class
models. In the current survey, the RR design is not always applied, i.e., some
respondents answer the sensitive questions directly and others answer via RR. This
section starts with the formulation of the misclassification using a transition matrix.
This matrix is used in the formulation of the likelihood of the loglinear model.
Second, the misclassification is formulated in such a way that it links up with latent
class analysis and �EM . The discussion in this section handles the 2 × 2 factorial
design in the survey, but from the presentation it will be clear how to generalize.

4.4.1 The Likelihood

Let F denote the binary variable in the survey that models a sensitive question
about fraud where yes ≡ 1 and no ≡ 2. The objective is to estimate loglinear
models for the table FPR in order to investigate how the use of a PC and/or the
use of RR influences reporting fraud. Loglinear models describe cell probabilities in
the FPR table using main effects and interaction terms. The standard saturated
model for the FPR table denoted (FPR) is given by

log πfpr = λ0 + λF
f + λP

p + λR
r + λFP

fp + λFR
fr + λPR

pr + λFPR
fpr , (4.3)

where πfpr = IP (F =, P = p,R = r), f, p, r ∈ {1, 2}. For identifiability λ terms are
constrained to sum to zero over any subscript,

2∑
f=1

λF
f = 0,

2∑
f=1

λFP
fp =

2∑
p=1

λFP
fp = 0, (4.4)

and so on. The term λ0 is not a free parameter in the loglinear model but a nor-
malizing constant chosen to make the cell probabilities sum to one,

λ0 = − log

∑
fpr

exp
(
λF

f + λP
p + .... + λFPR

fpr

) .

Restricted, not saturated, loglinear models are defined by leaving out main effects
or interaction effects. For instance, the model (FR,PR) is defined by leaving out
λFP

fp and λFPR
fpr for all f, p, r ∈ {1, 2}.

Due to the misclassification induced by the forced response method, table FPR
is latent, only frequencies in table F ∗PR are observed, where F ∗ is the misclassified
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version of F . The misclassification design is given

IP (F ∗ = f ∗, F = f, P = p,R = r) =

IP (F ∗ = f ∗|F = f,R = r)IP (F = f, P = p,R = r), (4.5)

where f ∗, f, p, r ∈ {1, 2}. The misclassification of F is dependent on R and this is
different from the standard RR design, but easy to handle. Let π = (π1, ..., π8)

t

denote the vector with cell probabilities for FPR with the convention that the last
index runs fastest: π1 = πFPR

111 , π2 = πFPR
112 , π3 = πFPR

121 and so on. It follows that
the mixture due to the misclassification is given by

π∗ = P FPR π,

where π∗ = (π∗
1, ..., π

∗
8)

t is the vector with cell probabilities for F ∗PR, and

P FPR =



11/12 0 0 0 2/12 0 0 0
0 1 0 0 0 0 0 0
0 0 11/12 0 0 0 2/12 0
0 0 0 1 0 0 0 0

1/12 0 0 0 10/12 0 0 0
0 0 0 0 0 1 0 0
0 0 1/12 0 0 0 10/12 0
0 0 0 0 0 0 0 1

 .

Matrix P FPR is not a Kronecker product of three transition matrices and is in
that sense different from the misclassification discussed in Van den Hout and Van
der Heijden (2004), in which a transition matrix per variable (possible the identity
matrix) was specified and individual matrices where combined using a Kronecker
product to describe the misclassification regarding cell probabilities.

In order to give the general formula of the likelihood, let n = (n1, ..., n8)
t denote

the frequencies in the latent table FPR and let n∗ = (n∗
1, ..., n

∗
8)

t denote the fre-
quencies in table F ∗PR. Frequencies n are assumed to be multinomially distributed
with parameters n and π. It follows that n∗ is also multinomially distributed with
parameters n and π∗ due to the specific form of the transition matrix, see Van
den Hout and Van der Heijden (2002, Section 5). We specify loglinear models by
ηd = log πd, d ∈ {1, ..., D}, and η = (η1, ..., ηD)t = Mλ, where M is the D × r
design matrix that defines the loglinear model and λ is the r × 1 parameter vector
of the model. In the current survey D = 8. The kernel of the loglikelihood is given
by

l(λ|n∗) =
D∑

d=1

n∗
d log(π∗

d) =
D∑

d=1

n∗
d log(pd1π1 + ... + pdDπD)

=
D∑

d=1

n∗
d log(pd1e

η1 + .. + pdDeηD), (4.6)
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where pij, i, j ∈ {1, ..., D}, are the entries of P FPR. Some additional remarks with
respect to the maximizing of (4.6) and the testing of a model are given in Appendix
4.A.

4.4.2 The Latent Class Analysis Link

Following Goodman’s (1974) notation, the latent class model of the misclassification
in the current survey is given by

πF ∗PR
f∗pr =

2∑
f=1

πF ∗FPR
f∗fpr =

2∑
f=1

πFPR
fpr πF ∗FR

f∗fr ,

where f ∗, p, r ∈ {1, 2}. This formulation follows directly from (4.5). The parameter

πF ∗FR
f∗fr is the conditional response probability that an individual obtains score F ∗ =

f ∗, given that this person belongs to the latent class determined by F = f and
R = r. In standard latent class, analysis conditional response probabilities have to
be estimated. When RR is used, these probabilities are fixed. Consequently, software
for latent class analysis that allows for fixed conditional response probabilities can
be used to analyze RR data.

In order to link up with the code for �EM , the conditional response probabilities
can be described with the 2 × 2 × 2 array

p1|11 p1|21

p2|11 p2|21

p1|12 p1|22

p2|12 p2|22

equal to

11/12 2/12
1/12 10/12

1 0
0 1

where pf∗|fr = IP (F ∗ = f ∗|F = f,R = r) for f ∗, f, r ∈ {1, 2}. The �EM code for
the example in the next section is given in Appendix 4.B.

4.5 Example

This section applies the foregoing in the loglinear analysis of the RR data in Table
4.1. Let binary F denote the latent status with respect to the sensitive question,
where F = 1 means that there are fraudulent activities and F = 2 means that
there are no fraudulent activities. Section 4.5.1 discusses hypothesis testing and
estimation. Section 4.5.2 investigates power.
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4.5.1 Hypothesis Testing and Estimation

Goodness-of-fit statistics for different loglinear models for latent table FPR are given
in Table 4.2, where X2 denotes the Pearson chi-square statistic and L2 denotes the
likelihood ratio statistic. Since the 2 × 2 factorial design is an experimental design
where the 4 groups are formed using P and R, we must include the λPR

pr terms in
all the models to be considered (Fienberg 1980, Chapter 6). In other words, we
consider only the loglinear models where the estimated expected marginal totals for
P and R are equal to the observed totals fixed by design.

A goodness-of-fit statistic is used to test the current model against the alter-
native of a saturated model. The L2 statistic can also be used to compare nested
models by partitioning the chi-square (Fienberg 1980, Section 4.3). When we choose
significance level α equal to 0.10 and use the partitioning, we obtain (FR,PR) as
the best model for latent table FPR (∆df=1, ∆L2 = 0.36, p = 0.55). In the next
section the choice of α will be motivated.

Interpretation of (FR,PR): There is an association between reporting fraud and
the use of RR, but there is no association between reporting fraud and the use of a
computer. As before, let yes ≡ 1 and no ≡ 2. Probabilities π

F |PR
1|pr = IP (F = 1|P =

p,R = r) for the 4 groups can be estimated using the fit of model (FR,PR). We
obtain

π̂1|11 = π̂1|21 =
π̂121∑2

f=1 π̂f21

= 0.158

π̂1|12 = π̂1|22 = 0.103.

The estimates show that when RR is used, more fraud is reported.
With respect to the interpretation, it is also possible to use a logit model instead

of a loglinear model (Fienberg 1980, Chapter 6). The logit model takes explicitly
into account that one of the variables is a dependent variable. The estimated logit
model presents the results of the estimated loglinear model in a different way. The
logit model that corresponds with the loglinear model (FR,PR) is given by

log
(
πFPR

1pr

/
πFPR

2pr

)
= w + wR

r , (4.7)

where p, r ∈ {1, 2}. The interpretation of the logit model is straightforward when
the underlying loglinear model is made identifiable using dummy coding, i.e., the
redundant λ terms are set to zero. In the loglinear model this means

λF
2 = λP

2 = λR
2 = λFR

12 = λFR
21 = λFR

22 = λPR
12 = λPR

21 = λPR
22 = 0.
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Table 4.2: Goodness-of-fit statistics for loglinear models for latent table FPR.

Model df X2 p value L2 p value
1. (FPR) 0 0.00 - 0.00 -
2. (FP, FR, PR) 1 0.04 0.83 0.04 0.83
3. (FR,PR) 2 0.40 0.82 0.40 0.82
4. (FP, PR) 2 6.81 0.03 7.04 0.03
5. (F, PR) 3 7.23 0.07 7.51 0.06
6. (PR) 4 750.96 0.00 802.24 0.00

The parameter estimates for (4.7) are ŵ = −2.167 (0.152) and ŵR
1 = 0.496 (0.187),

where the estimated standard errors are between the brackets. It follows that the
odds πFPR

1p1 /πFPR
2p1 is estimated to be 0.188, while the odds πFPR

1p2 /πFPR
2p2 is estimated

to be 0.115, for p ∈ {1, 2}. Estimated model (FR,PR) implies that using RR has
a positive effect on the odds of reporting fraud. When RR is used, the estimated
odds of reporting fraud is exp(ŵR

1 ) = 1.642 times larger.

4.5.2 Power Analysis

The power of a test is defined as the probability that the null hypothesis H0 is
rejected given that the alternative hypothesis HA is true. By partitioning the chi-
square in the previous section, we tested model (FR,PR) against (FP, FR, PR).
In the present survey there is extra variability due to the RR perturbation. This
extra variability causes a loss of power compared to a survey without RR. This
is the reason to investigate in this section the power of testing (FR,PR) against
(FP, FR, PR).

In general, power depends on the sample size, chosen significance level α, and
on the difference between H0 and HA. Given a fixed sample size and a chosen α,
power increases when the difference between H0 and HA increases. In the following
the model under H0 will be (FR,PR). In this model there is no interaction between
F and P , i.e., λFP

11 = 0. The models under HA are defined by (FP, FR, PR) where
λFP

11 is fixed. By choosing different fixed values for λFP
11 , the difference between H0

and HA varies.
When model (FP, FR, PR) is estimated, we obtain λ̂FP

11 = −0.027 (0.026), when
the restrictions (4.4) are used. The Wald test can be used to test whether λFP

11 is
equal to zero: W = 0.027/0.026 = 1.04, p = 0.30. So the difference between
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estimated models (FR,PR) and (FP, FR, PR) is small. Given this small difference
and the fact that power is increased when significance level α is increased, we chose
significance level α = 0.10.

Simulation will be used to compute the power. Note that RR data are subject
to two stochastic processes: the survey sampling and the misclassification design.
Both processes are taken into account in the simulation. Let the model under H0

be denoted M0 and the model under HA be denoted MA. One simulation goes as
follows.

