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Abstract. Answering a question raised by Dudek and Pra lat, we show that if pn → ∞,

w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length

n(2/3 + o(1)). This result is optimal in the sense that 2/3 cannot be replaced by a larger

constant.

As part of the proof we obtain the following result. Given a graph G on n vertices with

at least (1 − ε)
(
n
2

)
edges, whenever G is 2-edge-coloured, there is a monochromatic path of

length at least (2/3− 110
√
ε)n. This is an extension of the classical result by Gerencsér and

Gyárfás which says that whenever Kn is 2-coloured there is a monochromatic path of length

at least 2n/3.
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1. Introduction

Considering the richness of Ramsey theory and the great interest in random graphs, it is

natural to consider Ramsey properties of random graphs. The study of random Ramsey

theory has proved particularly useful in the establishment of upper bounds on the size Ramsey

number. For graphs G,F,H, we write G→ (F,H) if for every red-blue colouring of the edges

of G, there is either a red F or a blue H. If F,H are isomorphic, we use instead the notation

G → H. The size Ramsey number, denoted by r̂(H) is defined to be r̂(H) = min{|E(G)| :

G→ H}.

Denote by Pn the path on n vertices. In [2], disproving a conjecture of Erdős [8], Beck showed

that r̂(Pn) ≤ 900n. In [5] Bollobás noted a slightly better bound, and recently Dudek and

Pra lat [7] gave an elementary proof of the bound r̂(Pn) ≤ 137n. In fact, they proved that

w.h.p., G(n, α/n)→ Pβn for suitable constants α, β.

Dudek and Pra lat [7] also showed that w.h.p. G(n, p) → P(1/3+o(1))n when pn → ∞ and

raised the question of determining the maximum l such that G(n, p) → Pl for pn → ∞.

Inspired by the result of Gerencsér and Gyárfás [9] which says that Kn → P2n/3, they asked if

G(n, p)→ Pl for l = (2/3 + o(1))n. Our main result answers this question in the affirmative.

Theorem 1. Let 0 < p = p(n) < 1 satisfy pn→∞. Then w.h.p. G(n, p)→ P(2/3+o(1))n.
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2 S. LETZTER

This result is essentially best possible since there is a 2-colouring of the edges of Kn with no

monochromatic path on more than b2n/3 + 1c vertices. To see this, divide the vertex set of

Kn into two sets A,B such that |A| = bn/3c, let the edges spanned by B be coloured red and

colour the other edges blue (see Figure 1).

bn
3
c d2n
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e

Figure 1. A black and grey graph on n vertices (the shaded part may be
coloured arbitrarily) with no monochromatic path on more than b2n3 + 1c ver-
tices.

In fact, Gerencsér and Gyárfás [9] proved the following more general result.

Theorem 2. Let n ≥ k + b(l + 1)/2c. Then Kn → (Pk+1, Pl+1).

In order to prove Theorem 1, we extend Theorem 2 to graphs with a large number of edges.

Theorem 3. Let 0 ≤ ε ≤ 1/64, let k ≥ l and let G be a graph on n ≥ k+b(l+1)/2c+240
√
εk

vertices with at least (1− ε)
(
n
2

)
edges. Then G→ (Pk+1, Pl+1).

In particular, given 0 ≤ ε ≤ 1/64, for every graph G on n vertices and at least (1 − ε)
(
n
2

)
edges, G→ Pk where k = b2n3 c − 110

√
εn.

Theorem 3 is a consequence of the following similar result, in which we consider graphs with

large minimum degree rather than a large number of edges.

Theorem 4. Let 0 < ε ≤ 1/4, let k ≥ l and let G be a graph on n ≥ k + b(l + 1)/2c+ 100εk

vertices with minimum degree at least (1− ε)n. Then G→ (Pk+1, Pl+1).

It is easy to deduce Theorem 3 from Theorem 4. By an averaging argument, it suffices to prove

the assertion for n = k+ b(l+ 1)/2c+ 240
√
εk. By removing at most

√
εn vertices, we obtain

a graph on n′ ≥ (1 −√ε)n vertices and minimum degree at least (1 − 2
√
ε)n ≥ (1 − 2

√
ε)n′

vertices. One can check that (1−√ε)n ≥ k+b(l+1)/2c+200
√
εk, so the assertion of Theorem

3 follows from Theorem 4, with 2
√
ε in place of ε. For the second part, it is easy to check

that when k = l = b2n3 c − 110
√
εn, it follows that n ≥ k + b(l + 1)/2c+ 240

√
εk.

