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Abstract. We present a new approach to sound compression, based on rough path
theory, which turns out to be more effective than the traditional Fourier and Wavelet
methods. We describe a procedure for encoding a signal using certain sequences of
iterated integrals known as signatures and construct an algorithm for decoding.

1. Introduction. We take the view that perception of sound is an example of a
controlled system: one has a complex dynamic system Yt (perception) subject to an external
control Xt (air pressure) where it is reasonable to hypothesize the existence of a model
relating the internal state Y of the system and the external control X in the form of a
differential system2

dYt = f(Yt)dXt. (1)

In order to accurately reproduce the sound, and still more to construct efficient compression
algorithms retaining the essential information in the control X one has to know the answer
to the question: when do two sound streams X and X̃ sound essentially the same (or two
controls have the same effect)? This has a physiological component – but it also has a
significant mathematical component that is, to an important extent, independent of the
detailed structure (Y, f) of the model.

This latter part is the focus of our paper. We believe that, if various mathematical
challenges can be resolved adequately, a more systematic and less ad-hoc approach to the
compression of continuous datastreams will emerge. Recent work [4] shows that a control X
is perfectly described through a series of algebraic co-efficients, based on computing iterated
integrals and known as the signature of X. This transform can be thought of as a non-
commutative analog of the Fourier series tuned to control problems. With even this result
it would seem worth exploring the possibilities for encoding signals using their signature.
There is a second complimentary reason.

On timescales corresponding to perception, the substantial flow of information in the
control X give it a complex, if continuous, structure (a spectral analysis of sounds suggests
that it can be much rougher than Brownian motion). The theory of Rough Paths (see [2]),
developed over the last years by one of the authors with several co-authors, enables one
to give an exact mathematical meaning to the equation (1) even in cases where the path
X is much rougher than even a Brownian path. More importantly it provides ways to
approximate to X by more regular paths X̃ in ways that ensure, in a mathematically
precise way “that the two signals X and X̃ produce essentially the same response Y !”.

Controlled systems exhibit an essential contrast in their behavior according to the di-
mension of the control variable.3 In the case where X is one-dimensional, the map X → Y
is continuous in the topology of uniform convergence, i.e. it is robust to errors in X. On
the other hand, if X is multi-dimensional then this map is in general not continuous in the
uniform topology. This instability underlines the essentially nonlinear nature of the control
problem; summarising X by its Fourier/Wavelet coefficients is limited in part because of
the linearity of the Fourier approach. Small time shifts of the signal might be acceptable
in one channel but in a multichannel datastream, independent compression that produced
small time shifts in the reconstructed signals could prove a significant source of jitter.
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The two approaches compliment each other and are interrelated. They take full advan-
tage of the multidimensional and non-linear aspects of the control problem.

In this paper we discuss the coding of a signal through its truncated signature and
provide an algorithm for the decoding. It appears that, at the moment, availability of
decoding algorithms is the main obstacle to the evaluation of the approach, which, on
simple trial situations looks very promising.

2. Compressing the signal. Let Xt be a path of bounded variation in Rd, d > 1. For
every time interval [s, t] we define

Xn
s,t =

∫
· · ·

∫
s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun ∈ (Rd)⊗n

and we call
signs,t(X) = 1 + X1

s,t + · · ·+ Xn
s,t + · · ·

the signature of X over the time interval [s, t]. Further, we call

sign
[n]
s,t(X) = 1 + X1

s,t + · · ·+ Xn
s,t

the truncated signature of X at level n over the time interval [s, t].
Thus signs,t(X) is an element of the closure T ((Rd)) of the tensor algebra T (Rd) and

sign
[n]
s,t(X) belongs to its truncation T [n](Rd). In the sequel we will skip the indices s, t if the

signature is taken over the whole time interval.
There are many dependencies between different iterated integrals Xn

s,t and so one has a
lot of redundancy in the whole sequence signs,t(X). This superfluity of information can be
avoided by taking the logarithmic signature and truncated logarithmic signature

logsigns,t(X) = log(signs,t(X)) and logsign
[n]
s,t(X) = log[n](sign

[n]
s,t(X)),

where log and log[n] is the usual and the truncated logarithm on T (Rn), respectively.
Now suppose one is trying to digitally approximate a continuous multi-dimensional signal

X where the interest is in using this approximation as a control in substitution for the
original signal. It can be significantly more efficient to record the truncated logarithmic
signatures logsign

[n]
t,t+δt(X) allowing satisfactory results on a relatively coarse time scale

rather than record just the usual increments Xt+δt−Xt where a much finer time scale would
be required. More precisely, suppose that the signal X has been measured on a very fine
time scale 0 < t1 < · · · < tkm = 1. Now it can be thought of as a continuous piecewise linear
path. Let us combine the time intervals into the groups of m intervals following each other
and call them long time intervals. For the i-th long time interval, we compute the n-th
truncated logarithmic signature l

[n]
i of the piecewise linear path over this interval. Finally,

we obtain the vector
l = ln,m,k(X) = (l

[n]
1 , . . . , l

[n]
k )

as a compression for the vector (Xt1 , . . . , Xtkm
). The compression of information is achieved

mainly because of the fact that it is sufficient to compute the elements of l with much lower
precision than the original data Xti .

