Many H-copies in graphs with a forbidden tree

Shoham Letzter*

Abstract

For graphs H and F, let $\operatorname{ex}(n,H,F)$ be the maximum possible number of copies of H in an F-free graph on n vertices. The study of this function, which generalises the well-studied Turán numbers of graphs, was initiated recently by Alon and Shikhelman. We show that if F is a tree then $\operatorname{ex}(n,H,F) = \Theta(n^r)$ for an (explicit) integer r = r(H,F), thus answering one of their questions.

1 Introduction

Given graphs H and F with no isolated vertices and an integer n, let ex(n, H, F) be the maximum possible number of copies of H in an F-free graph on n vertices. This function was introduced recently by Alon and Shikhelman [1]. In the special case where $H = K_2$, this is the maximum possible number of edges in an F-free graph on n vertices, known as the $Tur\'an\ number$ of F, which is one of the main topics in extremal graph theory (see e.g. [21] for a survey).

A few instances of ex(n, H, F), with $H \neq K_2$, where studied prior to [1]. The first of these is due to Erdős [5] who determined $ex(n, K_r, K_s)$ for all r and s (see also [2]).

A different example that has received considerable attention recently is $\operatorname{ex}(n,C_r,C_s)$ for various values of r and s. In 2008 Bollobás and Győri [3] showed that $\operatorname{ex}(n,K_3,C_5)=\Theta(n^{3/2})$, and their upper bound has been improved several times [1, 6]. Győri and Li [17] obtained upper and lower bounds on $\operatorname{ex}(n,K_3,C_{2k+1})$, that were subsequently improved by Füredi and Özkahaya [7] and by Alon and Shikhelman [1]. Moreover, the number $\operatorname{ex}(n,C_5,K_3)$ was calculated precisely [14, 18]. Very recently, Gishboliner and Shapira [13] determined $\operatorname{ex}(n,C_r,C_s)$, up to a constant factor, for all r>3, and, additionally, they studied $\operatorname{ex}(n,K_3,C_s)$ for even r. Some additional more precise estimates for $\operatorname{ex}(n,C_r,C_s)$ are known (see [9, 15]).

There are, unsurprisingly, many more instances of studies of the function ex(n, H, F) or variations of it (e.g. when F is replaced by a family of graphs, or when the objects of interest are hypergraphs or posets rather than graphs); see, for example, [4, 8, 10, 11, 12, 19, 20, 22].

^{*}ETH Institute for Theoretical Studies, ETH, 8092 Zurich; e-mail: shoham.letzter@eth-its.ethz.ch. Research supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation.

In this paper we shall be interested in the value of ex(n, H, T) when T is a tree. Alon and Shikhelman [1] showed that if H is also a tree then the following holds.

$$ex(n, H, T) = \Theta(n^r)$$
 for some (explicit) integer $r = r(H, T)$. (1)

See also [16] for the study of the special case where T and H are paths. Alon and Shikhelman asked if (1) still holds if only T is required to be a tree (and H is an arbitrary graph). Our main result answers this question affirmatively.

Theorem 1. Let H be a graph and let T be a tree. Then there exists an integer r = r(H,T) such that $ex(n, H, T) = \Theta(n^r)$.

We note that, as in Alon and Shikhelman's result for the case where H is also a tree, the integer r = r(H, T) can be determined explicitly in terms of H and T; see Definition 3.

We present the proof in the Section 2, and conclude the paper in Section 3 with some closing remarks.

2 The proof

Our aim is to prove that $ex(n, H, T) = \Theta(n^r)$ for a certain integer r. In order to describe this integer, we need the following two definitions.

Definition 2. Given a graph H, a subset $U \subseteq V(H)$ and an integer t, the (U,t)-blow-up of H is the graph obtained by taking t copies of H and identifying all the vertices that correspond to u, for each $u \in U$ (see Figure 1 for an example).

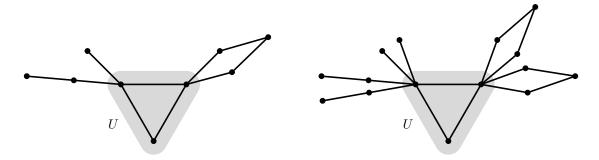


Figure 1: A graph H and a subset $U \subseteq V(H)$ and the (U,2)-blow-up of H.