In our proofs we shall use the following result which was proved independently by Dudek and

Pra lat [7] and Pokrovskiy [12].
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Lemma 5. For every graph G there exist two disjoint subsets U,W ⊆ V (G) of equal size such

that there are no edges between them and G \ (U ∪W ) has a Hamilton path.

This result is the main tool used which was used by Dudek and Pra lat in [7] to prove the

bound r̂(Pn) ≤ 137n. It turns out that their proof may be modified to give a better upper

bound, as stated in the following theorem.

Theorem 6. For n sufficiently large, r̂(Pn) ≤ 91n.

The rest of the paper is organised as follows. In Section 2 we give the proof of Lemma 5, as

well as an easy but useful corollary. In Section 3 we give a short proof of a weaker version of

Theorem 1 as well as the proof of the improved upper bound in Theorem 6.

We prove Theorem 4 in Section 4. In order to prove Theorem 1, we use the so-called sparse

Regularity Lemma, due to Kohayakawa [11] and Rödl (see [6]). In Section 5 we state this

result as well as some necessary notation. We prove Theorem 1 in Section 6 and finish with

some concluding remarks in Section 7. Throughout the paper we omit floor and ceiling signs

whenever they do not affect the arguments.

2. A useful lemma

In the proof of Theorems 1 and 4 we use the following lemma, which was obtained indepen-

dently by Dudek and Pra lat [7] and Pokrovskiy [12]. For the sake of completeness, we prove

it here.

Lemma (5). For every graph G there exist two disjoint subsets U,W ⊆ V (G) of equal size

such that there are no edges between them and G \ (U ∪W ) has a Hamilton path.

Proof. In order to find sets with the desired properties, we apply the following algorithm,

maintaining a partition of V (G) into subsets U,W and a path P . Start with U = V (G),W = ∅
and P an empty path. At each stage of the algorithm, do the following. If |U | ≤ |W |, stop.

Otherwise, if P is empty, move a vertex from U to P (note that U 6= ∅). If P is non-empty,

let v be its endpoint. If v has a neighbour u in U , put u in P , otherwise move v to W .

Note that at any given point in the algorithm there are no edges between U and W . Further-

more, the value |U | − |W | is positive at the beginning of the algorithm and decreases by one

at every stage, thus at some point the algorithm will stop and will produce sets U,W with

the required properties. �

Occasionally it is easier to use the following immediate consequence of Lemma 5.

Corollary 7. Let G be a balanced bipartite graph on n vertices with bipartition {V1, V2} which

has no path of length k. Then there exist disjoint subsets Xi ⊆ Vi such that |X1| = |X2| ≥
(n− k)/4 and e(G[X1, X2]) = 0.
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Proof. By Lemma 5, there exist disjoint subsets U,W ⊆ V (G) of equal size such that

e(G[U,W ]) = 0 and V (G) \ (U ∪W ) has a Hamilton path P . Note that P must alternate be-

tween V1 and V2 and has an even number of vertices, implying that |V1∩V (P )| = |V2∩V (P )|.
It follows that |U1|+ |W1| = |U2|+ |W2| where Ui = U ∩Vi and Wi = W ∩Vi. Since |U | = |W |,
we conclude that |U1| = |W2| and |U2| = |W1|. Without loss of generality, suppose that

|U1| ≥ |U2|. Then |U1| = |W2| ≥ (n− |V (P )|)/4 ≥ (n− k)/4. Take X1 = U1 and X2 = W2.

�

3. An improved upper bound on the size Ramsey number for paths

Before we turn to the proofs of Theorems 4 and 1, we demonstrate how Lemma 5 alone can

be used to obtain results about the path Ramsey number of random graphs. We start by

proving the following weaker version of Theorem 1, using only elementary tools.

Lemma 8. Let 0 < p = p(n) < 1 and assume that pn → ∞. Then w.h.p., G(n, p) → Pl for

some l = (1/2 + o(1))n.

In the proof of Lemma 8 we use the following easy consequence of Corollary 7.

Corollary 9. Let G be a graph on n vertices such that G 9 Pk+1. Then there exist disjoint

subsets X,Y ⊆ V (G) of size at least (n− 2k)/4 such that e(G[X,Y ]) = 0.

Proof. Consider a red-blue colouring of G with no monochromatic Pk+1. By Lemma 5, there

exist disjoint sets U,W , both of size at least (n − k)/2 with no red edges between them.

