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Abstract

We show that every 2-edge-coloured graph on n vertices with minimum degree at least 2n−5
3

can

be partitioned into two monochromatic connected subgraphs, provided n is sufficiently large. This

minimum degree condition is tight and the result proves a conjecture of Bal and DeBiasio. We also

make progress on another conjecture of Bal and DeBiasio on covering graphs with large minimum

degree with monochromatic components of distinct colours.

1 Introduction

It is an old observation of Erdős and Rado that every 2-edge-colouring of the complete graph contains

a monochromatic spanning tree. While this fact is easy enough to prove (one line with induction) its

discovery opened up a new avenue in graph Ramsey theory; the study of large, sparse structures that

appear in every 2-edge-colouring of the complete graph.

A, now classical, example appears in a seminal paper of Erdős, Gyárfás and Pyber [8], that for any

r-edge-colouring of Kn (the complete graph on n vertices) the vertices can be covered by O(r2 log r)

vertex-disjoint, monochromatic cycles. We note that throughout the paper, when we say that the

vertices of a graph are covered (or partitioned) by a collection of subgraphs, we mean that the vertices

are covered by the vertex sets of these subgraphs.

Gyárfás, Ruszinkó, Sárközy and Szemerédi [10] improved the above result by showing that if the edges

of the complete graph are r-coloured then the vertices can be partitioned into O(r log r) monochromatic

cycles. In the other direction, Pokrovskiy [15] showed that one needs strictly more than r cycles,

disproving a conjecture of Erdős, Gyárfás and Pyber [8]. Conlon and Stein [5] showed similar results for

colourings where every vertex is incident with at most r distinct colours. The question of whether one
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can partition an r-coloured graph into O(r) monochromatic cycles remains an enticing open problem

in this area.

In a different direction, Erdős, Gyárfás and Pyber [8] conjectured that the vertices of an r-coloured

complete graph may be partitioned into at most r − 1 monochromatic connected subgraphs. This

conjecture is known to be tight when r − 1 is a prime power and n is sufficiently large, due to a

well-known construction which requires the existence of an affine plane of an appropriate order. Haxell

and Kohayakawa [12] proved a slightly weaker result, showing that one can partition an r-coloured

complete graph on n vertices into r monochromatic subgraphs, for sufficiently large n.

Interestingly, this problem is closely related to a well-known conjecture of Ryser on packing and

covering edges in r-partite, r-uniform hypergraphs. This link was first noted by Gyárfás [9] in 1997

and leads to the following natural formulation of the conjecture of Ryser, published in [13], where α(G)

is the size of the largest independent set in the graph G.

Conjecture 1.1. The vertex set of an r-coloured graph G can be covered by at most (r − 1)α(G)

monochromatic connected subgraphs.

In this form, it is clear that Ryser’s conjecture implies the covering version of the aforementioned

conjecture of Erdős, Gyárfás and Pyber about monochromatic connected subgraphs. Although not

much is known about Ryser’s conjecture in general, a few special cases are understood. The case r = 2

is equivalent to König’s classical theorem (see [6], for example), while the case r = 3 was proved by

Aharoni [1] in 2001, who built on the earlier advances of Aharoni and Haxell [2]. Beyond this, there

are only a few other cases where the conjecture is known to hold: when G is a complete graph and

when r ≤ 5, cumulatively proved by Gyárfás [9] (r = 3), Duchet [7] and Tuza [17] (r = 4, 5).

Following Schelp [16], who suggested several variants of Ramsey-type problems (e.g. determining the

length of the longest monochromatic path in a 2-coloured graphs), we consider variants of the above

problems for graphs with large minimum degree. Our first main result proves a conjecture of Bal and

DeBiasio [3] on partitioning the vertices of a 2-coloured graph with large minimum degree. Recall that

δ(G) denotes the minimum degree of the graph G.

Theorem 1.2. There exists an integer n0 such that every 2-coloured graph G on n ≥ n0 vertices and

with minimum degree at least 2n−5
3 can be partitioned into two monochromatic connected subgraphs.