Definition 3. Given graphs H and T, let r(H,T) be the maximum number of components in $H \setminus U$, over subsets $U \subseteq V(H)$ for which the (U,|T|)-blow-up of H is T-free.

In the following theorem we estimate ex(n, H, T), where T is a tree, in terms of the value r(H, T). Note that Theorem 1 follows immediately. **Theorem 4.** Let H be a graph and let T be a tree. Then $ex(n, H, T) = \Theta(n^r)$, where r = r(H, T).

The lower bound follows quite easily from the definition of r(H,T), so the main work goes into proving the matching upper bound. In [1] Alon and Shikhelman proved the same statement under the additional assumption that H is a tree. In order to prove the upper bound, they showed that a graph G which is T-free and has at least $c \cdot n^r$ copies of H (for any integer r and a large constant c) contains a (U, |T|)-blow-up of H, for some $U \subseteq V(H)$ such that $H \setminus U$ has at least r+1 components. Since G is T-free, it follows that the (U, |T|)-blow-up is also T-free, which implies, by definition of r(H,T), that G has fewer than $c \cdot n^{r(H,T)}$ copies of H, as required. Our ideas are somewhat similar, but we do not prove that G contains such a blow-up. Instead, we find a subgraph G' of G with many H-copies that behaves somewhat similarly to a (U, |T|)-blow-up of H, for some U for which the number of components of $H \setminus U$ is larger than r. We then show that if the blow-up contains a copy of T then so does G'. It again follows that the number of H-copies in G is smaller than $c \cdot n^{r(H,T)}$.

Proof of Theorem 4. Let r = r(H,T), h = |H|, t = |T| and $m = \exp(n, H, T)$. Our aim is to show that $m = \Theta(n^r)$.

We first show that $m = \Omega(n^r)$. Indeed, let $U \subseteq V(H)$ be such that $H \setminus U$ has r components and the (U, t)-blow-up of H is T-free. Let G be the (U, n/h)-blow-up of H. Note that G is T-free; indeed, otherwise, since any T-copy in G uses vertices from at most t copies of H, it would follow that the (U, t)-blow-up of H is not T-free. Additionally, the number of H-copies in G is at least $(n/h)^r$ since, for every component in $H \setminus U$, we can choose any of the n/h copies of it in G, and together with U this forms a copy of H.

The remainder of the proof will be devoted to proving the upper bound $m = O(n^r)$. Suppose to the contrary that $m \ge c \cdot n^r$, for a sufficiently large constant c. Let G be a T-free graph on n vertices with m copies of H.

Instead of studying G directly, we will consider a subgraph G' of G that has many H-copies and is somewhat similar to a (U, t)-blow-up of H for an appropriate U. We obtain the required subgraph in three steps.

First, we find an r-partite subgraph G_0 of G that has many H-copies. To achieve this goal, pick a label in V(H) uniformly at random for each vertex in G. Denote by X the number of H-copies in G for which each vertex $u \in V(H)$ is mapped to a vertex in G that received the label u. It is easy to see that the $\mathbb{E}(X) = m/h^h$. It follows that there exists a partition $\{V_u\}_{u \in V(H)}$ of the vertices of G for which $X \geq m/h^h$. Fix such a partition, and denote by \mathcal{H}_0 the family of H-copies for which every $u \in V(H)$ is mapped to V_u (so $|\mathcal{H}_0| \geq m/h^h$). Let G_0 be the subgraph of G whose edge set is the collection of edges that appear in some H-copy in \mathcal{H}_0 .

Next, since G_0 is T-free (as it is a subgraph of G), it is t-degenerate; fix an ordering < of $V(G_0)$ such that every vertex u has at most t neighbours that appear after u in <. Each H-copy in \mathcal{H}_0 inherits an ordering of V(H) from <. Denote by $<_H$ the most popular such ordering and let \mathcal{H}_1 be the subfamily of H-copies in \mathcal{H}_0 that received the ordering $<_H$ (so $|\mathcal{H}_1| \ge |\mathcal{H}_0|/h! \ge m/(h^h h!)$).