1. Estimate expected frequencies m̂ = (m̂1, ..., m̂8)
t for latent table

FPR under MA

2. Draw a sample s from a multinomial distribution with parameters
π̂ = m̂/n and n.

3. Simulate the RR design for s to obtain simulated frequencies of
table F ∗PR.

4. Fit M0 to simulated table F ∗PR and accept or reject M0 using
significance level α.

The proportion of times M0 is rejected by the goodness-of-fit test is the power of
testing M0 against MA, given a choice of α. As an illustration of the simulation, Fig-
ure 4.1 shows the distribution of the 1000 times simulated goodness-of-fit statistic L2

when M0 = (FR,PR) and MA = (FP, FR, PR). The plotted line is the noncentral
chi-square distribution with df = 2 and non-centrality parameter γ = 0.36. From
Figure 4.1 can be concluded that the simulated L2 follows the noncentral chi-square
distribution, which is according to theory (compare Agresti 2002, Section 6.5.4.).

Next, the power of testing model (FR,PR) against alternative models (FP, FR,
PR) with fixed λFP

11 is assessed. Figure 4.2 presents the simulated power curve for
varying choices of λFP

11 , where the goodness of fit is tested using L2. Note that when
λFP

11 = 0, (FR,PR) is tested against itself and the power equals α = 0.10. The black
circle in Figure 4.2 indicates the power of testing (FR,PR) against (FP, FR, PR)
when fixed λFP

11 is equal to λ̂FP
11 = −0.027.

From the simulation results it follows that there is adequate power (≥ 0.80) in
testing (FR,PR) against (FP, FR, PR) when λFP

11 ≤ −0.13 or 0.13 ≤ λFP
11 . Inter-

pretation of λFP
11 is via exp(4λFP

11 ) which is the odds ratio between F and P (Fienberg
1980, Section 2.5). In model (FR,PR), λFP

11 = 0 and the odds ratio is 1, i.e., there
is no association between F and P . From the power analysis above, it follows that
there is adequate power (≥ 0.80) in testing (FR,PR) against (FP, FR, PR) when
the odds ratio between F and P lies outside the interval (0.60,1.68).
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Figure 4.1: Distribution of L2 when M0 = (FR,PR) and MA = (FP, FR, PR).
Histogram of 1000 simulations and plotted chi-square distribution with df=2 and
γ = 0.36.

The conclusion from the power analysis is that there is not enough power to test
(FR,PR) against (FP, FR, PR). This is not a surprise given the small difference
between estimated models (FR,PR) and (FP, FR, PR). Only with an odds ratio
outside the interval (0.60,1.68) there is adequate power to test (FR,PR) against
(FP, FR, PR).

4.6 Conclusion

From the formulation of the loglikelihood (4.6) it is clear that all kinds of models
for the latent table can be estimated for RR data. The loglikelihood is constructed
using the misclassification design with respect to all the variables. This design differs
for differ RR designs, but as soon as the misclassification is specified, the method
described in this paper can be used.

An important assumption in this discussion is that respondents follow the RR
design. This assumption will not always be right. For instance, it might be that
some respondents do not trust the privacy protection offered by the RR design and
answer no irrespective of the outcome of the dice. These respondents bring about
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Figure 4.2: Power in testing (FR,PR) against (FP, FR, PR) given fixed values of
λFP

11 and α = 0.10. For each fixed value 1000 simulations were used.

a second perturbation besides the misclassification due to the RR design. Modeling
this behavior is difficult. A idea for future work is to assign a prior distribution to
the conditional misclassification probabilities to take into account the uncertainty
of the misclassification process. Using Bayesian inference, the sensitivity of results
for different prior distributions can then be investigated.

Asking sensitive questions will always produce incomplete or biased data. So one
must make do with what one has got and the idea is that RR performs relatively well,
see Van der Heijden, Van Gils, Bouts and Hox (2000). Analysis of RR data in the
future might profit from research into more methodological aspects of RR designs,
see Boeije and Lensvelt-Mulders (2002), who discuss cheating in RR designs. When
respondents understand the privacy protection offered by the RR design better, the
measurement will be more valid.

Appendix 4.A

With respect to the maximization of the likelihood (4.6) and the usual constrains
for cell probabilities, note that due to the loglinear transformation estimated prob-
abilities are always positive and due to λ0 estimated probabilities sum up to 1.
When (4.6) is maximized to estimate a loglinear model, one has to estimate the
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fitted frequencies in table F ∗PR in order to test the model. In the example in
Section 4.5 model (FR,PR) is fitted. In this model, we have D = 8, r = 6,
λ = (λ0, λ

F
1 , λP

1 , λR
1 , λFR

11 , λPR
11 )t, and the design matrix is given by

M =



1 1 1 1 1 1
1 1 1 −1 −1 −1
1 1 −1 1 1 −1
1 1 −1 −1 −1 1
1 −1 1 1 −1 1
1 −1 1 −1 1 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1

 .

Maximizing (4.6) yields λ̂ and the fitted frequencies are given by

m̂∗ = nP FPR exp(Mλ̂).

Appendix 4.B

The following presents code for �EM that was used for the example in Section 4.5.
Text after * is ignored by �EM . Different models can be fitted by choosing different
mod-s. This input fits the logit model (FR,PR) with dummy coding.

lat 1 * labels:

man 3 * F = fraud variable question, i.e., the latent variable

dim 2 2 2 2 * P = is PC used?

lab F P R G * R = is RR used?, G = misclassified version of F

* Loglinear models:

* mod FPR {FPR} * saturated model

* mod FPR {FR,FR} * conditional independence

* Logit models:

* mod F|PR {FPR} * saturated model

mod F|PR {FR,PR} * conditional independence

G|FR {wei(GFR)} * the misclassification

* Misclassification prob. p111, p112, p211, p212, p121, p122, p221, p222, resp.:

sta wei(GFR) [.91667 0.08333 1 0 0.1666 0.8333 0 1]
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dum 2 2 2 2 * the dummy coding

dat [246 628 24 226 246 604 24 193] * the data



Chapter 5

The Linear Regression Model

5.1 Introduction

Randomized response (RR) is an interview technique that can be used when sensitive
questions have to be asked and respondents are reluctant to answer directly (Warner
1965; Chaudhuri and Mukerjee 1988). Examples of sensitive questions are questions
about alcohol consumption, sexual behavior or fraud. RR variables can be seen as
misclassified categorical variables where conditional misclassification probabilities
are known. The misclassification protects the privacy of the individual respondent.

This paper applies the ideas in Spiegelman, Rosner, and Logan (2000) to iid nor-
mal linear regression models where some of the independent variables are subject
to RR. Spiegelman et al. (2000) discuss the logistic regression model with misclassi-
fied independent variables. Their misclassification model, however, is different from
the misclassification model induced by RR. This paper specifies the misclassifica-
tion model of RR and shows how the misclassification can be taken into account in
the maximum likelihood estimation of the linear regression model. Furthermore, as
an alternative to Newton-Raphson maximization of the likelihood function an EM
algorithm (Dempster, Laird, and Rubin 1977) is presented.

There is quite some literature about RR and the adjustment for the misclassifi-
cation in the analysis, see, e.g., probability estimation in Chaudhuri and Mukerjee
(1988), Bourke and Moran (1988), and Moors (1981), the logistic regression model
with a RR dependent variable in Maddala (1983), and loglinear models in Chen
(1989) and Van den Hout and Van der Heijden (2004). RR variables as independent

1This chapter is joint work with Peter Kooiman, CPB Netherlands Bureau for Economic Policy
Analysis, the Netherlands.
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variables, however, have not been dealt with. The possibility to include RR vari-
ables in regression models enlarges the possible application of RR. As an example,
consider the situation where one variable depends on a second variable that models
sexual behavior. When respondents are reluctant to answer about their behavior
directly, RR can be used. In that case, a standard regression model is incorrect
since it does not take into account the misclassification due to the use of RR.

A second field that may benefit from the discussion in this paper is statistical
disclosure control. There is a similarity between RR designs and the post ran-
domization method (PRAM) as a method for disclosure control of data matrices,
see Gouweleeuw, Kooiman, Willenborg, and De Wolf (1998). Disclosure control
aims at safeguarding the identity of respondents, see, e.g., Bethlehem, Keller, and
Pannekoek (1990). When privacy is sufficiently protected, data producers, such as
national statistical institutes, can safely pass on data to a third party. The idea of
PRAM is to misclassify some of the categorical variables in the original data matrix
and to release the perturbed data together with information about the misclassifi-
cation mechanism. In this way PRAM introduces uncertainty in the data, i.e., the
user of the data cannot be sure whether the individual information in the matrix
is original or perturbed due to PRAM. Since the variables that are perturbed are
typically independent variables such as, e.g., Gender, Ethnic Group, Region, it is
important to know how to adjust regression models in order to take into account
the misclassification. PRAM can be seen as a specific form of RR and the idea to
use RR in this way goes back to the founder of RR, see Warner (1971). Similarities
and differences between PRAM and RR are discussed in Van den Hout and Van der
Heijden (2002).

The outline of the paper is as follows. Section 5.2 introduces the RR model.
Section 5.3 discusses the linear regression model with RR independent variables. In
Section 5.4 an EM algorithm is presented that maximizes the likelihood formulated
in Section 5.3. Section 5.5 discusses the necessity of adjustment for misclassification
and presents some simulation results. Section 5.6 concludes.

5.2 The Randomized Response Model

This section starts with the forced response design (Boruch 1971) as an example of
a RR design and shows how the design can be seen as a misclassification design.
Next, the section presents a general model for RR variables. The forced response
design has recently been used in a Dutch survey into rule transgression, see Elffers,
Van der Heijden, and Hezemans (2003).
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Assume that the sensitive question asks for a yes or a no. The forced response
design is as follows. After the sensitive question is asked, the respondent throws two
dice and keeps the outcome hidden from the interviewer. If the outcome is 2, 3 or 4,
the respondent answers yes. If the outcome 5, 6, 7, 8, 9 or 10, he answers according
to the truth. If the outcome 11 or 12, he answers no.

Let W be the binary RR variable that models the sensitive item, W ∗ the binary
variable that models the observed answer, and yes ≡ 1 and no ≡ 2. Given the forced
response design where D models the outcome of the sum of the two dice, it follows
that

IP (W ∗ = 1) = IP (D = 2, 3 or 4) + IP (W = 1)IP (D = 5, 6, 7, 8, 9 or 10)

and

IP (W ∗ = 2) = IP (D = 11 or 12) + IP (W = 2)IP (D = 5, 6, 7, 8, 9 or 10).