This result is seen to be sharp by a construction of Bal and DeBiasio [3] which we generalise in

Section 5. We also note that Theorem 1.2 generalises the result of Haxell and Kohayakawa [12] to all

graphs with sufficiently large minimum degree - in the case of two colours. One can think of this result

as saying that 2n−5
3 is the minimum degree ‘threshold’ that guarantees a partition of every 2-colouring

into two monochromatic connected subgraphs. It is therefore natural to ask what minimum degree

condition on a graph G guarantees a partition into t monochromatic connected subgraphs, no matter

how the graph is 2-coloured. We conjecture the following.
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Conjecture 1.3. For every t there exists n0, such that for every 2-colouring of a graph G on n ≥ n0
vertices with δ(G) ≥ 2n−2t−1

t+1 there exists a partition of the vertex set into at most t monochromatic

connected subgraphs.

We support this conjecture by observing an analogous result for covers of the vertices by monochro-

matic components.

Proposition 1.4. Let t be integer and let G be a 2-coloured graph on n vertices with δ(G) ≥ 2n−2t−1
t+1 .

Then the vertices of G can be covered by at most t monochromatic components.

We also give a construction showing that the inequality in this proposition cannot be improved. It

also follows that the conjecture is sharp, if true.

Bal and DeBiasio [3] also considered the problem of covering coloured graphs with monochromatic

components of distinct colours. In particular, they conjectured the following.

Conjecture 1.5. Let G be an r-coloured graph on n vertices with δ(G) ≥ (1 − 1/2r)n. Then the

vertices can be covered by monochromatic components of distinct colours.

Again, Bal and DeBiasio provided examples showing that if true, the bound (1−2−r)n is best possible.

We prove Conjecture 1.5 for r = 2, 3. We state the theorem for r = 3 below, as it is the main content

of our theorem.

Theorem 1.6. Let G be a 3-coloured graph on n vertices with δ(G) ≥ 7n/8. Then the vertices of G

can be covered by monochromatic components of distinct colours.

We conclude the introduction with a description of the notation that we shall use in this paper. We

prove Theorem 1.2 in Section 2. We prove Proposition 1.4 in Section 3 and provide an example to

show that it is tight. In Section 4 we prove Theorem 1.6. We conclude the paper in Section 5 with

some final remarks and open problems.

1.1 Notation

By an r-coloured graph, we mean a graph whose edges are coloured with r colours. When a graph is

2-coloured we call the colours red and blue; and when it is 3-coloured, we call the colours red, blue and

yellow.

For a set of vertices W , we denote by Nr(W ) the set of vertices in V (G) \W that are adjacent to a

vertex in W by a red edge. If x ∈ V (G) is a vertex, we define dr(x) = |Nr({x})| which we refer to as

the red degree of x. We say that y is a red neighbour of x if xy is a red edge. By a red component of

a graph G, we mean the vertex set C ⊆ V (G) of a component of the red graph. We denote the red

component that contains x by Cr(x). A red set U ⊆ V (G) is a set of vertices for which the red edges

induced by U form a connected graph.
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All the above definitions and notation, that were defined for red, also works for blue or yellow; e.g.

db(x) and dy(x) are the blue and yellow degrees of x, respectively, and a blue set is a set of vertices

that is connected in blue.

2 Partitioning into monochromatic connected subgraphs

In this section we prove Theorem 1.2.

Theorem 1.2. There exists an integer n0 such that every 2-coloured graph G on n ≥ n0 vertices and

with minimum degree at least 2n−5
3 can be partitioned into two monochromatic connected subgraphs.

We note that the minimum degree condition in this theorem cannot be improved; this can be seen by

taking t = 2 in Example 3.1, described in Section 5.

Proof of Theorem 1.2. Throughout this proof, we assume that the number of vertices n is suffi-

ciently large. Suppose, for a contradiction, that the vertices of G cannot be partitioned into two

monochromatic sets.

Claim 2.1. There is a blue component of order at most (n+ 2)/6.