We now turn to the final step towards obtaining the required subgraph of G. Ideally, we would have liked to find a graph F, which is the union of $\Omega(m)$ distinct copies of H in \mathcal{H}_1 , and satisfies the following: for every $uw \in E(H)$, either all vertices in V_u have small degree into V_w , or all vertices in V_u have much larger degree into V_w . Such a property would allow us to show that if a suitable (U,t)-blow-up of H contains a copy of T, then so does F. However, it is not clear if such a family of H-copies exists. Instead, we aim for a sequence of graphs $F_1 \supseteq \ldots \supseteq F_t$ (each of which is a union of a large collection of H-copies in \mathcal{H}_1) such that for every $uw \in E(H)$, either all vertices in V_u have small degree into V_w in the graph F_1 , or all non-isolated vertices in F_i have much larger degree into V_w in the graph F_{i-1} for every $1 \le i \le t$. Such a sequence still allows us to find a copy of T in T_1 , under the assumption that a certain T_1 0-blow-up of T_2 1 contains a copy of T_2 2, using the fact that T_2 3 is a tree. In order to find the required sequence of graphs, pick constants T_1 3 is a tree. In order to find the required sequence of graphs, pick constants T_2 3 is a tree. In order to find the required sequence of graphs, pick constants T_2 3 is a tree. In order to find the required sequence of graphs, pick constants T_2 4 is a tree. In order to find the required sequence of graphs, pick constants T_2 4 is a tree.

Procedure 1. Modifying \mathcal{H}_1

```
Set \mathcal{H}_0^{(1)} = \mathcal{H}_1.
Set E_0 to be the set of ordered pairs \{uw : uw \in E(H), u >_H w\} (so |E_0| = e(H)).
Set b = 0 (b counts pairs (V_u, V_w) with bounded maximum degree in an appropriate graph).
Set i = 1 (i denotes the position in the sequence of t graphs we wish to generate).
while b < e(H), i < t do
    For every e = uw \in E_b, let B_e be the set of vertices in V_u whose degree into V_w, with respect
    to \mathcal{H}_{h}^{(i)}, is at most c_{b}.
    if at least half the H-copies in \mathcal{H}_b^{(i)} avoid \bigcup_{e \in E_b} B_e then
         Set \mathcal{H}_b^{(i+1)} to be the family of H-copies in \mathcal{H}_b^{(i+1)} that avoid \bigcup_{e \in E_b} B_e.
         i \leftarrow i + 1.
    else
         Let e \in E_b be such that at least \frac{1}{2|E_b|} of the H-copies in \mathcal{H}_b^{(i+1)} are incident with B_e.
         Set \mathcal{H}_{b+1}^{(1)} to be the family of H-copies in \mathcal{H}_{b}^{(i)} that are incident with B_{e}.
         Set E_{b+1} = E_b \setminus \{e\}.
         b \leftarrow b + 1, i \leftarrow 1.
    end if
end while
```

Note that the procedure ends either with b = e(H) and $E_b = \emptyset$, or with $b \le e(H)$, i = t and $|E_b| = e(H) - (b-1)$. Let \bar{b} be the value of b at the end of the procedure. In the next claim we show that the latter case holds, i.e. $\bar{b} < e(H)$ (in other words, there is a pair (V_u, V_w) whose maximum degree in $\mathcal{H}_b^{(t)}$ is unbounded).

Claim 5. $\bar{b} < e(H)$.

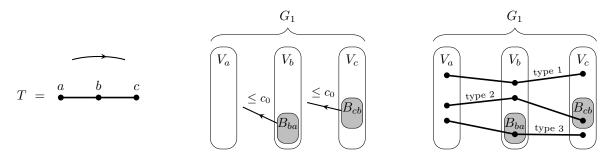


Figure 2: A simple example to illustrate Algorithm 1.

T is a path on three vertices, with vertex order $a <_T b <_T c$; the vertices of G_1 are partitioned into sets V_a, V_b, V_c and we are interested in T-copies where x is mapped to V_x for $x \in \{a, b, c\}$.

By definition of G_1 , vertices in V_a have degree at most t into V_b , and vertices in V_b have degree at most t into V_c . The set B_{ba} consists of vertices in V_b with small degree (at most c_0) into V_a ; B_{cb} is defined similarly.