An alternative formulation is IP (W ∗ = w∗) =
∑2

j=1 IP (W ∗ = w∗|W = j)IP (W = j),
where w∗ ∈ {1, 2}, and the conditional probabilities are given by the forced response
design and the known distribution of the sum of the two dice. This formulation shows
that RR variables can be seen as misclassified variables. The transition matrix of W
that contains the conditional misclassification probabilities pjk = IP (W ∗ = j|W = k)
for j, k ∈ {1, 2} is given by

P W =

(
p11 p12

p21 p22

)
=

(
11/12 2/12
1/12 10/12

)
. (5.1)

For a general model for RR variables let W ∗ denote the misclassified observed
version of latent W . We assume that both W ∗ and W have the same set of categories,
say {w1, ..., wJ}. Let P W denote the J × J nonsingular transition matrix that
contains the conditional misclassification probabilities pjk = IP (W ∗ = wj|W = wk),
for all j, k ∈ {1, ..., J}. Given the RR design, P W is known. The distribution of W ∗

is the J-component finite mixture given by

IP (W ∗ = w∗) =
J∑

j=1

IP (W ∗ = w∗|W = wj)IP (W = wj), (5.2)

for w∗ ∈ {w1, ..., wJ}. Since P W is known, mixture (5.2) is a known component
density model, see, e.g., Lindsay (1995). Let π∗

j = IP (W ∗ = wj) and πj = IP (W =
wj) for j ∈ {1, ..., J}. In matrix notation, we have π∗ = P W π, where π∗ =
(π∗

1, ..., π
∗
J)t and π = (π1, ..., πJ)t.
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Let W(i) denote the variable W for unit i, where i = 1, ..., n. Consider in-
dependent drawings W(1), W(2), ...,W(n), and assume

∑J
j=1 πj = 1, where πj =

IP (W(i) = wj), for j ∈ {1, ..., J}. Let N = (N1, N2, ..., NJ)t be the frequency vec-
tor, i.e., Nj =

∑n
i=1 δwj

(W(i)), where δwj
(W(i)) = 1 if W(i) = wj and δwj

(W(i)) = 0
if W(i) �= wj. We assume that N is multinomially distributed with parameters n
and π. Next, let N ∗ = (N∗

1 , N∗
2 , ..., N∗

J )t be the frequency vector of the misclas-
sified variables W ∗

(1), W ∗
(2), ..., W ∗

(n), and π∗
j = IP (W ∗

(i) = wj). Due to the proper-
ties of P W , it follows that N ∗ is multinomially distributed with parameters n and
π∗ = (π∗

1, ..., π
∗
J)t. The loglikelihood for π is given by

l(π|w∗
(1), w

∗
(2), ..., w

∗
(n)) ∝

J∑
j=1

n∗
j log

J∑
k=1

pjkπk, (5.3)

where
∑J

k=1 πk = 1. When a maximum of (5.3) is in the interior of the parameter
space, i.e., π̂ ∈ (0, 1)J , it is a global maximum and it is equal to the moment estimate
P−1

W π̂∗, where π̂∗ = n−1n∗, see Van den Hout and Van der Heijden (2002).
Extensions to more than one RR variable are direct. Say we have two binary vari-

ables W1 and W2 with values in {w1
1, w

1
2} and {w2

1, w
2
2}, respectively. Assume that

RR is independently applied to both variables. The above holds for the Cartesian
product W = (W1,W2) where the transition matrix is given by

P W = P W1 ⊗ P W2 (5.4)

where ⊗ denotes the Kronecker product. This follows from the assumption that the
randomization is independent between variables, i.e.,

IP
(
W ∗ = (w∗

1, w
∗
2)|W = (w1, w2)

)
= IP (W ∗

1 = w∗
1|W1 = w1) ×

IP (W ∗
2 = w∗

2|W1 = w2).

for w∗
1, w1,∈ {w1

1, w
1
2} and w∗

2, w2,∈ {w2
1, w

2
2}. Similar expressions hold for more

that two RR variables or RR variables with more than two categories.

5.3 Linear Regression

Without misclassification, the density of the scalar dependent variable Y in the
normal linear regression model is given by the density of the normal distribution
with mean xβ and variance σ2, i.e., by

f(Y |x) =
1

σ
√

2π
exp

(
− 1

2

(
Y − xβ

σ

)2
)
,
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where x = (x1, ..., xp) and β = (β1, ..., βp)
t.

Next, let X = (W ,u), where W = (W1, ...,Wq) and u = (uq+1, ..., up) de-
note q RR independent variables and p − q non-RR independent variables, respec-
tively, with q < p. Values of W are not observed, instead perturbed values of
W ∗ = (W ∗

1 , ...,W ∗
q ) are given. Assume that both W and W ∗ have the same set of

categories, say {w1, ...,wJ}. Note that J = J1 × ...× Jq, where J1, ..., Jq denote the
number of categories of W1, ...,Wq, respectively. Using the law of total probability
it follows that

f(Y |w∗,u) =
J∑

j=1

f(Y |wj,u)IP (W = wj|W ∗ = w∗), (5.5)

for w∗ ∈ {w1, ...,wJ}. Note that we use f(Y |w,w∗,u) = f(Y |w,u). The tacit
assumption in (5.5) is that IP (W = w|W ∗ = w∗,u) = IP (W = w|W ∗ = w∗),
i.e., u does not bear any information about the misclassification process. The for-
mulation of this model is close to the model described in Spiegelman et al. (2000)
for logistic regression with misclassified covariates, and following their terminology
we call IP (W = w|W ∗ = w∗) the reclassification model. Using Bayes’ rule the
reclassification model can be written as

IP (W = w|W ∗ = w∗) =
IP (W ∗ = w∗|W = w)IP (W = w)∑J

j=1 IP (W ∗ = w∗|W = wj)IP (W = wj)
, (5.6)

for w∗,w ∈ {w1, ...,wJ}. The conditional probabilities IP (W ∗ = wj|W = wk) for
j, k ∈ {1, ..., J} are the entries pjk in the transition matrix P W .

In the standard iid normal linear regression model, independent variables are
not stochastic variables. When RR is used, values of the independent variables
W1, ...,Wq are latent and consequently W is a stochastic variable. Let πj = IP (W =
wj) for j ∈ {1, ..., J}. In this paper, π = (π1, ..., πJ)t is considered as a parameter
that describes the sample distribution of W , it does not describe the distribution
of W in the population. Conditional on a sample s, we assume that the frequency
vector N of W (1),W (2), ...,W (n) is multinomially distributed in s with parameters
n and π, where πj = IP (W (i) = wj|i ∈ s) for j ∈ {1, ..., J}. In the following, the
conditioning on the sample will be ignored in the notation.

Let the observed value of W ∗ of unit i in the sample be denoted w∗
(i). The

loglikelihood of the regression model with RR independent variables follows from
(5.5), (5.6) and (5.3), and is for n iid observations given by
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l(β, σ,π) ∝
n∑

i=1

log

{
J∑

j=1

1

σ
√

2π
exp

(
− 1

2

(
yi − xj

iβ

σ

)2
)

p(i)jπj∑J
k=1 p(i)kπk

}

+
J∑

j=1

n∗
j log

J∑
k=1

pjkπk, (5.7)

where xj
i = (wj,ui), p(i)j = IP (W ∗ = w∗

(i)|W = wj), n∗
j denotes the observed

frequency of value w∗
j in the sample, and

∑J
k=1 πk = 1.

From loglikelihood (5.7) it is clear that estimating the linear regression model
with misclassified independent variables becomes rapidly complex when J increases.
Especially in the case of PRAM, where often several independent variables are per-
turbed, J might be large and, consequently, implementing a straightforward Newton-
Raphson algorithm to obtain the maximum of (5.7) will be quite a burden. The next
section presents an alternative.

5.4 An EM Algorithm

This section presents an EM algorithm (Dempster, Laird, and Rubin 1977) for the
linear regression model with RR independent variables. Loglikelihood (5.7) can be
maximized using standard optimization software based on Newton-Raphson type
algorithms. An alternative is to use an EM algorithm which is a stable algorithm
and relatively easy to implement. An EM can also be used to find good starting
values for a Newton-Raphson type algorithm.

The EM algorithm originates from the analysis of incomplete data. The problem
of working with RR variables can be translated into an incomplete-data problem.
Each observed value of W ∗ is associated with its not observed not perturbed value of
W . Together these pairs form an incomplete-data file with size n. In the framework
of Rubin (1976), the missing data are missing at random, since they are missing by
design. The E-step of EM finds the conditional expectation of the complete-data
loglikelihood, denoted Q(φ|φ(v)), where φ(v) is the current estimate of the parameter
of interest. The M-step of EM determines φ(v+1) by maximizing Q(φ|φ(v)) over φ.

The following presents an EM algorithm that maximizes the loglikelihood (5.7)
over φ = (β, σ,π). The conditional expectation of the complete-data loglikelihood
consists of two parts and is given by

Q(φ|φ(v)) ∝ Q1(β, σ|φ(v)) + Q2(π|φ(v)), (5.8)
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where

Q1(β, σ|φ(v)) = IEW

[
−n log σ − 1

2σ2

n∑
i=1

(yi − X iβ)2

∣∣∣∣yi,x
∗
i , i ∈ {1, .., n},φ(v)

]

Q2(π|φ(v)) = IEW

 J∑
j=1

n∑
i=1

δwj
(W (i)) log πj

∣∣∣∣yi,x
∗
i , i ∈ {1, .., n},φ(v)

 ,

X i = (W (i),ui), and x∗
i = (w∗

(i),ui). Note that the first part is the expectation
of the loglikelihood of a standard linear regression model, and that the second part
is the expectation of the loglikelihood of the multinomially distributed frequency
vector of W . It follows that

Q1(β, σ|φ(v)) = −n log σ − 1

2σ2

n∑
i=1

J∑
j=1

q
(v)
ij (yi − xj

iβ)2, (5.9)

where q
(v)
ij = IP

(
W (i) = wj|yi,x

∗
i ,φ

(v)
)

and xj
i = (wj,ui), for i ∈ {1, ..., n} and

j ∈ {1, ..., J}. The conditional distribution of W is given by

IP (W = wk|w∗ = wj, y, u,φ(v)) =
pjkf(y|wk,u,β(v), σ(v))π

(v)
k∑J

l=1 pjlf(y|wl,u,β(v), σ(v))π
(v)
l

, (5.10)

for k, j ∈ {1, ..., J}.
The second part of (5.8) is given by

Q2(π|φ(v)) =
J∑

j=1

n∑
i=1

J∑
k=1

q
(v)
ik δwj

(wk) log πj =
J∑

j=1

n∑
i=1

q
(v)
ij log πj. (5.11)

In the M-step, Q(φ|φ(v)) is maximized over φ. This is done by maximizing
the product JQ(φ|φ(v)) = JQ1(β, σ|φ(v)) + JQ2(π|φ(v)), where J is the number
of categories of W . The maximization of the two parts can be done separately.
Formula JQ1(β, σ|φ(v)) is the loglikelihood of a weighted linear regression model

with sample size n0 = Jn and weights r
(v)
ij = Jq

(v)
ij . Maximizing JQ1(β, σ|φ(v)) over

(β, σ) is possible by weighted least squares where the weights r
(v)
ij are computed using

(5.10). Formula JQ2(π|φ(v)) represents the likelihood of a pseudo multinomially

distributed variable with J categories and observed frequencies r
(v)
+j =

∑n
i=1 r

(v)
ij ,

where
∑J

j=1 r
(v)
+j = nJ . Note that in general r

(v)
+j will not be an integer, hence the

adjective pseudo.
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The EM algorithm for the linear regression model with RR independent variables
runs as follows:

Initial estimate: φ(0) = (β(0), σ(0),π(0)).

E-step: Compute r
(v)
ij = Jq

(v)
ij for i = 1, ..., n and

j = 1, ..., J , and create a weighted sample of size

n0 = Jn where each unit (yi,wj,ui) has weight r
(v)
ij .

M-step: Construct the n0 × 1 matrix

Y = (y1, ..., y1, y2, ..., y2, ......, yn, ..., yn)t,

construct the n0 × p matrix

X =



w1 u1

w2 u1

...
...

wJ u1

w1 u2

...
...

wJ u2

...
...

w1 un

...
...

wJ un



,

and let R be the n0 × n0 diagonal matrix

R = Diag
(
r
(v)
11 , ..., r

(v)
1J , r

(v)
21 , ..., r

(v)
2J , ......, r

(v)
n1 , ..., r

(v)
nJ

)
.