Proof of Claim 2.1. We may assume that there are at least three red components and at least three blue

components (where a single vertex that is not incident to any blue edges counts as a blue component),

as otherwise the vertices may be partitioned into two red sets or two blue sets (recall that a red set

is defined to be a set of vertices that is connected in red, and similarly for blue), contradicting our

assumption. Let R be a red component of smallest order, so |R| ≤ n/3.

Let us assume first that |R| ≤ (n−5)/3. Since every vertex in R sends at least (2n−5)/3−(|R|−1) >

(n − |R|)/2 blue edges outside of R, every two vertices in R have a common blue neighbour outside

of R. Hence, R is contained in a blue component of order at least |R| + (2n − 5)/3 − (|R| − 1) ≥
(2n− 2)/3. Since there are at least three blue components, there is a blue component of order at most

(n− (2n− 2)/3)/2 = (n+ 2)/6.

We now assume that (n−4)/3 ≤ |R| ≤ n/3. If every two vertices in R have a common blue neighbour,

then, again, R is contained in a blue component of order at least (2n − 2)/3 and as before there is a

blue component of order at most (n + 2)/6. Otherwise, there exist two vertices u, v ∈ R whose blue

neighbourhoods do not intersect. But every vertex in R has at least (n− 5)/3 blue neighbours outside

of R, and therefore every vertex in R \ {u, v} has a common blue neighbour with either u or v. It

follows that there are two blue components (namely, the components Cb(u) and Cb(w)) whose union

has order at least |R|+ 2(n− 5)/3 > n− 5, hence there is a blue component of order at most 4.

Claim 2.2. There is a red set U of size at most 27 log n such that |Nr(U)| ≥ 2n/3− 27 log n.
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Proof of Claim 2.2. By the previous claim, there is a blue component B of order at most (n + 2)/6.

Note that every vertex in B has at least (2n − 5)/3 − |B| red neighbours in V (G) \ B. Fix a vertex

u ∈ B and let T be the set of red neighbours of u outside B. Every w ∈ B has at least the following

number of red neighbours in T .

2 · ((2n− 5)/3− |B|)− (n− |B|) = (n− 10)/3− |B| ≥ (n− 22)/6.

Now let U ′ be a random subset of T where each vertex w ∈ T belongs to U ′, independently, with

probability 13 log n/n. Let Iw be the event that w (where w ∈ B) does not have a red neighbour in

U ′. We bound

P
( ⋃

w∈B
Iw

)
≤ |B| · P(Iw) ≤ n ·

(
1− 13 log n

n

)n−22
6

≤ n · e−2 logn < 1/2.

Note that since E(|U ′|) ≤ 13 log n, we have P(|U ′| ≥ 26 log n) ≤ 1/2, by Markov’s inequality. Therefore,

there is a choice of U ′ ⊆ T such that |U ′| ≤ 26 log n and every vertex in B is joined by a red edge to

some vertex in U ′. We choose U = U ′ ∪ {u}. Note that

∣∣Nr(U ′ ∪ {u})
∣∣ ≥ |T \ U ′|+ |B \ {u}|
≥ ((2n− 5)/3− |B| − 26 log n) + (|B| − 1)

= 2n/3− 27 log n.

Hence, the set U = U ′ ∪ {u} satisfies the requirements of Claim 2.2.

Let U be a red set as in Claim 2.2 and let N = Nr(U). Now choose a maximal sequence of distinct

vertices x1, . . . , xt ∈ V \(N∪U) so that xi has at least log n red neighbours in the set N∪{x1, . . . , xi−1},
for every i ∈ [t]. Then put N = N ∪ {x1, . . . , xt} and write W = V (G) \

(
U ∪N

)
. Note that every

vertex in W has at most log n red neighbours in N .

Claim 2.3. There exist two vertices in W that have at most log n common blue neighbours in N .

Proof of Claim 2.3. For a contradiction, suppose that every two vertices in W have at least log n

common neighbours in N . We shall deduce that the vertices can be partitioned into a red set and a

blue set, a contradiction.

To define the partition, fix w ∈W and let X = Nb(w)∩N . Let S be a random subset of X, obtained by

taking each vertex of X independently with probability 1/2. We claim that, with positive probability,

(U ∪N) \ S is red and W ∪ S is blue.