Considering the graph G[U,W ], it follows from Corollary 7 that there exist sets X ⊆ U, Y ⊆W
of size at least (n− 2k)/4, with no blue edges between them. We conclude that there are no

edges of G between X and Y . �

We are now ready for the proof of Lemma 8, which is a relaxed version of Theorem 1.

Proof of Lemma 8. Let G = G(n, p), where np → ∞. Given α > 0, suppose that G 9
P(1/2−α)n. By Corollary 9, there exist disjoint subsets X,Y ⊆ V (G) of size at least αn/2 with

no edges of G between them. But this is a contradiction, since w.h.p., every two disjoint sets

of at least αn/2 vertices in G have an edge between them. It follows that for every α > 0

w.h.p. G(n, p)→ P(1/2−α)n. �

Corollary 9 can be used to obtain an improvement over the upper bound r̂(Pn) ≤ 137n, which

was obtained by Dudek and Pra lat [7].

Theorem (6). For n sufficiently large, r̂(Pn) ≤ 91n.

We note that our proof is very similar to the proof in [7], the main difference is our use of

Corollary 9. We shall use the following lemma.
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Lemma 10. Let c = 4.86, d = 7.7 and G = G(cn, d/n). Then w.h.p. the following two

conditions hold.

(1) |E(G)| ≤ (1 + o(1)) c
2d
2 n.

(2) For every two disjoint sets U,W ⊆ V (G) of size at least c−2
4 n, we have e(G[U,W ]) > 0.

Proof. The number of edges in G is a binomial random variable with mean
(
cn
2

)
· dn = (1 +

o(1)) c
2d
2 n. Condition (1) follows from the concentration of binomial random variables around

their mean.

We prove Condition (2) by the first moment method. Let Z denote the number of pairs

(U,W ) of disjoint subsets of V (G) of size c−2
4 n with e(G[U,W ]) = 0. The expectation of Z

satisfies the following, where α = c−2
4 .

E[Z] =

(
cn

αn

)(
(c− α)n

αn

)
(1− d

n
)(αn)

2 ≤ (cn)!

((αn)!)2((c− 2α)n)!
exp(−dα2n) ≤ exp(βn).

By Stirling’s formula (stating that n! = (1 + o(1))
√

2πn(n/e)n), we can take

β = (c log c− 2α logα− (c− 2α) log(c− 2α)− dα2) ≤ −0.0005.

It follows that E[Z]→ 0, implying that w.h.p. Z = 0, hence Condition (2) holds. �

Remark. The constants c, d in Lemma 10 were chose so as to minimise the number of edges

in G under Condition (2).

The proof of Theorem 6 follows easily from Lemma 10.

Proof. Pick c = 4.86 and d = 7.7 as in Lemma 10 and denote G = G(cn, dn). If G 9 Pn

then by Corollary 9 there exists disjoint subsets X,Y ⊆ V (G) of size at least (c− 2)n/4 such

that e(G[X,Y ]) = 0, contradicting Condition (2) from Lemma 10. We conclude that G→ Pn

w.h.p.. By Condition (1), we have that |E(G)| ≤ 91n w.h.p.. It follows that r̂(Pn) ≤ 91n for

large enough n.

�

4. Path Ramsey number for dense graphs

Before turning to the proof of Theorem 4, we remind the reader of its statement.

Theorem (4). Let 0 < ε < 1/4, let k ≥ l and let G be a graph on n ≥ k+ b(l+ 1)/2c+ 100εk

vertices with minimum degree at least (1− ε)n. Then G→ (Pk+1, Pl+1).

Proof. We start by proving Theorem 4 under the assumption that k < (1/2− ε)n. If there is

no red Pk+1 by Lemma 5 there exist disjoint sets W1,W2 of size at least (n−k)/2 with no red
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edges between them. Since G has minimum degree at least n(1 − ε), we can greedily find a

blue path on at least the following number of vertices, implying the existence of a blue Pk+1.

|W1|+ |W2| − 2εn ≥ n− k − 2εn = 2(1/2− ε)n− k > k.

Hence, we can assume from now on that k ≥ (1/2 − ε)n ≥ n/4, so every vertex in G has at

most 4εk non neighbours. Putting δ = 4ε, we have n ≥ k + b(l+ 1)/2c+ 25δk. Furthermore,

we can assume that δk ≥ 2, otherwise G is a complete graph and Theorem 4 follows directly

from Theorem 2.