Compute

β(v+1) =
(
X tRX

)−1 (
X tRY

)
σ(v+1) =

√ ((
Y − Xβ(v+1)

)t
R

(
Y − Xβ(v+1)

)
/n0

)
π(v+1) =

(
r
(v)
+1 , ..., r

(v)
+J

)t
/n0.

When perturbation due to the RR design is not too drastic, a reasonable choice
for the initial estimates of β and σ are the estimation results from a standard linear
regression on the observed data. The moment estimate P−1

W π̂∗ can be used as an
initial estimate of π.
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5.5 Simulation Example

The first part of this section gives an idea of the necessity of the adjustment to iid
normal linear regression models when RR is applied. Data are simulated and the
estimation of a linear regression model is discussed. The second part uses the same
simulated data to illustrate the estimation of confidence intervals when the linear
regression model is adjusted with respect to the misclassification.

5.5.1 Necessity of Adjustment

One may wonder whether it is necessary to adjust standard regression models as
described in the preceding sections. When the probability of misclassification is
small it might be that the influence of the misclassification is negligible. Especially
in small samples, it might be that the extra variance due to RR is small in comparison
with the variance of the regression. The following investigates this idea.

The plan of the simulation is to assess the regression model

IE(Y |x) = β1 + β2x2 + β3x3 + β4x4, (5.12)

where values of x2 and x3 are 0 or 1, and x4 takes values on a continuous scale. The
values of the independent variables are chosen as follows. Given the sample size n,
there are n2/10 units (x2, x3) = (0, 0), n3/10 units (x2, x3) = (0, 1), n3/10 units
(x2, x3) = (1, 0), and n2/10 units (x2, x3) = (1, 1). The values of x4 are sampled
from a normal distribution with mean 20 and σ2 = 4. The correlation matrix of the
independent variables is

CR =

 1 −0.20 −0.11
−0.20 1 −0.06
−0.11 −0.06 1

 .

One simulation of a sample with sample size n goes as follows. For i = 1, ..., n and
given the chosen values of xi = (1, x2i, x3i, x4i), value yi is sampled from a normal
distribution with mean xiβ, where β = (β1, β2, β3, β4)

t = (8, 4, 15, 8)t, and variance
σ2 = 9. To give an idea, for n = 1000 and one sample y1, ..., yn, the estimation of
model (6.8) yields

β̂1 = 7.63 (0.96) β̂3 = 14.91 (0.19) σ̂ = 2.98

β̂2 = 4.21 (0.19) β̂4 = 8.02 (0.05)
(5.13)

where estimated standard errors are in parentheses.
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Table 5.1: Actual coverage percentage (ACP) based on 500 simulations when re-
gression model (6.8) is not adjusted for the misclassification due to RR.

ACP given misclassification
parameter pd

Sample
size

Regression
parameter

pd = 1 pd = 9
10

pd = 8
10

n = 60 β2 94.1 82.0 67.7
β3 95.1 38.4 3.1
β4 94.6 96.1 98.1

n = 100 β2 95.0 71.0 49.8
β3 95.5 10.6 0.0
β4 94.8 96.2 97.4

n = 1000 β2 95.0 0.0 0.0
β3 95.3 0.0 0.0
β4 94.6 90.4 96.0

The necessity of adjustment for the misclassification due to RR is investigated
using the actual coverage percentages (ACPs) of the regression coefficients β2, β3,
and β4. After a number of simulations, the ACP of a parameter is the percentage of
estimated confidence intervals that include the true value of the parameter. Three
samples sizes are considered, namely n = 60, 100, and 1000. Table 5.1 shows
the ACPs for different choices of misclassification probabilities and different sample
sizes. Table 5.1 is obtained as follows. Given the choice of the sample size, one
simulation consists of creating a sample y1, ..., yn as describe above and simulating
the misclassification due to RR for the values of x2 and x3. The transition matrix
of both x2 and x3 is given by

P =

(
pd 1 − pd

1 − pd pd

)
.

Next, a standard linear regression is performed using the sample y1, ..., yn and the
values of x∗

2, x∗
3, and x4. For each of the regression coefficients a 95% confidence

interval is estimated. The number of simulations is 500.
The ACP is a bit of a crude measure to assess the quality of the statistical
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Table 5.2: Actual coverage percentage (ACP) based on 500 simulations when re-
gression model (6.8) is adjusted for the misclassification due to RR.

ACP given misclassification
parameter pd

Sample
size

Regression
parameter

pd = 1 pd = 9
10

pd = 8
10

n = 100 β2 95.0 91.6 88.4
β3 95.5 95.4 93.2
β4 94.8 94.8 94.8

n = 1000 β2 95.0 95.0 94.6
β3 95.3 96.2 95.8
β4 94.6 94.0 94.8

inference. However, it is clear from Table 5.1 that inference using the standard
linear regression model is unreliable when there are RR independent variables. In
the large sample s3, the confidence intervals for β2 and β3 do not cover the true
values when RR is applied with either pd = 9/10 or pd = 8/10. In the smaller
samples, the results when RR used are a bit better but still not satisfactory. In
all three samples s1, s2, and s3, the perturbation due to the use of RR cannot be
ignored.

It is hard to obtain an intuition about the specific unreliability caused by RR
when the analysis is not adjusted for the misclassification. Some more research is
needed to investigate for instance the increase of the ACP of β4 in the samples s1

and s2. Is this increase caused by the fact that x4 is not affected by the RR design?
And: Is correlation with RR independent variables important? At the other hand,
such an investigation is of limited use. It is more interesting to assess the estimation
procedure which takes the misclassification into account. The simulation of this
procedure is discussed in the next section.

5.5.2 Adjusting for Randomized Response

The following discusses the ACP for the parameters in the example in the previous
section when the misclassification is taken into account.

The data are the simulated data in the previous section, but now the estimation
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of the regression model takes into account the misclassification due to RR by max-
imizing (5.7). The maximization routine is a combination of two routines. First,
20 EM steps are performed. Starting values are obtained by applying the standard
linear regression model to the misclassified data. Next, the result of the EM is
used as the starting point of the second routine which is the standard maximiza-
tion routine nlm() in the programming environment R. This second routine is a
Newton-Raphson type of maximization and yields estimated standard errors.

To give an idea of the increase of the standard errors due to RR, consider the
following estimates for a simulated sample. The estimates were obtained by maxi-
mizing (5.7).

β̂1 = 8.03 (1.25) β̂3 = 14.47 (0.26) σ̂ = 3.09

β̂2 = 3.90 (0.32) β̂4 = 8.02 (0.06)
(5.14)

These estimates concern the same sample as in (5.13) albeit that this time RR was
simulated with pd = 8/10 for the independent variables x2 and x3. Comparing (5.14)
with (5.13) shows that standard errors are increased, but that they stay within a
reasonable range.

Table 5.2 presents results after 500 simulated samples for different sample sizes
and different choices of pd. The overall impression is that the adjustment works well
when the sample size is large, see the results for n = 1000. For smaller samples,
the simulations show that when pd decreases, the analysis becomes less reliable,
see the results for n = 100. Apparently, the sample size has to be large so that the
asymptotic properties of the maximum likelihood estimator dominate. Perturbation
caused by the use of RR or PRAM implies that samples sizes have to larger than in
standard situations without misclassification.

5.6 Conclusion

This paper presents a method to estimate the iid normal linear regression model
with RR independent variables. An EM algorithm is presented as an alternative to
Newton-Raphson maximization of the loglikelihood. In general, an EM algorithm is
considered a stable but a somewhat slow maximization routine and when a Newton-
Raphson type of algorithm is possible, it is preferred since it is faster and the esti-
mation of standard errors is almost automatic. However, the present loglikelihood
can be quite complex numerically. Especially in the case of PRAM, there might be
a large number of perturbed independent variables some of which may have a large



5.6. Conclusion 85

number of categories. Consider a model that includes the variables Gender (2 cate-
gories), Ethnic Background (4 categories), and Region (20 categories). Assume that
PRAM is applied. Besides the regression parameters, there are 2× 4× 20− 1 = 159
nuisance parameters in the maximization of (5.7).

Using ready-made maximization routines to maximize the loglikelihood is an
option, but these routines will also be sensitive to ill-chosen starting values. Fur-
thermore, ready-made routines are blind with respect to the structure of the maxi-
mization problem. The EM presented in this paper explicitly uses the structure of
the linear regression model. Since the maximization in the M-step is of closed form,
the EM algorithm is actually quite fast. It is possible to use EM and extend the
maximization with a general method that yields estimated standard errors in EM
maximization, see, e.g., the discussion of the supplemented EM in Little and Rubin
(2002, Section 9.2).

The simulations in Section 5.5 show that the perturbation caused by using RR
or PRAM cannot be ignored. Furthermore, the simulations demonstrate that the
method presented in this paper is feasible and that adjustment for the perturbation
is possible. However, sample sizes have to be larger than in the standard situation
without perturbation. Protecting privacy is not for free.

Estimation of the parameters in the linear regression model is only the first step in
fitting a linear regression model to data. Future research should address possibilities
to check some of the assumptions of the model. Can outliers for instance be detected
when some of the independent variables are subject to misclassification?

Although this paper only discusses the iid normal linear regression model, it
might be interesting to investigate the approach for more sophisticated regression
models. The reclassification model will stay the same, but it might be that a straight-
forward EM is not possible anymore.
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Chapter 6

Variants of PRAM and Measures
for Disclosure Risk

6.1 Introduction

The post randomization method (PRAM) is discussed in Gouweleeuw, Kooiman,
Willenborg, and De Wolf (1998) as a method for statistical disclosure control (SDC).
When survey data are released by statistical agencies, SDC protects the identities
of respondents. SDC tries to prevent that a user of released data can link data of a
respondent in the survey to a specific person in the population. See Willenborg and
De Waal (2001) for an introduction into SDC and SDC methods other than PRAM.

There is a close link between PRAM and randomized response, a method to ask
sensitive questions in a survey, see Warner (1965) and Rosenberg (1979). Van den
Hout and Van der Heijden (2002) sum up some differences and similarities between
randomized response and PRAM.

When SDC is used, there will always be a loss of information. This is inevitable
since SDC tries to determine the information in the data that can lead to the dis-
closure of an identity of a respondent, and eliminates this information before data
are released. It is not difficult to prevent disclosure, but it is difficult to prevent
disclosure and release data that is still useful for statistical analysis. Applying SDC
means searching for a balance between disclosure risk and information loss.

The idea of PRAM is to misclassify some of the categorical variables in the sur-
vey using fixed misclassification probabilities and to release the partly misclassified
data together with those probabilities. Say variable X, with categories {1, ..., J},

1This chapter is joint work with Elsayed Elamir, University of Southampton, United Kingdom.
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is misclassified into variable X∗. The survey containing X∗ but not X is released
together with conditional probabilities IP (X∗ = k|X = j), for k, j ∈ {1, ..., J}. In
this way, PRAM introduces uncertainty in the data: The user of the released data
cannot be sure that the information is original or perturbed due to PRAM and it
becomes harder to establish a correct link between a respondent in the survey and
a specific person in the population. Since the user has the misclassification proba-
bilities, he can adjust his analysis by taking into account the perturbation due to
PRAM.