In the first iteration of the procedure (when b = 0), we distinguish three types of T-copies: copies that avoid $B_{cb} \cup B_{ba}$ (type 1); copies that are incident with B_{cb} (type 2); and copies that are incident with B_{ba} (type 3). We keep T-copies of one of the types, depending on which one is most common. We either repeat this step (if we chose to keep the type 1 vertices) or we proceed to the next iteration of the procedure (with b = 1).

Proof. Let $\mathcal{F} := \mathcal{H}_{\overline{b}}^{(1)}$, and let F be the corresponding graph. Note that, as c is large,

$$|\mathcal{F}| \geq \left(\frac{1}{2e(H)}\right)^{t \cdot e(H)} |\mathcal{H}_1| \geq \left(\frac{1}{2e(H)}\right)^{t \cdot e(H)} \frac{1}{h^h h!} \cdot m > \frac{1}{\sqrt{c}} \cdot m.$$

Suppose that $\overline{b} = e(H)$. Then, for every $uw \in E(H)$, every vertex in V_u sends at most $c_{\overline{b}}$ edges into V_w (with respect to F).

Let a be the number of connected components in H. Note that the (\emptyset, t) -blow-up of H is T-free (it is a disjoint union of copies of H, and we may assume that H is T-free, as otherwise m = 0 and we are done immediately), and has a components. Thus, by Definition 3, we have $a \le r$.

In order to upper-bound the number of H-copies in \mathcal{F} , let U be a set of vertices in H that contains exactly one vertex from each component. Trivially, there are at most n^a ways to map each vertex $u \in U$ to a vertex in V_u . Fix such a mapping. Let w be a vertex in H with a neighbour $u \in U$, and suppose that u is mapped to $x \in V(F)$. Since w is mapped to one of the neighbours in V_w of x, there are at most $c_{\overline{b}}$ vertices that w can be mapped to. Similarly, if w is in distance d from a vertex $u \in U$, there are at most $(c_{\overline{b}})^d$ vertices that w can be mapped to. By choice of U, every vertex in H is in distance at most d from some vertex in d, hence there are at most d from some vertex in d, hence there are at most d from some vertex in d. In total, we find that d is d in d is d in d in

Putting the two bounds on $|\mathcal{F}|$ together, we have $m < c \cdot n^a \leq c \cdot n^r$, a contradiction to the assumption on m. It follows that $\bar{b} < e(H)$, as desired.

From now on, we may assume that $\bar{b} < e(H)$, which means that $\mathcal{H}_{\bar{b}}^{(i)}$ has been defined for every $i \in [t]$. Write $\mathcal{F}_i = \mathcal{H}_{\bar{b}}^{(i)}$, and denote by F_i the graph formed by taking the union of all H-copies in \mathcal{F}_i . Let D be the directed graph on vertex set V(H) with edges $\{uw, wu : uw \in E(H)\}$ (so each edge in H is replaced by two directed edges, one in each direction). We 2-colour the edges of D: colour the edges in $E_{\bar{b}}$ red and colour the remaining edges blue. (Note that if uw is red then wu is blue.) Denote the graph of blue edges by D_B and the graph of red edges by D_R . By definition of \mathcal{F}_i using Algorithm 1, one can check that

- (a) $G \supseteq G_1 \supseteq F_1 \supseteq \ldots \supseteq F_t$.
- (b) If $uw \in D_B$, all vertices in V_u have degree at most $c_{\bar{b}-1}$ into V_w in F_1 .
- (c) If $uw \in D_R$, all non-isolated vertices in V_u with respect to F_i have degree at least $c_{\overline{b}}$ into V_u in, for every $2 \le i \le t$.

Indeed, (a) and (c) follow easily from the definition of the procedure. To see (b), if uw is blue, then either $u <_H w$ which implies that vertices in V_u have at most t edges into V_w in G_1 , or the edge uw was originally in E_0 , but was removed at some point before the final iteration of the procedure, which implies that every vertex in V_u sends at most c_b edges into V_w in F_b , for some $b < \overline{b}$.

We shall use the following properties of F_i and \mathcal{F}_i .

Claim 6. The following two properties hold for $2 \le i \le t$.