To bound the probability that W ∪ S is blue, we consider the probability that every vertex in W is

joined by a blue edge to S (an event which would imply that W ∪ S is blue). Since every x ∈ W has

at least log n blue neighbours in X, the probability that a x has no blue neighbours in S is at most
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2− logn = 1/n. Thus, the expected number of vertices in W with no edges to S is smaller than 1/2

(note that |W | ≤ n/3). Hence, P(W ∪ S is blue) > 1/2.

We now estimate the probability that (U ∪ N) \ S is red. First note that as N = Nr(U), we have

that U ∪N ′ is red for any subset N ′ ⊆ N . So it remains to show that the vertices of {x1, . . . , xt} \ S
can be joined, via a red path, to U ∪ (N \ S), with sufficiently high probability. For i ∈ [t], let Ei be

the event that vertex xi is joined by a red edge to (N ∪ {x1, . . . , xi−1}) \ S. Note that if the event

E =
⋂t

i Ei holds, (U ∪N) \ S is red. Now, to estimate P(Ei), for i ∈ [t], note that each vertex xi has

at least log n forward neighbours, and the probability that one of these vertices is deleted is at most

1/2. Thus P(Ei) ≥ 1 − 2− logn = 1 − 1/n, therefore P
(
(U ∪N) \ S is red

)
≥ P(E) > 1/2, where the

second inequality holds since t < n/2.

Thus, with positive probability, W ∪ S is blue and (U ∪N) \ S is red. In particular, the vertices can

be partitioned into a blue set and a red one, a contradiction.

Claim 2.4. There is a vertex of blue degree at most 60 log n.

Proof of Claim 2.4. By definition of N every vertex in W has at least (2n− 5)/3− (n− |N |)− log n ≥
|N |/2− 15 log n blue neighbours in N (where the lower bound follows as |N | ≥ 2n/3− 27 log n).

By the previous claim, there exist v, w ∈W such that |Nb(v)∩Nb(w)∩N | < log n. Then the at most

two blue components containing v and w cover all vertices of W and all but at most 30 log n vertices

of N . Since |U | ≤ 27 log n, it follows that these two components cover all but at most 60 log n vertices.

Recall that there are at least three blue components, hence there is a component of order at most

60 log n, and any vertex in that component has blue degree at most 60 log n.

Let ur be a vertex of blue degree at most 60 log n, which exists by the previous claim. By symmetry,

there is a vertex ub of red degree at most 60 log n. Then dr(ur), db(ub) ≥ 2n/3 − 60 log n − 2. Write

A1 = Nb(ub)\Nr(ur), A2 = Nb(ub)∩Nr(ur) and A3 = Nr(ur)\Nb(ub). Then |A2| ≥ n/3−120 log n−4

and |A1|, |A3| ≤ n/3 + 60 log n+ 2.

Claim 2.5. There is a vertex with no blue neighbours in A1, no red neighbours in A3, and at most

2 log n neighbours in A2.

Proof of Claim 2.5. Suppose that the statement does not hold. Let {B,R} be a random partition

of A2, obtained by putting vertices in B, independently, with probability 1/2. Then, with positive

probability, every vertex in G has a blue neighbour in A1∪B ⊆ Nb(ub) or a red neighbour in A3∪R ⊆
Nr(ur). We thus obtain a partition of the vertices into a red set and a blue set, a contradiction.

Let x be a vertex with no blue neighbours in A1, no red neighbours in A3, and at most 2 log n

neighbours in A2 (its existence is guaranteed by the previous claim). Then |A2| ≤ n/3 + 3 log n, so

|A1|, |A3| ≥ n/3−65 log n. Furthermore, x has at least n/3−70 log n red neighbours in A1 and at least

n/3− 70 log n blue neighbours in A3. Write A′1 = A1 ∩Nr(x), A′2 = A2 \N(x), and A′3 = A3 ∩Nb(x)

(so |A′1|, |A′3| ≥ n/3− 70 log n and |A′2| ≥ n/3− 130 log n).
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Claim 2.6. The vertices x and ub are in distinct blue components; similarly, x and ur are in distinct

red components.