3. Reconstruction problem. This approach provides a fast and simple algorithm for
sound compression for a wide range of n, m. For the low dimensional choice where n = 2
and m = 3 the reconstruction problem of finding a stream X̃i such that l2,3,k(X̃) = l2,3,k(X)
is linear with only one quadratic constraint. So one can easily find X̃ satisfying the equation
and even force the minimality of the length of X̃ over all solutions. Numerical experiments



show how, even at this primitive level, n = 2 (using the groups of m = 3 intervals) the
approach is effective and high quality4. The sound recordings made for the controls X and
X̃ show that although the streams X and X̃ are not at all close on a sample by sample
basis they produce the same acoustic effect when listened to with high quality headphones.

A fundamental difficulty in developing the approach seems to be that the problem of
reconstructing a signal is much more difficult for n > 2. Let us formulate it precisely.
Denote by G[n] (resp., L[n]) the set of all elements which are n-truncated signatures (resp.,
logarithmic signatures) of paths of bounded variation.

Problem: Given g ∈ G[n], find a path such that sign[n]X = g (or, equivalently, given
l ∈ L[n], find a path such that logsign[n]X = l).

The solution of this problem is in general not unique. For example, one can look for a
solution that is piecewise linear. It is easy to see that the problem of finding such a solution
is equivalent to the problem of solving a system of polynomial equations. Provided that
there exists a solution this can be done for example by using Gröbner bases. In some sense,
the remaining problem is to relate the level of truncation and the number of linear pieces
in such a way that a solution exists. A disadvantage of this approach is a high complexity
of the problem of solving polynomial systems.

In this paper we describe an algorithm that solves the reconstruction problem approx-
imately. Namely, for given truncated signature g ∈ G[n], we construct a path X such that
sign[n]X is approximately the same as g (in a sense to be made precise). The algorithm is
“fractal” and the idea is analogous that of the decimal (or binary) representation of the real
numbers where one finds a good approximation (by 0.0, 0.1, · · · , 0.9) subtracts it, multiplies
the remainder by ten and approximates again. Roughly speaking, we first fix a finite subset
of G[n] (which is called the database and plays the same role as the numbers 0.0, 0.1, . . . , 0.9
for the decimal representation) and construct paths with corresponding signatures using any
(maybe very slow and complicated) reconstruction method. This database must be com-
puted only once and then it will be used for constructing paths with arbitrary truncated
signatures. Such paths will be constructed using the scaling and the concatenation of the
paths corresponding to the truncated signatures from the database.

4. Properties of the signatures. Denote by G (resp., L) the set of all elements
which are the signatures (resp., logarithmic signatures) of paths of bounded variation. The
remarkable fact about the group structure of G was observed by Chen (see [1]): for two
paths X1, X2 and their concatenation one has sign(X1 ◦X2) = signX1⊗ signX2. and if Y
is the path which is obtained by going backwards along a path X then signX ⊗ signY = 1
and logsignY = −logsignX. Further, there is a natural scaling δλ on T ((Rd)) given by

δλ(g0 + g1 + g2 + . . . ) = g0 + λg1 + λ2g2 + . . .

It is easy to see that δ is compatible with the scaling of the path, i.e. sign(λX) = δλ(signX)
and logsign(λX) = δλ(logsignX).

Let || · || be a norm on Rd. Denote by the same symbol norms on the linear spaces
(Rd)⊗k, 1 ≤ k ≤ n, such that ||u⊗ v|| ≤ ||u|| ||v||, and that the norms are equivalent under
permutations of the indices of the tensors. We define a pseudo-norm on T [n](Rd) by

|||g||| = max
1≤k≤n

(||gk||)1/k .

Obviously, it is compatible with the path scaling.

5. Construction of the database. Denote by L(k) the k-th grade of L and p =
dim L(k). Consider the ball B ⊂ Rp of radius R centered at zero and a tetrahedron Tp ⊂ B

4although at these low sampling rates it cannot achieve the same compression as MPEG.



with p + 1 vertices centered at zero as well. Denote by h the distance between a vertex of
Tp and zero. Further, consider the balls Bi, 0 ≤ i ≤ p of radius r centered at the vertices of
Tp. Our goal is to cover B by the balls Bi of a possibly small radius. Denote by rp(h,R) the
smallest suitable radius for fixed h and R and by rp(R) = min

h>0
rp(h,R) the optimal radius.