This paper discusses two ideas to make PRAM more efficient with respect to the
balance between disclosure risk and information loss. First, the paper discusses the
use of calibration probabilities

IP (true category is j|category i is released). (6.1)

in the analysis of released data and compares this with using misclassification prob-
abilities

IP (category i is released|true category is j). (6.2)

The idea of using calibration probabilities is discussed by De Wolf, Gouweleeuw,
Kooiman, and Willenborg (1997), who refer to the discussion of calibration proba-
bilities in misclassification literature, see, e.g., Kuha and Skinner (1997). We will
elaborate the discussion and show that the advantage of calibration probabilities
is limited to the univariate case. Secondly, the paper shows that information loss
can be reduced by providing misclassification proportions along with the released
data. These proportions inform about the actual change in the survey data due to
the application of PRAM. (Probabilities (6.1) and (6.2) inform about the expected
change.) In addition, the paper discusses two measures for disclosure risk when
PRAM is applied. The first is an extension of the measure introduced by Skinner
and Elliot (2002). The second measure links up with the SDC practice at Statistic
Netherlands. Simulation results are given to illustrate the theory.

The outline of the paper is as follows. Section 6.2 provides the framework and
the notation. Section 6.3 describes frequency estimation for PRAM data. Section
6.4 discusses the use of calibration probabilities. In Section 6.5, we introduce the use
of misclassification proportions. Section 6.6 discusses measures for disclosure risk,
whereas information loss is briefly considered in Section 6.7. Section 6.8 presents
some simulations, and Section 6.9 concludes.
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6.2 Framework and Notation

In survey data, we distinguish between identifying variables and non-identifying
variables. Identifying variables are variables that can be used to re-identify individ-
uals represented in the data. These variables are assumed to be categorical, e.g.,
Gender, Race, Place of Residence. We assume that the sensitive information of re-
spondents is contained in the non-identifying variables, see Bethlehem, Keller, and
Pannekoek (1990), and that we want to protect this information by applying PRAM
to (a subset of) the identifying variables.

The notation in this paper is the same as in Skinner and Elliot (2002). Units
are selected from a finite population U and each selected unit has one record in the
microdata sample s ⊂ U . Let n denote the number of units in s. Let the categorical
variable formed by cross-classifying (a subset of) the identifying variables be denoted
X with values in {1, ..., J}. Let Xi denote the value of X for unit i ∈ U . The
population frequencies are denoted

Fj =
∑
i∈U

I(Xi = j), j ∈ {1, ..., J},

where I(·) is the indicator function: I(A) = 1 if A is true and I(A) = 0 otherwise.
The sample frequencies are denoted

fj =
∑
i∈s

I(Xi = j), j ∈ {1, ..., J}.

In the framework of PRAM, we call the sample that is released by the statistical
agency the released microdata sample s∗. Note that unit i ∈ s∗ if and only if i ∈ s.
Let X∗ denote the released version of X in s∗. By misclassification of unit i we
mean Xi �= X∗

i . The released sample frequencies are denoted

f ∗
k =

∑
i∈s∗

I(X∗
i = k), k ∈ {1, ..., J}.

Let P X denote the J × J transition matrix that contains the conditional misclas-
sification probabilities pkj = IP (X∗ = k|X = j), for k, j ∈ {1, ..., J}. Note that
the columns of P X sum up to one. The distribution of X∗ conditional on s is the
J-component finite mixture given by

IP (X∗
i = k|i ∈ s) =

J∑
j=1

IP (X∗
i = k|Xi = j)IP (Xi = j|i ∈ s), k ∈ {1, ..., J},
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where the component distributions are given by P X and the component weights are
given by the conditional distribution of X. The conditional distribution of X in
sample s is given by

IP (Xi = j|i ∈ s) =
1

n
fj, j ∈ {1, ..., J}.

6.3 Frequency Estimation for PRAM Data

When PRAM is applied and some of the identifying variables are misclassified,
standard statistical models do not apply to the released data since these models do
not take into account the perturbation. This section shows how the misclassification
can be taken into account in frequency estimation.

We have IE[F ∗|f ] = P Xf , where f = (f1, ..., fJ)t and F ∗ = (F ∗
1 , ..., F ∗

J )t is the
stochastic vector of the released sample frequencies. An unbiased moment estimator
of f is given by

f̂ = P−1
X f ∗, (6.3)

see Kooiman, Willenborg, and Gouweleeuw (1997). In practice, assuming that P X is
non-singular does not impose much restriction on the choice of the misclassification
probabilities. Matrix P−1

X exists when the diagonal of P X dominates, i.e., pii > 1/2
for i ∈ {1, ..., J}. An additional assumption in (6.3) is that the dimensions of f and
f ∗ are the same.

PRAM is applied to each variable independently and a transition matrix is re-
leased per variable. When the user of the released sample assesses a compounded
variable, he can construct its transition matrix using the transition matrices of
the individual variables. For instance, consider identifying variables X1, with cat-
egories {1, .., J1} and X2, with categories {1, .., J2}, and the cross-classification
X = (X1, X2), i.e., the Cartesian product of X1 and X2. Since PRAM is applied
independently, we have

IP
(
X∗ = (k1, k2)|X = (j1, j2)

)
= IP (X∗

1 = k1|X1 = j1)

× IP (X∗
2 = k2|X1 = j2), (6.4)

for k1, j1 ∈ {1, .., J1} and k2, j2 ∈ {1, .., J2}. In matrix notation, we have P X =
P X1 ⊗P X2 , where ⊗ is the Kronecker product. Note that when one of two variables
is not perturbed by PRAM, the transition matrix of that variable is the identity
matrix.
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The variance of (6.3) equals

V [f̂ |f ] = P−1
X V [F ∗|f ](P−1

X )t = P−1
X

( J∑
j=1

fjV j

)
(P−1

X )t (6.5)

where V j is the J × J covariance matrix of two released values given the original
value j, i.e.,

V j(k1, k2) =


pk2j(1 − pk2j) if k1 = k2

−pk1jpk2j if k1 �= k2

for k1, k2 ∈ {1, ..., J},

see Kooiman et al. (1997). The variance can be estimated by substituting f̂j for fj

in (6.5), for j ∈ {1, .., J}.
The variance given by (6.5) is the extra variance due to PRAM and does not

take into account the sampling distribution. The formulas for the latter are given
in Chaudhuri and Mukerjee (1988) for multinomial sampling and compared to (6.5)
in Van den Hout and Van der Heijden (2002), see also Appendix 6.B.

6.4 Calibration Probabilities

Literature concerning misclassification shows that calibration probabilities (6.1) are
more efficient in the analysis of misclassified data than misclassification probabil-
ities (6.2), see the review paper by Kuha and Skinner (1997). Often, calibration
probabilities have to be estimated. However, when PRAM is applied, the statisti-
cal agency can compute the calibration probabilities using the sample frequencies.
The idea of using calibration probabilities for PRAM is mentioned in De Wolf et al.
(1997). The following elaborates this idea and makes a comparison with PRAM as
explained in the previous section.

The J×J matrix with calibration probabilities of univariate variable X is denoted
by

←−
P X and has entries ←−p jk defined by

IP (Xi = j|X∗
i = k, i ∈ s) =

pkjfj∑J
j0=1 pkj0fj0

, j, k ∈ {1, ..., J}, (6.6)

where pkj are the entries of P X . Matrix
←−
P X is again a transition matrix; each

column sums up to one. We have

f =
←−
P XIE[F ∗|f ], (6.7)
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see Appendix 6.A. An unbiased moment estimator of f is therefore given by

f̃ =
←−
P Xf ∗. (6.8)

In general,
←−
P X �= P−1

X , see Appendix 6.A. The variance of (6.8) is given by (6.5)

where P−1
X is replaced by

←−
P X and fj is estimated by f̃j, for j ∈ {1, ..., J}.

In the remainder of this section we compare estimators (6.3) and (6.8). The
first difference is that (6.3) might yield an estimate where some of the entries are
negative, whereas (6.8) will never yield negative estimates, see, e.g., De Wolf et al.
(1997).

Secondly, estimator (6.8) is more efficient than (6.3) in the univariate case. This
is already discussed in Kuha and Skinner (1997). Consider the case where X has
two categories. Say we want to know π = IP (X = 1). Let π̂ be the estimate using

P X and π̃ the estimate using
←−
P X . The efficiency of π̂ relative to π̃ is given by

eff(π̂, π̃) =
V [p̃ ]

V [p̂ ]
= (p11 + p22 − 1)2(←−p 22 −←−p 21)

2 < 1. (6.9)

So π̃ is always more efficient than π̂. An important difference with the general
situation of misclassification is that in the situation of PRAM, matrices P X and←−
P X are given and do not have to be estimated. Comparison (6.9) is therefore a
simple form of the comparison in Kuha and Skinner (1997, Section 28.5.1.3.).

The third comparison is between the maximum likelihood properties of (6.3) and
(6.8). Assume that the frequency vector f of X1, ...Xn is multinomially distributed
with parameters n and π = (π1, .., πJ)t. In the framework of misclassification,
Hochberg (1977) proves that estimator (6.8) yields an MLE. When (6.3) yields
an estimate in the interior of the parameter space, the estimate is also an MLE.
See Appendix 6.B for the maximum likelihood properties of (6.8) and (6.3). The
likelihood function corresponding to (6.8) is different from the likelihood function
corresponding to (6.3), since the information used is different. This explains why
both can be an MLE despite being different estimators of f .

The fourth comparison is with respect to transition matrices of Cartesian prod-
ucts and is less favorable for (6.8). It has already been noted that P X1 ⊗ P X2

is the matrix with misclassification probabilities for the Cartesian product X =
(X1, X2), see (6.4). Analogously, given

←−
P X1 and

←−
P X2 the user can construct ma-

trix
←−
P X1 ⊗ ←−

P X2 . However, this matrix does not necessarily contain calibration
probabilities for X. Note that
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IP
(
Xi = (j1, j2)|X∗

i = (k1, k2), i ∈ s
)

=
pk1j1pk2j2IP

(
Xi = (j1, j2)|i ∈ s

)
∑J1

v

∑J2
w pk1vpk2wIP

(
X1 = (v, w)|i ∈ s

) . (6.10)

It follows that
←−
P X =

←−
P X1 ⊗ ←−

P X2 when X1 and X2 are independent. In general,
this independence is not guaranteed and since the user of the released data does not
have the frequencies of X, he cannot construct

←−
P X .

The fifth and last comparison is with respect to the creation of subgroups. Con-
sider the situation where a user of the released data creates a subgroup by using
a grouping variable that is not part of X. When the number of categories in the
subgroup is smaller than J , estimate (6.8) is not well-defined. When the number of
categories is equal to J , estimate (6.8) is biased due to the fact that (6.7) does not

hold. Note with respect to (6.7) that the frequencies that are used to construct
←−
P X

are the frequencies in the whole sample which will differ from the frequencies in the
subgroup, see also Appendix 6.A. Estimator (6.3) is still valid for the subgroup.

Since calibration probabilities contain information about the distribution of the
sample s, they perform better than misclassification probabilities regarding the uni-
variate case. However, in a multivariate setting this advantage may disappear.
Section 6.8 presents some simulation results.