Proof of Claim 2.6. Suppose that x and ub are in the same blue component. Then there is a blue

path P from {x} ∪ A′3 to {ub} ∪ A′1 ∪ A′2. We may assume that the inner vertices of P are outside of

A′1 ∪A′2 ∪A′3 ∪ {x, ub}. Hence, |P | ≤ 300 log n.

Now, let {B,R} be a random partition of (A′2 ∪ A′3) \ V (P ), obtained by putting each vertex in B,

independently, with probability 1/2. It is easy to see that, with positive probability, every vertex in

G has a red neighbour in R or a blue neighbour in B, from which it can be deduced that there is

a partition of the vertices into a red set and a blue set, which is a contradiction. Indeed, note that

P ∪ {x, ub} ∪ B is a blue set and {ur} ∪ R is a red set. Thus, we have that ub and x are in distinct

blue components; by symmetry, ur and x are in different red components.

Note that |Cb(ub)|, |Cr(ur)| ≥ 2n/3 − 61 log n and |Cb(x)|, |Cr(x)| ≥ n/3 − 70 log n. Recall that

there are at least three blue components. Hence, there is a vertex wr which is not in Cb(ub) or in

Cb(x). It follows that db(wr) is at most 131 log n, hence it has red degree at least 2n/3 − 132 log n,

so wr ∈ Cr(ur). Similarly, there is a vertex wb which is not in Cr(ur) or in Cr(x), and therefore

it must belong to Cb(ub). We claim that the set X = {wb, wr, x} is independent. The pairs wrx

or wbx are non-edges, for otherwise we obtain a contradiction to either the choice of wr /∈ Cb(x)

and wb /∈ Cr(x) or the statement of Claim 2.6. If wrwb is a red edge then wb ∈ Cr(wr) which is

a contradiction, by definition of wb, and similarly if wrwb is a blue edge. Thus X is independent.

So finally, by the minimum degree condition, there must be a vertex y that is adjacent to all three

vertices in X. Indeed, if no such y exists, then the number of edges between X and V (G) \ X is at

most 2(n − 3) < 3(2n − 5)/3, a contradiction. Without loss of generality, y sends two red edges into

X, implying that two of the vertices in X belong to the same red component, a contradiction. This

completes our proof of Theorem 1.2.

3 Covering by t monochromatic components

In this section we prove Proposition 1.4; this proposition can be thought of as a generalisation of the

weaker covering version of Theorem 1.2.

Proposition 1.4. Let t be integer and let G be a 2-coloured graph on n vertices with δ(G) ≥ 2n−2t−1
t+1 .

Then the vertices of G can be covered by at most t monochromatic components.

Proof of Proposition 1.4. We form an auxiliary graph H, whose vertex set is the vertex set of G, two

vertices are joined by a blue edge if and only if they are in the same blue component in G, and red

edges are defined similarly. Note that H is a multigraph that contains G as a subgraph. Moreover,

the vertex sets of monochromatic components in G and H are the same. Hence, it suffices to show

that the vertices of H can be covered by t monochromatic components.
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We claim that α(H) ≤ t. Indeed, suppose that A is an independent set of size t+1. By definition of H,

every two vertices of A belong to distinct red and blue components. In particular, every vertex outside

of A sends at most two edges into A, so e(G[A, V \A]) ≤ 2(n− t− 1) (here V = V (G)). On the other

hand, by the minimum degree condition, e(G[A, V \A]) ≥ δ(G)·(t+1) ≥ 2(n−t−1)+1, a contradiction.

So, indeed, α(H) ≤ t. Hence, by Ryser’s conjecture for r = 2 (which follows from König’s theorem, see

[6]), we find that the vertices of H can be covered by at most α(G) ≤ t monochromatic components,

as required.

We remark that a similar argument can be used to show that if Ryser’s conjecture holds for r, and t ≥ r,
then the following holds. If G is a r-coloured graph on n vertices with minimum degree larger than
r(n−t−1)

t+1 then its vertices can be covered by at most (r − 1)t monochromatic components. However,

this bound is not tight1.