Lemma 1. Let p > 1. Then B is covered by the sets Bi if and only if

r ≥ rp(h,R) =
(
h2 − 2Rh/p + R2

)1/2
(2)

Further, rp(R) = R
√

1− p−2, which is attained at hp(R) = R/p.

Proof. Denote by l the edge length of Tp, by a the distance between zero and a facet, by b
the distance between the center of a facet and a vertex belonging to this facet, and by c the
distance between a facet and the intersection point of the spheres of the radius r centered
at the vertices belonging to this facet. Then we have

l = h
√

2(1 + p−1), b = l
√

(1− p−1)/2 = h
√

1− p−2,

a = h/p, c =
√

r2 − b2 =
√

r2 − (1− p−2)h2.

Further, the condition for the balls Bi to cover B can be written as R ≤ a + c, i.e.,

R ≤ h/p +
√

r2 − (1− p−2)h2,

which is equivalent to (2) as we also have l ≤ R.
Further, since rp(h,R) is of the parabolic type with respect to h it attains its minimum

at hp(R) = R/p and the minimal value rp(R) is then just equal to rp(hp(R), R). 2

Let us take R = 1 and consider a corresponding optimal tetrahedron Tp. Since we can
identify Rp with L(k) we can regard the vertices hi

k, 1 ≤ i ≤ dim L(k), of Tp as elements of
L(k). Now we define the set Hk as

Hk = {hi
k : 1 ≤ i ≤ dim L(k)} ⊂ L(k) ⊂ L[n].

The set H = H1 ∪ · · · ∪Hn is called the database.

6. Reconstructing a signal using the database. Let l ∈ L[n] and the precision ε be
given. We construct a path with the logarithmic signature lε such that ||| log(e−lεel)||| < ε.
The algorithm consists of n steps. Set l(0) = l. For 1 ≤ i ≤ n
Step i: Define

l(i) = log(e−δ(m
ki
i )h

ki
i . . . e−δ(m1

i )h1
i el(i−1)

),

where hj
i ∈ Hi and mj

i > 0, 1 ≤ j ≤ ki, are such that ||l(i)i || < εi. We are doing this in the

following way. First, we consider ||l(i−1)
i ||. If it is less then εi we take l(i) = l(i−1) and go

to the next step of the algorithm. Otherwise we define m1
i = ||l(i−1)

i ||1/i and consider the

element δ(1/m1
i )l

(i−1)
i of the unit ball in L(i). By Lemma 1 and by the construction of Hi

there exists h1
i ∈ Hi such that∣∣∣∣∣∣δ(1/m1

i )l
(i−1)
i − h1

i

∣∣∣∣∣∣ ≤ √
1− d−2

i .

Assume that we have constructed h1
i , . . . , h

j
i and m1

i , . . . ,m
j
i for some j ≥ 1. Then we

consider ||l(i−1)
i − δ(m1

i )h
1
i − · · · − δ(mj

i )h
j
i ||. If it is less then εi we take

l(i) = log
1∏

s=j

e−δ(ms
i )h

s
i



and go to the next step of the algorithm. Otherwise we define

mj+1
i = ||l(i−1)

i − δ(m1
i )h

1
i − · · · − δ(mj

i )h
j
i ||1/i

and consider the element δ(1/mj+1
i )(l

(i−1)
i − δ(m1

i )h
1
i −· · ·− δ(mj

i )h
j
i ) of the unit ball in L(i).

Again by Lemma 1 and by the construction of Hi there exists hj+1
i ∈ Hi such that∣∣∣∣∣∣δ(1/mj+1

i )(l
(i−1)
i − δ(m1

i )h
1
i − · · · − δ(mj

i )h
j
i )− hj+1

i

∣∣∣∣∣∣ ≤ √
1− d−2

i .

Notice that we will get l(i) in finitely many steps ki since we have

||l(i−1)
i − δ(m1

i )h
1
i − · · · − δ(mj

i )h
j
i || ≤ ||l(i−1)

i ||
(
1− d−2

i

)j/2 → 0 as j →∞.

We have l
(i)
j = l

(i−1)
j for all j < i, which implies ||l(i)j || < εj for all j ≤ i. In particular,

dist(l(n)) < ε, the corresponding signature lε is defined by

lε = log
1∏

i=n

1∏
j=ki

e−δ(mj
i )h

j
i ,

and a path with such logarithmic signature can be now constructed as the concatenation of
the scaled paths from the database.

7. Quality of the algorithm. There are two quantities characterizing the quality
of the algorithm: the size Nd(n) of the database and the number of computations Kd(n)
required for reconstructing a path.