6.5 Misclassification Proportions

Matrices P X and
←−
P X inform about the expected change due to PRAM. As an alter-

native, we can create transition matrices that inform about the actual change due
an application of PRAM. These matrices contain proportions and will be denoted
P ◦

X and
←−
P

◦
X . Matrix P ◦

X contains misclassification proportions and
←−
P

◦
X contains

calibration proportions. This section shows how P ◦
X and

←−
P

◦
X are computed and

discusses properties of these matrices.
We start with an example. Say that X has categories {1,2}. Assume that

applying PRAM yields the cross-classification in Table 6.1. From this table it follows
that the proportion of records with X = 1 that have X∗ = 1 in the released sample
is 300/400=3/4 and that the proportion of records with X∗ = 1 that have X = 1 in
the original sample is 300/500=3/5. Analogously we get the other entries of

P ◦
X =

(
3/4 1/3
1/4 2/3

)
and

←−
P

◦
X =

(
3/5 1/5
2/5 4/5

)
.
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Table 6.1: Classification by X∗ and X

X
X∗ 1 2 Total
1 300 200 500
2 100 400 500
Total 400 600 1000

For the general construction of P ◦
X and

←−
P

◦
X , let the cell frequencies in the cross-

classification X∗ by X be denoted ckj, for k, j ∈ {1, .., J}. The entries of the J × J
transition matrices with the proportions are given by

p ◦
kj =

ckj

fj

and ←−p ◦
jk =

ckj

f ∗
k

,

where k, j ∈ {1, .., J}.
It follows that f ∗ = P ◦

Xf and f =
←−
P

◦
Xf ∗. This is the reason to consider the

matrices with the proportions more closely, since it is a great improvement compared
to (6.3) and (6.8). Note that when the user of the released sample has P ◦

X or
←−
P

◦
X ,

he can reconstruct Table 6.1.

Conditional on f , P ◦
X and

←−
P

◦
X are stochastic, whereas P X and

←−
P X are not. In

expectation P ◦
X equals P X , and P ◦

X1
⊗P ◦

X2
equals P X1 ⊗P X2 , see Appendix 6.C.

However, since f ∗ is a value of the stochastic vector F ∗, and IP (F ∗
k = 0) �= 0, the

expectation of
←−
P

◦
X does not exists. Nevertheless, an approximation shows that

←−
P

◦
X

will be close to
←−
P X , see Appendix 6.C.

There is a set back with respect to the use of proportions for Cartesian products
and this is comparable to the problem mentioned in the previous section. Given
P ◦

X1
and P ◦

X2
, the user can construct P ◦

X1
⊗ P ◦

X2
for X = (X1, X2). However,

P ◦
X1

⊗P ◦
X2

does not contain proportions as defined above. Note that the user does
not have the cross-classification of X and X∗, so he cannot derive the proportions
in P ◦

X . The same holds for
←−
P

◦
X . The optimal use of misclassification proportions is

thereby limited to the univariate case.

Since misclassification proportions contain information about the actual pertur-
bation due to PRAM, we expect them to perform well also in the multivariate case.
Section 6.8 discusses a multivariate example.
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6.6 Disclosure Risk

There are several ways to measure disclosure risk (Skinner and Elliot 2002; Domingo-
Ferrer and Torra 2001). This section discusses two measures for disclosure risk with
respect to PRAM. Section 6.6.1 discusses an extension of the general measure of
disclosure risk introduced by Skinner and Elliot (2002). Section 6.6.2 introduces a
measure that links up with the way disclosure risk is assessed at Statistics Nether-
lands.

6.6.1 The Measure Theta

The following describes how the general measure for disclosure risk introduced in
Skinner and Elliot (2002) can be extended to the situation where PRAM is applied
before data are released by the statistical agency. When a disclosure control method
such as PRAM has been applied, a measure for disclosure risk is needed to quantify
the protection that is offered by the control method. Scenarios that may lead to a
disclosure of the identity of a respondent are about persons that aim at disclosure
and that may have data that overlap the released data. A common scenario is that
a person has a sample from another source and tries to identify respondents in the
released sample by matching records. Using an extension of the measure in Skinner
and Elliot (2002) we can investigate how applying PRAM reduces the disclosure
risk.

Under simple random sampling, Skinner and Elliot (2002) introduced the mea-
sure of disclosure risk θ = IP (correct match|unique match) as

θ =

∑J
j=1 I(fj = 1)∑J

j=1 Fj I(fj = 1)
.

The measure θ is the proportion of correct matches among those population units
which match a sample unique. The measure is sample dependent and a distribution-
free prediction is given by

θ̂ =
πn1

πn1 + 2(1 − π)n2

,

where π is the sampling fraction, n1 =
∑J

j=1 I(fj = 1) is the number of uniques and

n2 =
∑J

j=1 I(fj = 2) is the number of twins in the sample (Skinner and Elliot 2002).
Elamir and Skinner (2003) extended θ for the situation where misclassification oc-
curs. The extension is given by

θmm =

∑
i∈s I(fXi

= 1, X∗
i = Xi)∑J

j=1 Fj I(fj = 1)
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and its distribution-free prediction is given by

θ̂mm =
π
∑J

j=1 I(fj = 1)pjj

πn1 + 2 (1 − π) n2

,

where pjj is the diagonal entry (j, j) of the transition matrix P X which describes
the misclassification.

Section 6.8 presents some simulation results with respect to the measure θ before
applying PRAM, and θmm after applying PRAM.

6.6.2 Spontaneous Recognition

Statistics Netherlands releases data in several ways one of which is releasing detailed
survey data under contract. Data are released under contract to bona fide research
institutes that sign an agreement in which they promise not to look for disclosure
explicitly, e.g, by matching the data to other data files. In this situation, SDC
concerns the protection against what is called spontaneous recognition. This section
introduces a measure for disclosure risk for PRAM data that is specific to the control
for spontaneous recognition.

Controlling for spontaneous recognition means that one should prevent that cer-
tain records attract attention. A record may attract attention when a low dimen-
sional combination of its values has a low frequency. Also, without cross-classifying,
a record may attract attention when one of its values is recognized as being very
rare in the population. Combinations of values with low frequencies in the sample
are called unsafe combinations.

Statistics Netherlands uses the rule of thumb that a recognition of a combination
of values of more than three variables is not spontaneous anymore. For this reason,
only combinations of three variables are assessed with respect to disclosure control
for spontaneous recognition.

Note that applying PRAM causes two kinds of modifications in the sample that
make disclosure more difficult. First, it is possible that unsafe combinations in the
sample change into apparently safe ones in the released sample, and, secondly, it is
possible that safe combinations in the sample change into apparently unsafe ones.
Since misclassification probabilities are not that large (in order to keep analysis of
the released sample possible) and the frequency of unsafe combinations is typically
low, the effect of the first modification is negligible in expectation. The second
modification is more likely to protect an unsafe combination j when there are a
lot of combinations k, k �= j, which are misclassified into j. This is the reason to
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focus, for a given record i with the unsafe combination of scores j, on the calibration
probability

µ = IP (Xi = j|X∗
i = j, i ∈ s).

When there are hardly any k, k �= j, misclassified into j, this probability will be
large, and, as a consequence, the released record is unsafe. Note that combinations
with frequency equal to zero are never unsafe.

Measure µ is a simplification since it ignores possible correlation between X and
other variables in the sample. Note that X will be a Cartesian product and that
the statistical agency can compute the calibration probability µ using (6.6) since
the agency has the frequencies of X.

6.7 Information Loss

Since we stressed in the introduction that SDC means searching for a balance be-
tween disclosure risk and information loss, this section indicates ways to investigate
information loss due to PRAM.

First, the transition matrix P X gives an idea of the loss of information. The
more this matrix resembles the identity matrix, the less information gets lost. In
general, this requires a definition of a distance between two matrices. However, we
can apply PRAM using matrices that are parameterized by one parameter, denoted
pd. The idea is as follows. Each time PRAM is applied, the diagonal probabilities
in a transition matrix are fixed and equal to pd. In the columns, the probability
mass 1− pd is equally divided over the entries that are not diagonal entries. In this
situation 1 − pd is a measure for the deviation from the identity matrix.

Although transition matrices give an idea of the information loss, it is hard to
have an intuition about how a certain deviation from the identity matrix affects
analysis of the released data. A second way to investigate information loss is the
comparison of extra variances due to PRAM with respect to frequency estimation.
The idea here is that when this extra variance is already substantial, more complex
analyses of the released sample is probably not possible. The variance with respect
to frequency estimation can be estimated using (6.5).

The next section will assess information loss due to PRAM using these two
approaches.
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6.8 Simulation Examples

The objective of this section is to illustrate the theory in the foregoing sections and
to investigate disclosure risk and information loss for different choices of misclas-
sification parameters. The population is chosen to consist of units with complete
records in the British Household Survey 1996-1999. We have n = 16710 and we
distinguish 5 identifying variables with respect to the household owner: Sex (S),
Marital Status (M), Economic Status (D), Socio-Economic Group (E), and Age
(A), with number of categories 2, 7, 10, 7, and 8, respectively. In the following, we
consider simple random sampling without replacement from the population where
the sample fraction π is equal to 0.05, 0.10 or 0.15. The three samples are denoted
s1, s2 and s3 and have sample sizes 836, 1671 and 2506 respectively.

The transition matrices used to apply PRAM to the selected variables are mostly
of a simple form and determined by one parameter pd, as described in Section 6.7. A
more sophisticated construction of the transition matrices can reduce the disclosure
risk further. An example of this fine-tuning will be given.

6.8.1 Disclosure Risk and the Measure Theta

The following discusses disclosure risk by comparing the measure θ before PRAM is
applied with the measure θmm after PRAM has been applied, see Section 6.6.1. The
identifying variables are described by X = (S,M,D,E,A) with J = 7840 possible
categories.

Since the population is known, we can compute the measures and using the
samples we can compute their predictions. Table 6.2 presents the simulation results
using simple random sampling without replacement, different sampling fractions π,
and different choices of pd. Given a choice of π and pd, drawing the sample and
applying PRAM is 100 times simulated. The means of the computed and predicted
measures are reported in Table 6.2. Note that θ and θ̂ reflect the risk before applying
PRAM and θmm and θ̂mm reflect the risk after applying PRAM.

It is clear from Table 6.2 that applying PRAM will reduce the risk. For example,
when pd = 0.80 and π = 0.10, applying PRAM reduces the risk from θ = 0.166 to
θmm = 0.055. When pd decreases, disclosure risk decreases too, as one might expect.
Note that disclosure risk increases when sample size increases. In a larger sample, a
record with a unique combination of scores is more likely to be a population unique
and therefore the danger of a correct match is higher.
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Table 6.2: Simulation results of disclosure risk measures for X = (S,M,D,E,A)
before and after applying PRAM with pd.

pd

Sample
fraction θ θ̂ θmm θ̂mm

0.05 0.084 0.087 0.061 0.065
0.95 0.10 0.151 0.147 0.112 0.110

0.15 0.217 0.215 0.165 0.166

0.05 0.087 0.086 0.047 0.051
0.90 0.10 0.148 0.157 0.083 0.087

0.15 0.213 0.216 0.123 0.127

0.05 0.087 0.090 0.028 0.031
0.80 0.10 0.166 0.151 0.055 0.054

0.15 0.213 0.221 0.065 0.064

6.8.2 Disclosure risk and Spontaneous Recognition

This following illustrates the measure µ for disclosure risk for spontaneous recogni-
tion that is discussed in Section 6.6.2.

Spontaneous recognition is defined for combinations up to three identifying vari-
ables, see Section 6.6.1. So there are 10 groups to consider. We will discuss only one
of them, namely the group defined by X = (M,D,E). The number of categories of
X is 490. The measure for disclosure risk is given by

µ = IP
(
(M,D,E) = (m, d, e)

∣∣∣∣(M∗, D∗, E∗) = (m, d, e)
)
,

for those combinations of values (m, d, e) that have frequency 1 in sample s1, s2 or
s3. Note that when PRAM is not applied, µ = 1. Table 6.3 shows results with
respect to the maximum of µ when PRAM is applied to M , D and E. With respect
to X = (M,D,E) the number of unique combinations in s1, s2 or s3 are 48, 44, and
53, respectively.