The proof proceeds by induction. Clearly, the assertion of Theorem 4 holds if k = 1, so we

may assume that k ≥ 2. If k > l then by induction there is either a red Pk or a blue Pl+1; in

the latter case we are done. If k = l then by induction there is either a red or a blue Pk. Thus,

without loss of generality, there is a red path on k vertices which we denote by P = (v1 . . . vk).

Let U = V (G) \ V (P ). We consider three cases.

Case 1: G[U ] contains a blue path Q on 13δk vertices.

Let Q1 be a maximal path extending Q by alternating between vertices of P and U and which

has both ends in U . Let U ′ = U \ V (Q1) and V ′ = V (P ) \ V (Q1). Let Q2 be a maximal path

alternating between U ′ and V ′ which has both ends in U ′. Denote the ends of Qi by xi, yi,

for i = 1, 2. We show that |V (Q1)|+ |V (Q2)| ≥ l + 3δk.

Suppose this is not the case. In particular, since |U | ≥ l/2 + 25δk, the paths Q1 and Q2 do

not cover U . Pick a vertex z ∈ U \ (V (Q1) ∪ V (Q2)). Note that all but at most 3δk vertices

of P are adjacent to all of x1, x2, z. By our assumption on the lengths of Q1 and Q2, the

number of vertices of P which are in Q1 or Q2 is at most (1/2−5δ)k, hence there exist vertices

vi, vi+1 which are adjacent to all of x1, x2, z. We assume that vi and vi+1 have no common

red neighbours in x1, x2, z because otherwise we obtain a red Pk+1. It follows that without

loss of generality, vi is joined in blue to two of x1, x2, z, contradicting the maximality of Q1

and Q2.

Let Q′2 be a subpath of Q2 with ends x′2, y
′
2 ∈ U satisfying |V (Q′2)|+ |V (Q1)| = l+ 3δk. Simi-

larly to the above, there exist vertices vi, vi+1 which are both neighbours of all of x1, y1, x
′
2, y
′
2.

By the maximality of Q1, none of vi, vi+1 is adjacent in blue to one of x1, y1 and to one of

x′2, y
′
2. Furthermore, we may assume that vi and vi+1 have no common red neighbour in

{x1, y1, x′2, y′2}. Thus, without loss of generality, x1, y1 are blue neighbours of vi and x′2, y
′
2

are blue neighbours of vi+1. Denote by C1 and C2 the blue cycles obtained by adding vi to

Q1 and vi+1 to Q2, and let Ui = V (Ci) ∩ U .

We assume that there is no blue Pl+1. It follows that |V (C1)| ≤ l, implying that |U2| ≥ 3
2δk,

and that there are no blue edges between C1 and C2.

The number of vertices in V (P ) \ (V (C1)∪V (C2)) is at least (1/2 + 3δ)k, hence there exists j

such that vj , vj+1 /∈ V (C1)∪V (C2). Note that none of vj and vj+1 can have blue neighbours in
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both U1 and U2, because otherwise we obtain a blue Pl+1. Also, we can assume that vj , vj+1

have no red common neighbour in either U1 or U2, because otherwise there is a red Pk+1.

Thus, recalling that vj , vj+1 have at most δk non neighbours in G, without loss of generality,

vj is joined in red to all but at most δk vertices of U1 and vj+1 is joined in red to all but at

most δk vertices in U2.

Let w2 ∈ U2 be any red neighbour of vj+1 (such a vertex exists because |U2| ≥ 3
2δk). Since

w2 is connected to all but at most δk vertices of U1 and these edges must all be red, U1

contains a vertex w1 which is a red neighbour of both w2 and vj (such a vertex exists because

|U1| ≥ |V (Q1)| ≥ 13δk). We obtain a red path (v1 . . . vjw1w2vj+1 . . . vk) on k + 2 vertices.

This finishes the proof of Theorem 3 in the first case.

Case 2: l ≤ (1− 16δ)k.

Let Q1 be a maximal blue path alternating between U and P with both ends in U . Similarly,

let Q2 be a maximal blue path with both ends in U , alternating between U \ V (Q1) and

V (P ) \ V (Q1). As in the previous case, it can be shown that |V (Q1)|+ |V (Q2)| ≥ l + 6δk.

Let Q′2 be a subpath of Q2 such that |V (Q1)| + |V (Q′2)| = l + 6δk. As before, there exists j

such that vj , vj+1 /∈ V (Q1)∪V (Q′2) and they are joined in G to all ends of the two paths. The

vertices vj , vj+1 can be used to extend Q1, Q
′
2 into blue vertex disjoint cycles C1, C2, whose

sum of lengths is l + 6δk and each of which has length at least 6δk. The proof of Theorem 4

can now be finished as in the first case.