- (i) every non-isolated vertex in F_i is contained in an H-copy in \mathcal{F}_{i-1} ,
- (ii) let uw be a red edge in D and let $S = \bigcup_{v: \text{ there is a blue path from } v \text{ to } w} V_v$. Then for every non-isolated vertex $x \in V_u$ there is a collection of t copies of H in \mathcal{F}_{i-1} that contain x and whose intersections with S are pairwise vertex-disjoint.

Proof. The first property follows immediately from the definition of F_i as the union of H-copies in \mathcal{F}_i : if a vertex is non-isolated in F_i it is also non-isolated in F_{i-1} , and thus it must be contained in some H-copy in \mathcal{F}_{i-1} .

Now let us see why the second property holds. Note that the directed edge uw is in $E_{\overline{b}}$ as uw is a red edge in D. Thus, by definition of \mathcal{F}_i , any non-isolated vertex $x \in V_u$ sends at least $c_{\overline{b}}$ edges into V_w in the graph F_{i-1} . This means that there is a collection of at least $c_{\overline{b}}$ copies of H in \mathcal{F}_{i-1} that contain x, each of which uses a different edge from x to V_u ; denote this family of H-copies by \mathcal{F} . We claim that every H-copy in \mathcal{F} intersects at most $h \cdot (c_{\overline{b}-1})^h$ other H-copies in \mathcal{F} in S. Indeed, there are at most h ways to choose an intersection point; suppose that the intersection is in $y \in V_v \subseteq S$. By choice of S, there is a path $(v_0 = v, v_1, \ldots, v_k = w)$ from v to w in D_B . This means

that the degree into $V_{v_{j+1}}$ (with respect to F_{i-1}) of any vertex in V_{v_j} is at most $c_{\overline{b}-1}$. Thus, there are at most $(c_{\overline{b}-1})^k \leq (c_{\overline{b}-1})^h$ vertices in V_w that can be in the same H-copy in \mathcal{F} as y. Since each H-copy in \mathcal{F} uses a different vertex of V_w , it follows that at most $(c_{\overline{b}-1})^h$ copies of H in \mathcal{F} contain y, and in total there are at most $h(c_{\overline{b}-1})^h$ copies of H in \mathcal{F} that intersect any single H-copy in \mathcal{F} . Since the total number of H-copies in \mathcal{F} is $c_{\overline{b}} \geq t \cdot (h \cdot (c_{\overline{b}-1})^h + 1)$, there is a collection of t copies of H in \mathcal{F} whose intersections with S are pairwise disjoint, as required.

We now wish to find a particular subset $U \subseteq V(H)$ such that the (U, t)-blow-up of H behaves similarly to the sequence of graphs F_1, \ldots, F_t . The set U will be defined in terms of a certain set $A \subseteq V(H)$, which we define now. Let \mathcal{P} be a partition of V(H) into strongly connected components according to D_B . Pick a set $A \subseteq V(H)$ that satisfies the following properties.

- (a) every vertex in D_B is reachable from A, i.e. for every $u \in D_B$ there is a blue path from A to u,
- (b) |A| is minimal among sets that satisfy (a),
- (c) among sets that satisfy (a) and (b), A maximises

$$\sum_{u \in A} (\# \text{ vertices reachable from } u). \tag{2}$$

Let W be the set of vertices in V(H) that are in the same part of \mathcal{P} as one of the vertices in A, and let $U = V(H) \setminus W$. In the following two claims we list some useful properties of A, U and W.

Claim 7. The following properties hold.

- (i) A contains at most one vertex from each part of \mathcal{P} ,
- (ii) there are no edges of D between distinct parts of \mathcal{P} that are contained in W.
- (iii) there are no blue edges from U to W.

Proof. Property (i) clearly holds because of the minimality of |A| and the fact that for every part $X \in \mathcal{P}$, the set of vertices reachable from X is the same as the set of vertices reachable from any individual vertex $x \in X$.

For (ii), suppose that there is an edge uw in D with u and w belonging to distinct parts of \mathcal{P} that are contained in W; without loss of generality uw is blue. If we remove from A the vertex from the same part of \mathcal{P} as w, we obtain a smaller set that still satisfies (a) above, a contradiction to the minimality of A.