We draw two conclusions from the results. First, the results illustrate that the
probability pd matters, as one might expect. Second, the results show that the size of
the sample is important. In order to protect an unsafe combination j, it is necessary
that there are a lot of combinations that can change into j due to PRAM. Note that
this is the other way around compared to the measure θ where a larger sample
size causes a higher disclosure risk. This difference shows that different concepts of
disclosure induce different methods for disclosure control.
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Table 6.3: Maximum of µ for values of (M,D,E) with frequency 1 when applying
PRAM to M , D and E.

pd

Sample 0.95 0.90 0.85 0.80 0.70 0.60

s1 with n = 836 0.94 0.86 0.76 0.65 0.43 0.24
s2 with n = 1671 0.94 0.85 0.74 0.61 0.36 0.18
s3 with n = 2506 0.93 0.83 0.69 0.55 0.31 0.15

The following introduces a method to fine-tune a transition matrix and shows
that this can help to diminish the disclosure risk. The idea is to adjust one or
more columns in the transition matrix of each variable that is part of an unsafe
combination. Consider P X1 where variable X1 has J1 categories. The column that
is chosen first corresponds to the category of X1 with the highest frequency in sample
s, say column j. Let furthermore k be the number that corresponds to the category
of X1 with the lowest frequency in s. The columns of P X1 that are not column j
are constructed as explained in Section 6.7: pd on the diagonal and (1− pd) equally
divided over the other entries. Column j is fine-tuned by

plj =



pd if l = j

(1 − pd)/η if l = k ,

(1 − pd)/(η(J1 − 2)) if l �= j, k

(6.11)

for l ∈ {1, .., J1} and η > 1. The idea here is that when we choose η close to 1,
the category with the highest frequency has a relatively high probability to change
into the category with the lowest frequency. Assuming a link between an unsafe
combination and a low frequency in the original sample, this idea explicitly sup-
ports the concept of PRAM: An unsafe combination c is protected by creating new
combinations c from combinations that have high frequencies in the original sample.

In the same way, other columns in P X1 can be fine-tuned. For example, the
second column chosen is the column that corresponds to the category of X1 with
the second highest frequency in sample s, and the chosen row is now the row that
corresponds to the category of X1 with the second lowest frequency in sample s.

Table 6.4 presents results for sample s3 when the transition matrices of M , D, and
E are fine-tuned. The advantage of fine-tuning the transition matrices is dependent
of the data and on the size of the sample. One can see that the idea works, e.g., if
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Table 6.4: Maximum of µ for values of (M,D,E) with frequency 1 in sample s3

when applying PRAM to M , D and E, and using fine-tuning for all three variables.

pd

Construction of transition matrix 0.95 0.90 0.85 0.80 0.70

No fine-tuning 0.93 0.83 0.69 0.55 0.31
Fine-tuning 1 column where η = 1.001 0.92 0.80 0.66 0.51 0.28
Fine-tuning 2 columns where η = 1.001 0.91 0.74 0.57 0.42 0.20
Fine-tuning 3 columns where η = 1.001 0.90 0.72 0.52 0.34 0.15

Table 6.5: Maximum of µ for values of (M,D,E) with frequency 1 in the population
when applying PRAM to M , D and E, and using fine-tuning for all three variables.

pd

Construction of transition matrix 0.95 0.90 0.85

No fine-tuning 0.75 0.46 0.28
Fine-tuning three columns where η = 1.001 0.55 0.29 0.16

pd = 0.80, fine-tuning can decrease the maximum of µ from 0.55 to 0.34. To show
that the size of the sample makes an important difference, we present an additional
example where we assess the population with n = 16710. In the population there
are 53 unique combinations of values of X = (M,D,E). Table 6.5 shows that also
in this case, fine-tuning works well and also that the maximum of µ is notable lower
than in the samples.

An additional way to reduce disclosure risk is to consider the histogram of µ and
to combine PRAM with local suppression. By deleting or suppressing some records
that have a high µ, disclosure risk goes down. Figure 6.1 is the histogram of µ
for the 53 values of (M,D,E) with frequency 1 in sample s3, where pd = 0.80 and
three columns are fine-tuned with η = 1.001. When we delete the two records with
highest µ, the maximum of µ becomes 0.30 instead of 0.34.

Conclusion and advice: Determine a largest tolerated µ and check all combina-
tions of three identifying variables and use fine-tuning. The protection offered by
PRAM dependents on pd, but also very much on the sample size.
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Figure 6.1: Histogram of µ for the 53 values of (M,D,E) with frequency 1 in sample
s3 when applying PRAM to M , D and E with pd=0.80.

6.8.3 Information Loss in Frequency Estimation

To investigate information loss due to PRAM, this section discusses an example with
univariate frequency estimation with respect to the variable M and bivariate fre-
quency estimation with respect to the variables S and E in sample s3. We illustrate
the difference between using P X and

←−
P X by comparing standard errors in estimat-

ing the univariate frequencies of variable M . In the following, we assume released
sample frequencies of M to be equal to the expected released sample frequencies.
That is, released sample frequencies f ∗ are given by IE(F ∗|f) = P Mf , where F ∗

and f are defined with respect to M . It follows that in this situation f̂ = f , so
that (6.5) can be used to compare variances. To estimate the standard errors when

using calibration, we use
←−
P M in (6.5) instead of P−1

M . Table 6.6 presents standard
errors of estimated frequencies for different choices of pd. The example shows that←−
P M is more efficient than P M , a difference that becomes more striking when pd is
smaller.

In the bivariate situation, calibration probabilities do not always work well. To
illustrate this, the following simulation example is about frequency estimation of
variable X = (S,E) that has 14 categories. The chi-square test of independence
between S and E yields 529.55, where df = 6 and the p value < 0.00. It is this
lack of independence between the variables that causes calibration probabilities to
perform badly. PRAM was applied 10 times to both S and E with pd = 0.85. Figure
6.2 shows the estimation of the frequencies of X using X∗ and P S⊗P E versus using
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Table 6.6: Frequencies before PRAM and standard errors of estimated frequencies
after PRAM of the variable M in sample s3.

Standard error of f̂ given pd and the transition matrix

pd = 0.95 pd = 0.90 pd = 0.85

f P M
←−
P M P M

←−
P M P M

←−
P M

99 5.27 4.08 7.87 4.77 10.23 4.87
378 6.33 5.62 9.40 7.35 12.13 8.30
353 6.24 5.52 9.27 7.21 11.97 8.11
471 6.65 5.95 9.85 7.83 12.69 8.90
525 6.83 6.12 10.11 8.08 13.01 9.21
551 6.78 6.08 10.04 8.02 12.93 9.13
169 5.55 4.64 8.28 5.77 10.74 6.20

X∗ and
←−
P S ⊗←−

P E. From the figure it is clear that the misclassification probabilities
perform better, i.e., the points (fj, f̂j) are closer to the identity line than (fj, f̃j),

j ∈ {1, ..., 14}. The variance is less when
←−
P S ⊗ ←−

P E is used, but the figure shows
that in that case estimates are biased. This can be made more precise by estimating
the mean squared error (MSE). We define

M̂SEj =
1

B

B∑
b=1

(f̂jb − fj)
2 and M̃SEj =

1

B

B∑
b=1

(f̃jb − fj)
2 for j ∈ {1, ..., 14},

where B is the number of simulations, and f̂jb and f̃jb denote estimates of fj in

the bth simulation. In the example, B = 10, and [minj{M̂SEj}, maxj{M̂SEj}] =

[71.9, 354.9] while [minj{M̃SEj}, maxj{M̃SEj}] = [256.2, 13079.8]. Violating the

independence assumption regarding the use of
←−
P S ⊗←−

P E has sever consequences.
Misclassification proportions are close to misclassification probabilities in the

above example. Compare for instance

P S =

(
0.85 0.15
0.15 0.15

)
and P ◦

S =

(
0.854 0.154
0.156 0.156

)
.

A simulation study can be used to investigate the performance of misclassification
probabilities versus misclassification proportions. The study compares using P S ⊗
P E versus using P ◦

S ⊗ P ◦
E by looking at the actual coverage percentage (ACP),
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Figure 6.2: Estimating frequencies of X = (S,E) after applying PRAM to S and E
in sample s3 with pd = 0.85 in 10 simulations. (a) Using misclassification probabil-
ities. (b) Using calibration probabilities.

which is the percentage of the replicated perturbed samples for which the confidence
interval of the estimated frequency covers the actual frequency in the original sample.
We used sample s3, pd = 0.85 and 1000 simulated perturbed samples. Table 6.7
shows that misclassification proportions perform better than then misclassification
probabilities. The mean value of ACP when using P S ⊗ P E equals 95.14, and the
mean value of ACP when using P ◦

S ⊗ P ◦
E equals 98.04. (A paired t-test yields a p

value < 0.00.) An increase in ACP is only advantageous when it is not caused by
an increase in variance. We define

M̂SE
◦
j =

1

B

B∑
b=1

(f̂ ◦
jb − fj)

2 for j ∈ {1, ..., 14},

where f̂ ◦
jb denotes the estimate of fj using P ◦

S ⊗ P ◦
E in the bth simulation. In the

example, B = 1000, and M̂SE
◦
j < M̂SEj, for all j ∈ {1, ..., 14}. Using P ◦

S ⊗ P ◦
E
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Table 6.7: Actual coverage percentage w.r.t. X = (S,E) for sample s3 and 1000
simulated perturbed samples, where pd = 0.85.

ACP given the
transition matrix

ACP given the
transition matrix

Category P S ⊗ P E P ◦
S ⊗ P ◦

E Category P S ⊗ P E P ◦
S ⊗ P ◦

E

(1,1) 94.8 98.2 (2,1) 94.5 97.8
(1,2) 95.3 98.1 (2,2) 95.6 97.7
(1,3) 95.7 97.7 (2,3) 95.0 97.9
(1,4) 95.4 98.0 (2,4) 95.7 98.8
(1,5) 95.5 99.1 (2,5) 93.5 97.3
(1,6) 95.1 97.4 (2,6) 93.8 97.5
(1,7) 96.0 98.3 (2,7) 96.0 98.7

gives the best result. Although the transition matrices are quite alike at first sight,
misclassification proportions perform best.

6.9 Conclusion

The paper shows that the analysis of PRAM data is more efficient when misclassi-
fication proportions are used instead of misclassification probabilities. Calibration
probabilities and calibration proportions work fine in the univariate case, but cause
serious bias in the multivariate case. Since in most situations the user of PRAM
data will be interested in multivariate analysis, it seems wise not to release calibra-
tion probabilities or calibration proportions along with the PRAM data. The two
measures for disclosure risk that are used in this paper show that PRAM helps in
protecting the identity of respondents.

Given that releasing misclassification proportions makes PRAM more efficient
with respect to information loss, it is still an open question how this works out when
PRAM is compared to other SDC methods, see Domingo-Ferrer and Torra (2001). It
might be worthwhile to state that PRAM was never meant to replace existing SDC
methods. Working with PRAM data and taking into account the information about
the misclassification in the analysis might be quite a burden for some researchers.
However, when researchers are interested in specific details in data, details that
might disappear, e.g., when global recoding is used, PRAM can be a solution. Note
that PRAM is statistically sound. Data are perturbed, but information about the
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perturbation can be used. Although estimates will have extra variance due to the
perturbation, they will be unbiased.