We note that the restriction on the minimum degree in Proposition 1.4 cannot be improved. The

special case of this example, where t = 2, appears in [3] and shows that the minimum degree condition

in Theorem 1.2 is best possible.

Example 3.1. Let U be a set of size n ≥ t+ 1, and let {X,A1, . . . , At+1} be a partition of U , where

|X| = t + 1 and the sizes of A1, A2, . . . , At+1 are as equal as possible; write X = {x1, . . . , xt+1}. We

define a 2-coloured graph G on vertex set U as follows.

• the sets Ai are cliques, and we colour them arbitrarily;

• we add all possible edges between Ai and Ai+1, where i ∈ [t], and colour them red if i is odd, and

blue otherwise;

• we add all edges between xi and Ai ∪ Ai+1, for i ∈ [t+ 1] (addition is taken modulo t+ 1). We

colour these edges red if i is in [t] and i is odd; and blue if i is in [t] and i is even. Finally, we

colour the edges from xt+1 to A1 blue, and colour the edges from xt+1 to At+1 red if t is even

and blue if t is odd.

x1 x2

x3

A1 A2 A3

x1 x2 x3

x4

A1 A2 A3 A4

Figure 1: an illustration of Example 3.1 for t = 2 and t = 3 (here grey represents
red and black represents blue).

1It can be shown that if G is a 3-coloured graph on n vertices with minimum degree larger than (3/4− 1/(12 · 13))n
then its vertices can be covered by at most six monochromatic components, which is smaller than the bound 3(n− 4)/4
suggested by this arguments; for the sake of brevity we do not present the proof of this claim here.
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An easy calculation shows that G has minimum degree2 d(2n − 2t − 1)/(t + 1)e − 1, and that no two

vertices in X belong to the same monochromatic component; in particular, the vertices of G cannot be

covered by at most t monochromatic components.

4 Covering with monochromatic components of distinct colours

In this section we verify Conjecture 1.5 for r ∈ {2, 3}. Most of the difficulty is in the proof for r = 3,

but we include a short proof for r = 2 for completeness. Actually, the r = 2 case (for n large) already

follows from a difficult result of Letzter [14], who showed that when δ(G) ≥ 3n/4, the vertices can

be partitioned into two monochromatic cycles of different colours, for every 2-colouring of G. Before

turning to the proofs, we mention the following construction of Bal and DeBiasio [3], which shows that

the minimum degree condition in Conjecture 1.5 cannot be improved.

Example 4.1. Let n ≥ 2r; we shall define a graph on vertex set [n] as follows. Partition [n], as

equally as possible, into 2r sets which are indexed by the sequences s ∈ {0, 1}r. We write

[n] =
⋃

s∈{0,1}r
A(s)

and define the following, where 1 = (1, . . . , 1).

E = [n](2) \
⋃

s∈{0,1}r
{xy : x ∈ A(s), y ∈ A(1− s)}.

In other words, we include all edges in the graph except for the edges between parts of the partition

corresponding to antipodal elements of {0, 1}r. Now, colour all edges xy, where x ∈ A(s), y ∈ A(s′), by

the first coordinate on which s, s′ agree; e.g. the edge between (0, 1, 0, 0) and (1, 0, 0, 1) is coloured 3.

We now show that G cannot be covered by components of distinct colours. Suppose that it can, and note

that the i-coloured components are of the form
⋃

s∈Si
A(s) where Si is a set of elements that agree on

their i-th coordinate; denote this coordinate by ai. It follows that the vertices of A((1−a1, . . . , 1−ar))

are not covered by any of these components, a contradiction.

We now prove Conjecture 1.5 for r = 2.

Lemma 4.2. Let G be a 2-coloured graph with δ(G) ≥ 3n/4. Then the vertices of G can be covered

by a red component and a blue component.