Now suppose that Property (iii) does not holds, i.e. there is a blue edge uw with $u \in U$ and $w \in W$. Let A' be the set obtained from A by removing the vertex w' that is in the same part of \mathcal{P} as w and adding u. Note that every vertex that is reachable from A is also reachable from A'. Moreover, every vertex that is reachable from w' is also reachable from u, but u is not reachable from w', because otherwise u and w' would have been in the same strongly connected component, and hence in the same part of \mathcal{P} . It follows that

$$\sum_{u \in A'} (\# \text{ vertices reachable from } u) > \sum_{u \in A} (\# \text{ vertices reachable from } u),$$

a contradiction to the maximality property of A.

Claim 8. |A| > r.

Proof. Suppose that $|A| \leq r$. As in the proof of Claim 5, there are at most $n^{|A|}$ ways to embed A in $V(F_1)$ in such a way that every $a \in A$ is sent to V_a . Fix such an embedding, and let $u \in V(H)$. Because there is a blue path from A to u (by (a) in the definition of A), there are at most $(c_{\overline{b}-1})^h$ vertices that u could be mapped to which may form an H-copy in \mathcal{F}_1 together with the vertices that A is mapped to. Thus, in total there are at most $(c_{\overline{b}-1})^{h^2} \cdot n^r$ copies of H in \mathcal{F}_1 . As in the proof of Claim 5, this implies that there are fewer than $c \cdot n^r$ copies of H in G, a contradiction. \square

Let Γ be the (U,t)-blow-up of H (see Definition 2 and Figure 1). Denote its vertices by $U \cup \left(\bigcup_{i \in [t]} W_i\right)$, where the W_i 's are copies of the set W (so $\Gamma[U \cup W_i]$ induced a copy of H for every $i \in [t]$). For every vertex x in Γ , denote by $\phi(x)$ the vertex in H that it corresponds to. By Claim 7 (i) and (ii), $H \setminus U$ consists of |A| > r components. Because r = r(H,T) (see Definition 3), Γ contains a copy of T.

Consider a specific embedding of T in Γ . Let $\{X_1, \ldots, X_k\}$ be a partition of V(T), such that for every $i \in [k]$ the subgraph $T[X_i]$ is a maximal non-empty subtree of T that is contained either in W_j , for some j, or in U. We assume, for convenience, that the ordering is such that there is an edge between X_i and $X_1 \cup \ldots \cup X_{i-1}$ for every $i \in [k]$; in fact, there would be exactly one such edge as T is a tree. By choice of the X_i 's and by definition of Γ , this edge must be an edge between some set W_j and U.

Our final aim is to show that G contains a copy of T, a contradiction to the assumptions on G. We reach the required contradiction by proving the following claim.

Claim 9. For every $i \in [k]$ there is a copy of $T[X_1 \cup ... \cup X_i]$ in $F_{t-(i-1)}$ such that x is mapped to $V_{\phi(x)}$ for every $x \in X_1 \cup ... \cup X_i$.

Proof. We prove the statement by induction on i. For i = 1, the statement can easily be seen to hold, by picking any H-copy in \mathcal{F}_t , and mapping each vertex of X_1 to the corresponding vertex in the copy of H.

Now suppose that the statement holds for i; let $f_i: X_1 \cup ... \cup X_i \to V(F_{t-(i-1)})$ be the corresponding mapping of the vertices. Now, there are two possibilities to consider: $X_{i+1} \subseteq U$ or $X_{i+1} \subseteq W_j$ for some j.

Let us consider the first possibility. Let uw be the edge between $X_1 \cup \ldots \cup X_i$ and X_{i+1} , where $u \in U$ and $w \in W_j$ for some j (so $u \in X_{i+1}$ and $w \in X_1 \cup \ldots \cup X_i$). We may assume that $f_i(w)$ is non-isolated in $F_{t-(i-1)}$. Indeed, if $|X_1 \cup \ldots \cup X_i| \geq 2$, this is clear since $T[X_1 \cup \ldots \cup X_i]$ spans a tree. Otherwise, we must have that i = 1 and $|X_1| = 1$, but then we can choose $f_1(w)$ to be a non-isolated vertex in V_w with respect to F_t . As $f_i(w)$ is non-isolated, by Claim 6 (and the fact that $i \leq k \leq t$) there is an H-copy in \mathcal{F}_{t-i} that contains $f_i(w)$; denote the corresponding embedding by $g: V(H) \to V(F_{t-i})$. We define $f_{i+1}: X_1 \cup \ldots \cup X_{i+1} \to V(F_{t-i})$ simply by

$$f_{i+1}(x) = \begin{cases} f_i(x) & x \in X_1 \cup \ldots \cup X_i \\ g(x) & x \in X_{i+1}. \end{cases}$$