Case 3: l ≥ (1− 16δ)k and G[U ] contains no blue path of length at least 13δk.

We conclude from Lemma 5 that there exist two disjoint sets W1,W2 ⊆ U with no blue edges

between them of equal size satisfying the following inequality.

|W1| = |W2| ≥
1

2
(|U | − 13δk) =

1

2
(l/2 + 12δk) ≥ 1

2
(1/2 + 4δ)k.

Since every vertex in G is adjacent to all but at most δk vertices, we can greedily find a red

path Q in U such that the following holds.

|V (Q)| ≥ |W1|+ |W2| − 2δk = (1/2 + 2δ)k.

Let X be the set of the first and last (1/4 + δ)k vertices of P . We assume that there is no

red edge between X and Q, because otherwise there is a red Pk+1. Note that |V (Q)| ≥ |X| ≥
(1/2 + 2δ)k, hence we may greedily construct a blue path alternating between X and V (Q)

on at least the following number of vertices.

2|X| − 2δk ≥ (1 + 2δ)k ≥ l + 1.

Hence there exists a blue Pl+1, completing the proof of Theorem 4. �
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5. Sparse Regularity Lemma

We shall make use of a variant of Szemerédi’s Regularity Lemma [13] for sparse graphs, often

referred to as the sparse Regularity Lemma, which was proved independently by Kohayakawa

[11] and Rödl (see [6]). Before stating the theorem, we introduce some notation.

Given two disjoint sets of vertices U, V in a graph, we define the density dp(U, V ) of edges

between U and V with respect to p to be

dp(U, V ) =
e(G[U, V ])

p|U ||V | , (1)

where e(G[U, V ]) is the number of edges between U and V . We say that a bipartite graph

with bipartition U, V is (ε, p)-regular if for every U ′ ⊆ U, V ′ ⊆ V with |U ′| ≥ ε|U |, |V ′| ≥ ε|V |
the density dp(U

′, V ′) satisfies |dp(U ′, V ′)− dp(U, V )| ≤ ε.

Given a graph G, a partition {V1, . . . , Vt} of V (G) is called an (ε, p)-regular partition if it is

an equipartition (i.e. the sizes of the sets differ by at most one), and if all but at most ε of

the pairs Vi, Vj induce an (ε, p)-regular graph.

Given 0 < η, p < 1, D ≥ 1, a graph G is called (η, p,D)-upper-uniform if for all disjoints sets

of vertices U1, U2 of size at least η|V (G)|, the density dp(U1, U2) is at most D. Note that

random graphs are w.h.p. upper uniform (with suitable parameters).

We are now ready to state the sparse Regularity Lemma of Kohayakawa and Rödl.

Theorem 11. For every ε > 0, t and D > 1 there exist η > 0 and T such that for every

0 ≤ p ≤ 1, every (η, p,D)-upper-uniform graph admits an (ε, p)-regular partition into s parts

where t ≤ s ≤ T .

We shall use a variant of Theorem 11, namely the coloured version of the sparse Regularity

Lemma.

Theorem 12. For every ε > 0, t, l and D > 1 there exist η > 0 and T such that for every

0 ≤ p ≤ 1, if G1, . . . , Gl are (η, p,D)-upper-uniform graphs on vertex set V , there is an

equipartition of V into s parts, where t ≤ s ≤ T , for which all but at most ε of the pairs

induce a regular pair in each Gi.

6. Path Ramsey number for random graphs

We are now ready to prove Theorem 1, whose statement is as follows.

Theorem (1). Let 0 < p = p(n) < 1 satisfy pn→∞. Then w.h.p. G(n, p)→ P(2/3+o(1))n.
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Proof. Let 0 < p < 1 be such that pn → ∞ and let α > 0. We show that w.h.p., for every

2-edge-colouring of G = G(n, p) there is a monochromatic path of length at least (2/3− α)n.

Pick ε > 0 small and t large (taking t = 1/ε and ε ≤ 1/64 small enough such that 110
√
ε+7ε ≤

α would do). Let η, T be the constants arising from the application of Theorem 12 with

ε, t, l = 2, D = 2. Note that w.h.p., for every two disjoint subsets U,W ⊆ V (G) of size at

least ηn, we have

1/2 ≤ dp(U,W ) ≤ 2. (2)

In particular, G is w.h.p. (η, p, 2)-upper-uniform. Thus, by Theorem 12, given a 2-edge-

colouring of G, there exists an (ε, p)-regular partition V1, . . . , Vs with t ≤ s ≤ T . By (2), we

may assume that dp(Vi, Vj) ≥ 1/2 for every 1 ≤ i < j ≤ s.