Proof. We first show that there is a monochromatic component of order greater than n/2. If G is red

connected we are done. Hence, there exists a red component R with |R| ≤ n/2. Then, any two vertices

2 In fact, we need to be a bit more careful here. Write n = a(t + 1) + r, where a and r are integers and 0 ≤ r ≤ t.
We consider two cases: r < d(t + 1)/2e and r ≥ d(t + 1)/2e. In the former case, it is easy to see that δ(G) =
d(2n− 2t− 1)/(t+1)e− 1. In the latter case, note that exactly r of the sets Ai have size a, and the rest have size a− 1.
Then, again, one can check that δ(G) = d(2n− 2t− 1)/(t+1)e− 1 if |Ai| = a for every odd i ∈ [t+1] (which is possible
as r ≥ (t+ 1)/2).
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u,w ∈ R have a common blue neighbour, as |Nb(u)∩Nb(w)∩R| ≥ 2 · (3n/4− (|R|−1))− (n−|R|) > 0.

So R ⊆ Cb(u) and Cb(u) is a blue component of order at least 3n/4, as required.

Without loss of generality, there is a red component R of order larger than n/2. Note that there is a

vertex x which is not in R (otherwise we are done), and |Nb(x) ∩ R| = |N(x) ∩ R| > n/4, as x does

not send red edges to R. In particular, |Cb(x) ∩ R| > n/4. It follows that every vertex sends at least

one edge to Cb(x) ∩R and thus the components R and Cb(x) cover the whole graph.

Before we turn to prove Conjecture 1.5 for r = 3, we mention the following proposition, which is due

to Bal, DeBiasio and McKenny [4].

Proposition 4.3 (Bal, DeBiasio and McKenny [4]). Let G be a 3-coloured graph on n vertices with

minimum degree at least 7n/8. Then G contains a monochromatic component of order at least n/2.

This proposition strengthens a result of Gyárfás and Sárközy [11] who proved the same statement for

graphs with minimum degree at least 9n/10, and also conjectured that the lower bound on the minimum

degree could be lowered to 7n/8. We note that there are examples of 3-coloured complete graphs on

n vertices with no monochromatic component of order larger than n/2, hence the lower bound on the

order of the monochromatic component is best possible. We present the proof of Proposition 4.3 here

for the sake of completeness and because we are not aware of a published version of this proof.

Proof of Proposition 4.3. We assume that all monochromatic components have order smaller than

n/2. Denote by B the monochromatic component of largest order; without loss of generality it is blue,

and by assumption we have |B| < n/2. Let R be a monochromatic component, distinct from B, that

intersects B and maximises |R\B|; without loss of generality R is red. Denote A1 = B\R, A2 = R\B,

U = B ∩R, and W = V (G) \ (R ∪B). Note that |A1| ≥ |A2|, all of A1, A2, U,W are non-empty, and

all edges between A1 and A2 and between U and W are yellow.

We claim that |A1 ∪A2| < n/2. Indeed, suppose otherwise. Then |A1| ≥ n/4 because |A1| ≥ |A2|. It

follows that every two vertices in A2 have a common (yellow) neighbour in A1 (since every vertex in A2

has at most n/8−1 non-neighbours in A1). Moreover, we have that |A2| ≥ (3n/4−(|B|−1))/2 ≥ 3n/16;

this is by choice of R and because every vertex in B sends at least this number of red edges, or at least

this number of yellow edges, outside of B. It follows that every vertex in A2 has a yellow neighbour

in A1 (again, because it can have at most n/8 − 1 non-neighbours). We conclude that A1 ∪ A2 is

contained in a yellow component of order at least n/2, a contradiction.

We may now assume that |U ∪ W | > n/2. We note that |W | > |U |. Indeed, otherwise, |B| =

|A1|+ |U | ≥ |A2|+ |W | = n− |B|, implying that |B| ≥ n/2, a contradiction. In particular, |W | > n/4.

As before, it follows that every two vertices in U have a (yellow) common neighbour in W . If |U | ≥ n/8,

then every vertex in W has a (yellow) neighbour in U , which implies that U ∪W is contained in a

yellow component of order at least n/2, a contradiction. So, we have |U | < n/8 and thus |W | > 3n/8.