In order to show that f_{i+1} is an embedding with the required properties, we need to show that it has the following three properties: it maps edges in $T[X_1 \cup \ldots \cup X_{i+1}]$ to edges in F_{t-i} ; $f_{i+1}(x) \in V_{\phi(x)}$ for every $x \in X_1 \cup \ldots \cup X_{i+1}$; and f_{i+1} is injective.

We first show that f_{i+1} preserves edges. This follows because f_i and g preserve edges (this holds for g by definition, and holds for f_i because it sends edges of $T[X_1 \cup ... \cup X_i]$ to edges of $F_{t-(i-1)}$ which is a subgraph of F_{t-i}) so edges inside $X_1 \cup ... \cup X_i$ and inside X_{i+1} are mapped to edges in F_{t-i} , and moreover by choice of g the only edge between these two sets is mapped to an edge of F_{t-i} .

Next, we note that for every $x \in X_1 \cup ... \cup X_{i+1}$, we have $f_{i+1}(x) \in V_{\phi(x)}$. This is because this holds for both f_i (by assumption) and g (as g corresponds to an H-copy in \mathcal{F}_{t-i}).

Finally, we show that f_{i+1} is injective. As both f_i and g are injective, it suffices to show that $g(x) \neq f_i(y)$ for every $x \in X_{i+1}$ and $y \in X_1 \cup \ldots \cup X_i$. This holds because $\phi(x) \neq \phi(y)$ (since x is in U, it is the only vertex in $X_1 \cup \ldots \cup X_{i+1}$ with $\phi(x) = x$) and because x and y are mapped to $V_{\phi(x)}$ and $V_{\phi(y)}$, respectively, and these two sets are disjoint.

Now we consider the second possibility, namely that $X_{i+1} \subseteq W_j$ for some j. Let uw be the edge between $X_1 \cup \ldots \cup X_i$ and X_{i+1} , where $u \in U$ and $w \in W_j$ (so $w \in X_{i+1}$). By Claim 7 (iii), the edge uw is red. Hence, by Claim 6, there is a collection of t copies of H in \mathcal{F}_{t-i} that contain $f_i(u)$ and whose intersections with $S = \bigcup_{v: \text{ there is a blue path from } v \text{ to } w} V_v$ are pairwise vertex-disjoint. As $|X_1 \cup \ldots \cup X_i| < t$, it follows that there is an H-copy in \mathcal{F}_{t-i} that contains $f_i(w)$ and whose intersection with S is disjoint of $f_i(X_1 \cup \ldots \cup X_i)$; denote the corresponding embedding of H by $g: V(H) \to V(F_{t-i})$. As before, define $f_{i+1}: X_1 \cup \ldots \cup X_{i+1} \to V(F_{t-i})$ by

$$f_{i+1}(x) = \begin{cases} f_i(x) & x \in X_1 \cup \ldots \cup X_i \\ g(x) & x \in X_{i+1}. \end{cases}$$

As before, f_{i+1} maps edges of $T[X_1 \cup \ldots X_{i+1}]$ to edges of F_{t-i} , and it sends every $x \in X_1 \cup \ldots \cup X_{i+1}$ to $V_{\phi(x)}$. Moreover, by choice of g and since $g(X_{i+1}) \subseteq S$, we find that $g(X_{i+1})$ and $f_i(X_1 \cup \ldots \cup X_i)$ are disjoint. Since f_i and g are both injective, it follows that f_{i+1} is injective. This completes the proof of the induction step, and thus of the claim.

By taking i = k in the previous claim, we find that $F_{t-(k-1)}$ contains a copy of T. But $F_{t-(k-1)} \subseteq F_1 \subseteq G$ (note that $k \leq t$), so G has a copy of T, a contradiction. It follows that the number of H-copies in G is at most $c \cdot n^{r(H,T)}$, as required.