Since the misclassification proportions provide more information about the origi-
nal sample than the misclassification probabilities, one should consider the question
whether providing these proportions increases the disclosure risk. Since the privacy
protection that is offered by PRAM is at the record level, we do not think that
disclosure risk increases when misclassification proportions are released. With these
proportions, sample frequencies of the identifying variables can be deduced, but
these frequencies are not sensitive information. Note also that when one works with
the measures for disclosure risk discussed in Section 6.6, the risk does not change
when misclassification proportions are released.

Appendix 6.A

The following shows that f =
←−
P XIE[F ∗|f ]. First note that IE[F ∗|f ] = P Xf and

that entries ←−p jk of
←−
P X are defined as ←−p jk = (pkjfj)(

∑J
j0=1 pkj0fj0)

−1 for k, j ∈
{1, ..., J}. For each j ∈ {1, ..., J} we have

(←−
P XIE[F ∗|f ]

)
(j) =

J∑
k=1

←−p jk

(
IE[F ∗|f ]

)
(k)

=
J∑

k=1

←−p jk

( J∑
j0=1

pkj0fj0

)
=

J∑
k=1

pkjfj = fj,

since the columns of P X sum up to one. So f =
←−
P XP Xf and f is an eigenvector

of
←−
P XP X with eigenvalue 1.

In general,
←−
P X �= P−1

X . To illustrate this, let R =
←−
P XP X . The entries of R are

rij =
∑J

k=1
←−p ikpkj, for i, j ∈ {1, ..., J}. Assume that the entries of P X are all > 0

and that f j > 0, for j ∈ {1, ..., J}. Then ←−p jk > 0, for j, k ∈ {1, ..., J} and rij > 0,
for i, j ∈ {1, ..., J}. In this case, R is not the identity matrix and consequently←−
P X �= P−1

X . A more intuitive explanation is that
←−
P X changes when the survey

data change, whereas P X can be determined independently from the data and does
not necessarily change when the data change. Therefore, it is always possible to
cause

←−
P X �= P−1

X by changing the data.
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Appendix 6.B

The following derives the maximum likelihood properties of (6.3) and (6.8). The
reasoning is the same as in Hochberg (1977), but simpler, since in the PRAM situ-
ation calibration probabilities do not have to be estimated. Also, we show that the
reasoning applies both to (6.3) and to (6.8).

Assume that the frequency vector of independent X1, ...Xn is multinomially dis-
tributed with parameters n and π = (π1, .., πJ)t, where πj > 0 for j ∈ {1, .., J}, and∑J

j=1 πj = 1. Consider the transformation π∗ = Pπ, where P is a J × J transition
matrix, i.e., columns sum up to one and pkj ≥ 0 for k, j ∈ {1, .., J}. Assume that
P is nonsingular. Let the distribution of X∗ be given by IP (X∗ = k) = π∗

k, for
k ∈ {1, .., J}. It follows that the frequency vector of X∗

1 , X
∗
2 , ..., X

∗
n is multinomially

distributed with parameters n and π∗. Indeed, π∗
k = pk1π1 + ... + pkJπJ > 0 for

k ∈ {1, .., J} and

J∑
k=1

π∗
k =

( J∑
l=1

pl1

)
π1 + ... +

( J∑
l=1

plJ

)
πJ = 1.

The likelihood L∗ for π∗ and observed x∗ = (x∗
1, x

∗
2, ..., x

∗
n)t is well known. Let

f ∗ = (f ∗
1 , f ∗

2 , ..., f ∗
J )t denote the observed cell frequencies. The MLE is given by

π̂∗ = f ∗/n and has covariance matrix Ω = [Diag(π∗)−π∗(π∗)t]/n, where Diag(π∗)
is the diagonal matrix with the diagonal entries given by the elements of π∗.

Next we can use the invariance property of maximum likelihood. Define the
transformation g(π∗) = P−1π∗. Since g is one-to-one, it follows from L∗(π∗|x∗) and
π = g(π∗) that the likelihood for π is given by L∗(g−1(π)|x∗) which is maximized
for π̂ = g(π̂∗) = P−1π̂∗. Consequently, when π̂ ∈ (0, 1)J , it is the MLE. Since g
has a first order derivative, the covariance matrix of π̂ can be obtained using the
delta-method, see, e.g., Agresti (2002, Chapter 14). We have ∂g(π∗)/∂π∗ = (P−1)t

and the covariance matrix of π̂ is given by n−1P−1Ω(P−1)t.
So with respect to (6.3), maximum likelihood properties are proven by taking

P = P X and obtaining π̂ = g(π̂∗) = P−1
X π̂∗. With respect to (6.8), the misclassi-

fication design is described by π =
←−
P Xπ∗, so P =

←−
P

−1

X and the MLE is given by

π̃ = g(π̂∗) =
←−
P Xπ̂∗.

Appendix 6.C

Let P ◦
kj denote the stochastic variable of the kj-th entry of P ◦

X and Ckj the stochastic
variable of the kj-th cell in the cross-classification X∗ by X. It follows that Ckj has
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a binomial distribution with parameters fj and pkj. Consequently, IE[P ◦
kj|f ] =

IE[Ckj/fj|f ] = fjpkj/fj = pkj and in expectation P ◦
X equals P X . Since Ck1j1 and

Ck2j2 are independent given f , it follows that IE[P ◦
k1j1

P ◦
k2j2

|f ] = pk1j1pk2j2 . So in
expectation, P ◦

X1
⊗ P ◦

X equals P X1 ⊗ P X2 .

We define
←−
P

◦
jk = Ckj/(F

∗
k + ε) where ε is a small positive value. Using the delta

method, see, e.g., Rice (1995, Section 4.6), we obtain

IE[
←−
P

◦
jk|f ] ≈ IE[Ckj|f ]

IE[F ∗
k |f ]

+
1

IE[F ∗
k |f ]2

(
V [F ∗

k |f ]
IE[Ckj|f ]

IE[F ∗
k |f ]

− ρ
√

V [Ckj|f ]V [F ∗
k |f ]

)
,

where IE[Ckj|f ] = fjpkj and ρ is the correlation between Ckj and F ∗
k . From this we

see that the difference between IE[
←−
P

◦
jk|f ] and ←−p jk will be small when V [F ∗

k |f ] is
small and IE[F ∗

k |f ] is large.
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Samenvatting

Dit boek gaat over de analyse van randomized response-data en over de ana-
lyse van post randomization-data. Randomized response (RR) is een methode
die wordt gebruikt in onderzoek naar sensitieve items (Warner 1965). Voor-
beelden van sensitieve items zijn items over fraude, seksueel gedrag of alco-
holgebruik. In een situatie waarin vragen over sensitieve items onmiddellijk
worden gesteld, kan het zijn dat respondenten niet naar waarheid antwoorden
vanwege privacy-overwegingen. De RR-methode zorgt er voor dat de privacy
wordt gewaarborgd, omdat het antwoord van de respondent op een sensitieve
vraag deels wordt bepaald door een kansmechanisme. De RR-methode is in
Nederland toegepast, zie bijvoorbeeld Van Gils, Van der Heijden, Laudy en
Ross (2003), en Elffers, Van der Heijden en Hezemans (2003).

Een voorbeeld van een RR-methode is de methode van Boruch (1971). Stel
dat het antwoord op de sensitieve vraag ja of nee is. In Boruch’s methode
krijgt de respondent twee dobbelstenen. De sensitieve vraag wordt gesteld en
voordat de respondent antwoordt, gooit hij met de dobbelstenen. Afhankelijk
van het aantal ogen dat wordt gegooid, bepaalt de respondent zijn antwoord.
Als het aantal ogen 2, 3 of 4 is, antwoordt de respondent ja. Als het aantal
ogen 5, 6, 7, 8, 9, of 10 is, antwoordt de respondent naar waarheid. Als het
aantal ogen 11 of 12 is, antwoordt de respondent nee. In deze methode is het
kansmechanisme het gebruik van de dobbelstenen. Het mechanisme beschermt
de privacy, want het aantal ogen dat wordt gegooid, wordt voor de interviewer
verborgen gehouden. Omdat we het kansmechanisme goed kennen, kunnen we
er rekening mee houden in de analyse van de geobserveerde antwoorden.

De post randomization methode (PRAM) kan worden gezien als een speciale
toepassing van de RR-methode (Kooiman, Willenborg en Gouweleeuw 1997).
PRAM beschermt data die al is verzameld en die wordt vrijgegeven voor on-
derzoekers buiten het instituut dat de data verzamelde. Ook in deze situatie
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is de bescherming van de privacy nodig. Het kansmechanisme wordt bij PRAM
uitgevoerd door een computer. De verstoorde data worden samen met infor-
matie over het kansmechanisme, en onder bepaalde voorwaarden, vrijgegeven.

Dit boek beschrijft de verstoring door RR of PRAM met behulp van een
misclassificatie model. Het eerste hoofdstuk introduceert RR en PRAM.

Hoofdstuk 2 gaat over het schatten van proporties en over het meten van
afhankelijkheid. Met de methoden in dit hoofdstuk kunnen vragen worden
beantwoord als bijvoorbeeld: Hoeveel mensen hebben er gefraudeerd? en Is
fraude plegen afhankelijk van de indeling man/vrouw? Omdat er in het schat-
ten rekening moet worden gehouden met het kansmechanisme, is de analyse
van de gegevens anders dan in een standaardsituatie zonder RR of PRAM.

Hoofdstuk 3 behandelt het fitten van loglineare modellen voor RR-data of
PRAM-data. Loglineare modellen beschrijven complexe, meer-dimensionale
structuren voor afhankelijkheid. Met de methode in dit hoofdstuk kan bijvoor-
beeld de volgende vraag worden beantwoord: Is fraude plegen afhankelijk van
zowel de indeling man/ vrouw alsook van de grootte van de woonplaats?

In hoofdstuk 4 wordt een specifiek onderzoek beschreven waarin sommige
respondenten via RR vragen beantwoordden en andere respondenten direct
antwoordden. Opnieuw worden loglineare modellen gefit, maar nu wordt er
ook rekening gehouden met het feit dat niet alle respondenten de RR-methode
gebruiken.

Regressiemodellen worden geschat in hoofdstuk 5. In dit hoofdstuk wordt
de situatie beschreven waarin RR-variabelen onafhankelijke variabelen in een
standaard lineair regressiemodel zijn. Een situatie als deze kan ontstaan wan-
neer seksueel gedrag met behulp van RR wordt gemeten en het verband met
een afhankelijke variabele wordt onderzocht door een lineair regressiemodel.

Hoofdstuk 6 gaat over PRAM en over de informatie over het kansmechanisme
die wordt meegegeven met de verstoorde data. Omdat PRAM wordt toegepast
met behulp van een computer op bestaande data, zijn er meer mogelijkheden
voor het verstrekken van informatie over het kansmechanisme dan bij RR.
Ook worden er in dit hoofdstuk maten gegeven voor de privacybescherming
wanneer PRAM is toegepast.

Het boek laat zien dat, gegeven een aantal assumpties, de analyse van RR-
data zeer goed mogelijk is. Het boek laat ook zien, vooral in hoofdstuk 3,
dat die assumpties niet altijd houdbaar zijn en dat in sommige gevallen verder
onderzoek nodig is voor het beter modelleren van RR-data.
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