Let H be the auxiliary graph with vertex set [s] where ij is an edge iff Vi, Vj induce a regular

bipartite graph in both red and blue. We colour an edge ij in H red if the red density

dp(Vi, Vj) is at least 1/4 and blue otherwise (so if ij is blue, the blue density is at least 1/4).

Since the partition V1, . . . , Vs is (ε, p)-regular, the number of edges in H is at least (1− ε)
(
s
2

)
.

It follows from Theorem 3 that H contains a monochromatic path P on at least l = (2/3−δ)s
vertices, where δ = 110

√
ε (assuming ε > 0 is small enough). Denote by i1, . . . , il the vertices

of P .

Assuming without loss of generality that P is red, we show that G contains a red path of

length at least (2/3 − α)n. We divide each set Vij into two sets Uj ,Wj of equal sizes, so

|Uj | = n/2s. Let Pj be a longest red path in the bipartite graph G[Uj ,Wj+1]. The following

claim shows that Pj covers most vertices in Uj ∪Wj+1.

Claim 13. For every 1 ≤ j ≤ l, Pj covers at least 1− 4ε of the vertices of Uj ∪Wj+1.

Proof. Suppose that for some j, Pj covers at most 1−4ε of the vertices of Uj∪Wj+1. Set U =

Uj and W = Wj+1. By Corollary 7, there exist sets X ⊆ U, Y ⊆ W with |X| = |Y | ≥ ε|U |,
such that there are no red edges between X and Y . But by the regularity of the partition

V1, . . . , Vs, the density dp(U, V ) is within ε of the density of red edges between U and W ,

which is at least 1/4. In particular, G has a red edge between X and Y , contradicting our

assumption, so Claim 13 holds. �

We now show that the paths P1, . . . , Pl−1 can be joined to a path Q while losing only a few

of the vertices. Let Xj be the set of first 2ε|V1| vertices of Pj and similarly let Yj be the set

of last 2ε|V1| vertices of Pj . Since the paths Pj alternate between the sets Uj ,Wj+1, we have

that |Yj ∩ Vij |, |Xj+1 ∩ Vij+1 | ≥ ε|V1|. It follows from the fact that ijij+1 is a red edge in H

that there is a red edge between Yj and Xj+1. Hence G has a red path Q which contains all

vertices of V (P1) ∪ . . . ∪ V (Pl−1) but at most 4ε|V1|(l − 1).
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By Claim 13, we have that |Pj | ≥ (1− 4ε)|V1|, so the following holds.

|Q| ≥ (1− 8ε)(l − 1)|V1| = (1− 8ε)(s(2/3− δ)− 1) · n
s
≥

(2/3− (δ + 1/t+ 6ε))n ≥ (2/3− α)n.

This completes the proof of Theorem 1.

�

7. Concluding Remarks

We remark that stronger versions of Theorem 4 for the symmetric case k = l were proved by

Benevides,  Luczak, Scott, Skokan and White [3] and by Gyárfás and Sárközy [10]. The results

in [3] imply in particular that for every ε > 0, there exists n0 such that for every graph G on

n ≥ n0 vertices with minimum degree δ(G) ≥ 3n/4 satisfies G→ P(2/3−ε)n. The condition on

the minimum degree is best possible. The proofs in [3] and [10] rely heavily on the regularity

lemma, whereas our proof of Theorem 4 is elementary.

It may be interesting to strengthen Theorem 4 so as to prove a similar result to the afore-

mentioned result of Benevides et al. [3] in the non diagonal case, namely when k and l are

not necessarily equal. Furthermore, it may be interesting to obtain the result of Benevides et

al. [3] using elementary methods.

Finally, we note that the gap between the best known lower and upper bounds on the size

Ramsey number is still very wide. Theorem 6 gives an upper bound of r̂(Pn) ≤ 91n, which

is to our knowledge the best known upper bounds. Bollobás [4] proved the best know lower

bound of r̂(Pn) ≥ (1 +
√

2)n− 2, improving Beck’s result [1] who showed that r̂(Pn) ≥ 9
4n. It

would be very interesting to try to close this gap.
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