The exact expression for Nd(n) is given by the Witt formula (see [3])

Nd(n) =
n∑

k=1

(dk + 1) =
n∑

k=1

∑
i|k

µ(i)dk/i

k
+ n,

where µ is the Möbius function. For large n and d we have Nd(n) ∼ dn/n.

Lemma 2. Let l, h ∈ L[n] such that |||h||| ≤ |||l|||. Then ||| log(e−hel)||| ≤ (ne3)|||l|||.

Proof. Denote by [ · ]s : L[n] → L(s) the natural projection. Using the Dynkin formula
(see [3]) and the inequalities ||lk|| ≤ |||l|||k and |||hk|||k ≤ |||l||| following from the assump-
tions of the lemma, we obtain after some computations

||[log(e−hel)]s|| ≤ |||l|||sss

s∑
k=1

∞∑
m=0

1

m!

∑
m1+···+m2k=m

m!

m1! . . . m2k!
≤ |||l|||sss

s∑
k=1

e2k ≤ (|||l|||se3)s,

which implies the desired estimate ||| log(e−hel)||| ≤ |||l|||maxi≤s≤n se3 = (ne3)|||l|||. 2

For every l ∈ L[n] and ε > 0, denote Gε(l) = log(|||l|||/ε).

Lemma 3. Let l ∈ L[n] and ε be given. Then ki ≤ Gε(l)2d
i(i+1)(3 log(ne3))i−1/i! for all i.

Proof. The number ki of iterations we are required to do at the step i is the maximal

natural number such that the inequality ||l(i−1)
i ||

(
1− d−2

i

)k(i)/2
> εi holds. This means that

ki =

[
2 log(εi/||l(i−1)

i ||)
log(1− d−2

i )

]
≤ 2id2

i log
dist(l(i−1))

ε
= 2id2

i Gε(l
(i−1)), (3)



where we used the inequality − log(1 − x) ≥ x. Let us now estimate Gε(l
(i)), which itself

depends on ki. By Lemma 2, using (3) and the inequality di < di/i, we obtain

Gε(l
(i)) ≤ log

(ne3)kidist(l(i−1))

ε
= ki log(ne3) + Gε(l

(i−1)) ≤ Gε(l
(i−1))(2id2

i log(ne3) + 1)

≤ Gε(l)
i∏

j=1

(2jd2
j log(ne3) + 1) ≤ Gε(l)

i∏
j=1

3d2j

j
log(ne3) ≤ Gε(l)

(3 log(ne3))idi(i+1)

i!

Combining this inequality with (3) we get the required estimate. 2

Denote by Ed(n) (resp., by Pd(n)) the number of computations, which is sufficient for
computing exp or log (resp., the product of two elements) in L[n]. Further, denote by Ki

d(n)
the number of computations required to perform the i-th step of the algorithm.

Lemma 4. For every 1 ≤ i ≤ n one has Ki
d(n) ≤ 2ki(di + 1)2 + (ki + 2)Ed(n) + kiPd(n).

Proof. Consider the j-th iteration of the i-th step. We need 2di+4 computations to compute
||mj

i || and to compare it with ε. Further, we need di +1 computations for δ(1/mj+1
i )(l

(i−1)
i −

δ(m1
i )h

1
i −· · ·− δ(mj

i )h
j
i ) and 2(di +1)2 computations to find ||δ(1/mj+1

i )(l
(i−1)
i − δ(m1

i )h
1
i −

· · ·− δ(mj
i )h

j
i )−h|| for all elements of Hi. Finally, we need di +1 computations for choosing

an appropriate h ∈ Hi. So the total number of computations for the j-th iteration is
2(di + 2)2, and there are ki iterations. It remains to notice that in conclusion of the i-th
step we compute l(i), which requires at most (ki + 2)Ed(n) + kiPd(n) computations. 2

By Lemma 3 we have

n∑
i=1

ki ≤
n∑

i=1

Gε(l)
2di(i+1)(3 log(ne3))i−1

i!
≤ 2Gε(l)d

n2+n(3 log(ne3))n−1

n∑
i=1

ki(di + 1)2 ≤
n∑

i=1

Gε(l)
2di(i+1)(3 log(ne3))i−1

i!

(
di

i
+ 1

)2

≤ 5Gε(l)d
n2+3n(3 log(ne3))n−1.

Denote by ϕ(n) the rate of growth of Ed(n) and Pd(n), i.e., Ed(n), Pd(n) � dϕ(n). It
follows now from Lemma 4 and the previous estimates that

Kd(n) =
n∑

i=1

Ki
d(n) ≤ 2Gε(l)d

n2+n(3 log(ne3))n−1(5d2n + Ed(n) + Pd(n)) + 2nEd(n) � dn2+f(n)

which gives the asymptotic upper bound for the speed of the algorithm.
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