It follows from the minimum degree condition that every vertex in U sends at least n/4 yellow edges

10



to W . In particular, there is a yellow component Y that intersects B and satisfies |Y \B| ≥ n/4. By

choice of R, it follows that |A2| = |R \B| ≥ n/4. But since |A1| ≥ |A2|, we find that |A1 ∪A2| ≥ n/2,

contradicting the above. We have thus reached a contradiction to the assumption that |B| < n/2,

which completes the proof.

We now prove Theorem 1.6.

Theorem 1.6. Let G be a 3-coloured graph on n vertices with δ(G) ≥ 7n/8. Then the vertices of G

can be covered by monochromatic components of distinct colours.

Proof. By Proposition 4.3 there is a monochromatic component of order at least n/2; without loss

of generality it is red, and we denote it by R. Suppose that R 6= V (G) (otherwise, we are done) and

let u /∈ R. Consider the blue and yellow components containing u by B and Y . By the minimum

degree condition, u sends at least |R| − n/8 edges to R, none of which are red. So |(B ∪ Y ) ∩ R| ≥
|R| − n/8. Suppose that R, B and Y do not cover the whole graph (again, otherwise we are done).

Let w /∈ R ∪ B ∪ Y , and denote the blue and yellow components containing w by B′ and Y ′. By the

same argument as before, |(B′ ∩ Y ′) ∩R| ≥ |R| − n/8, which implies the following.

|(B ∪ Y ) ∩ (B′ ∪ Y ′) ∩R| ≥ |R| − n/4 ≥ n/4.

Since B ∩ B′ = ∅ and Y ∩ Y ′ = ∅, either |B ∩ Y ′ ∩ R| ≥ n/8 or |B′ ∩ Y ∩ R| ≥ n/8. Without loss of

generality, the former holds; denote U = B ∩ Y ′ ∩ R. Since |U | ≥ n/8 and by the minimum degree

condition, every vertex not in U has a neighbour in U , which implies that every vertex in the graph

belongs to one of the components B, Y ′ or R, thus completing the proof of Theorem 1.6.

5 Concluding remarks

To conclude, we remind the reader of a few conjectures of Bal and DeBiasio [3] before recalling our

own conjecture.

First, we recall Conjecture 1.5 due to Bal and DeBiasio, which we have settled for r ≤ 3.

Conjecture 1.5. Let G be an r-coloured graph on n vertices with δ(G) ≥ (1 − 1/2r)n. Then the

vertices can be covered by monochromatic components of distinct colours.

Second, we highlight a conjecture from the same paper of Bal and Debiasio which concerns the mini-

mum degree required to ensure that an r-coloured graph can be covered by at most r monochromatic

components (here colours need not to be distinct).

Conjecture 5.1. Let G be an r-coloured graph on n vertices with δ(G) ≥ r(n−r−1)+1
r+1 . Then the

vertices of G can be covered by at most r monochromatic components.
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Finally, we recall our conjecture for the best minimum degree condition that guarantees a partition

of every 2-coloured graph into t-monochromatic components.

Conjecture 1.3. For every t there exists n0, such that for every 2-colouring of a graph G on n ≥ n0
vertices with δ(G) ≥ 2n−2t−1

t+1 there exists a partition of the vertex set into at most t monochromatic

connected subgraphs.

If true, the minimum degree condition in this conjecture is tight by our Example 3.1.
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support of Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation. The

third named author would like to thank Trinity College, Cambridge for support.

References

[1] R. Aharoni, Ryser’s conjecture for tripartite 3-graphs, Combinatorica 21 (2001), 1–4.

[2] R. Aharoni and P. Haxell, Hall’s theorem for hypergraphs, J. Graph Theory 35 (2000), 83–88.

[3] D. Bal and L. DeBiasio, Partitioning random graphs into monochromatic components, Electron.

J. Combin. 24 (2017), #P1.18, 25 pages.

[4] D. Bal, L. DeBiasio, and P. McKenny, Large monochromatic components in graphs with large

minimum degree, manuscript.

[5] D. Conlon and M. Stein, Monochromatic cycle partitions in local edge colorings, J. Graph Theory

81 (2016), 134–145.

[6] R. Diestel, Graph theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 2016.
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