3 Conclusion

In this paper we determined, up to a constant factor, the function ex(n, H, T) for any tree T. We note that the assumption that T is a tree was crucial in our proof to work, but it was used only in the proof of Claim 9 (where we made use of the fact that there is exactly one edge between $X_1 \cup \ldots \cup X_i$ and X_{i+1}).

It would, of course, be interesting to sharpen our result by determining $\exp(n, H, T)$ completely, or at least asymptotically. While this may be hopeless in general, in some special cases this task may not be out of reach. For example, Alon and Shikhelman [1] consider the special case where $H = K_h$ for some h < t and t = |T|. They ask if the n-vertex graph, which is the union of $\lfloor n/t \rfloor$ disjoint cliques of size t, and perhaps one smaller clique on the remainder maximises the number of copies of K_h among all T-free graphs on n vertices. This question generalises a question of Gan, Loh and Sudakov [8], who considered the case where T is a star on t vertices. In other words, they were interested in maximising the number of cliques of size t0 among t1-vertex graphs with maximum degree smaller than t1. They proved that the aforementioned construction of disjoint cliques is the unique extremal example when t2, thus proving a conjecture of Engbers and Galvin [4]. The question whether this construction is best for larger values of t1 remains open.

For other questions regarding the value of ex(n, H, F), where F need not be a tree, see [1].

Acknowledgements

I would like to thank the anonymous referee for their useful suggestions.

References

- [1] N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. Combin. Theory Ser. B 121 (2016), 146–172.
- [2] B. Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Philos. Soc. **79** (1976), 19–24.
- [3] B. Bollobás and E. Győri, Pentagons vs. triangles, Discrete Math. 308 (2008), 4332–4336.
- [4] J. Engbers and D. Galvin, Counting independent sets of a fixed size in graphs with a given minimum degree, J. Graph Theory **76** (2014), 149–168.
- [5] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 459–464.

- [6] B. Ergemlidze, E. Györi, A. Methuku, and N. Salia, A note on the maximum number of triangles in a C_5 -free graph, Electron. Notes Discrete Math. **61** (2017), 395–398.
- [7] Z. Füredi and L. Özkahaya, On the maximum number of triangles in special families of graphs and hypergraphs, in preparation.
- [8] W. Gan, P. Loh, and B. Sudakov, Maximizing the number of independent sets of a fixed size, Combin Probab Comput 24 (2015), 521–527.
- [9] D. Gerbner, E. Győri, A. Methuku, and M. Vizer, Generalized Turán problems for even cycles, Acta Math. Univ. Comenianae 87 (2019), 723–728.
- [10] D. Gerbner, B. Keszegh, and B. Patkos, Generalized forbidden subposet problems, preprint, arXiv:1701.05030.
- [11] D. Gerbner, A. Methuku, and M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discr. Math. (2019).
- [12] D. Gerbner and C. Palmer, Counting copies of a fixed subgraph in F-free graphs, European J. Combin. 82 (2019), 103001.
- [13] L. Gishboliner and A. Shapira, A Generalized Turán Problem and its Applications, Int. Math. Res. Notices, to appear.
- [14] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B **102** (2012), 1061–1066.
- [15] A. Grzesik and B. Kielak, On the maximum number of odd cycles in graphs without smaller odd cycles, Acta Math. Univ. Comen. 88 (2019), 755–758.
- [16] E. Győri, N. Salia, C. Tompkins, and O. Zamora, The maximum number of P_{ℓ} copies in P_k -free graphs, preprint, arXiv:1803.03240.
- [17] E. Győri and H. Li, The maximum number of triangles in C_{2k+1} -free graphs, Combin. Probab. Comput. **21** (2012), 187–191.
- [18] H. Hatami, J. Hladký, D. Král', S. Norine, and A. Razborov, On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120 (2013), 722–732.
- [19] R. Luo, The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser. B 128 (2018), 219–226.
- [20] J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84 (2020), 103026.
- [21] M. Simonovits, Paul Erdős' influence on extremal graph theory, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, pp. 148–192.
- [22] J. Wang, The shifting method and generalized Turán number of matchings, preprint, arXiv:1812.01832.