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Abstract

We present an efficient algorithm to find an optimal fiber orientation in composite materials.
Within a two-scale setting fiber orientation is regarded as a function in space on the macrolevel.
The optimization problem is formulated within a function space setting which makes the
imposition of smoothness requirements straightforward and allows for rather general convex
objective functionals. We show the existence of a global optimum in the Sobolev space H 1(Ω).
The algorithm we use is a one level optimization algorithm which optimizes with respect to the
fiber orientation directly. The costly solve of a big number of microlevel problems is avoided
using coordinate transformation formulas. We use an adjoint-based gradient type algorithm,
but generalizations to higher-order schemes are straightforward. The algorithm is tested for
a prototypical numerical example and its behaviour with respect to mesh independence and
dependence on the regularization parameter is studied.

1 Introduction

Steadily growing industrial demands on modern materials, such as high stiffness together with
minimal weight have led to an increasing interest in composite materials. Combination of different
materials yields properties that may differ significantly from the properties of the pure materials.
Fiber-reinforced polymers consisting of fibers included in a polymer matrix are used widely
in engineering applications, including e.g. aerodynamics or the automotive industry. These
materials often show an anisotropic behaviour which highly depends on local concentration and
orientation of the fibers inside the matrix (cf. [33], [1], [18], [30]). Using modern technology like the
fiber-patch-preforming technique [20] it is nowadays possible to place fiber bundles quite exactly
with nearly every desired orientation within the matrix material. Our purpose is to design an
optimal fiber-reinforced material in order to minimize a given objective functional. Our design
variable is the local fiber orientation. We assume elastic behaviour for the fiber and the matrix
material, respectively, and focus on relatively small deformations such that the linear elasticity
equations hold. Further, we assume scale separation (the scale for the fibers is typically in a range
of micrometers, while the material we want to study has a scale of millimeters to meters) and
use multiscale theory in order to upscale microscopical properties to the macrolevel ( [26], [9], [25]).
For simplicity, we allow only locally unidirectional fibers on the microlevel. Thus, the effective
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stiffness tensor will be a function on the macrolevel that in each macroscopic point depends on
the local fiber orientation of the underlying microlevel. Clearly, this will only be a reasonable
approach if we impose certain smoothness requirements on the macrolevel.
A lot of effort has been spent in literature for the design of optimal microstructures with respect
to minimizing compliance, i.e., minimizing complementary energy. For an overview on the
topic, we refer to the textbooks of Bendsøe and Sigmund [7] and Allaire [2] and the references cited
therein. For the case of an orthotropic material the so-called coaxility condition has been derived
by different authors, starting from Seregin and Troitskii in [29]. It states that in the optimal state
stress and strain have to share common principal axes, which means that fibers should be aligned
with these directions. Many results have been published for cases where an optimal tensor can be
derived analytically, e.g. via closed-form formulations of optimality conditions (see e.g. [27]) or
using Hashin-Shtrikman bounds [15]. These methods have been well-tested for simple geometries,
are however restricted to the compliance as objective functional. A numerical approach based
on homogenization theory has first been proposed by Bendsøe and Kikuchi in [8]. Since then,
a variety of algorithms have been studied [3], including two-step optimization algorithms using
inverse homogenization (e.g. [34], [28]) or stress-based approaches which make use of the coaxility
condition [11]. In both approaches, in each macroscopic integration point a local optimization
problem has to be solved each being typically a quite expensive problem for itself in terms of
computational cost. This drawback can be circumvented using the Discrete Material Optimization
Method (DMO) introduced by Stegmann and Lund [31], [32]. Recent results are even available for
stochastic loads [13].
Here, fiber angles are restricted to a finite set of angles for which effective tensors can be computed
in advance. While this is the natural framework for material optimization problems, i.e. choosing
out of a finite set of materials, fiber angles might in principle take every possible value between
0 and 180 degrees. Furthermore, for practical purposes one might be interested in a smooth
behaviour of fiber orientation, for example allowing only slight changes in a neighborhood of a
point x.
In order to be able to deal with different kinds of smoothness requirements we approach the
optimization problem via a function space setting regarding the fiber angle distribution as a
function of space. Our approach allows for rather general objective functionals. The algorithm we
propose is a one-level-optimization which optimizes with respect to the design parameters directly.
The calculation of effective stiffness tensors is hereby replaced by using coordinate transformation
formulas. In this way, it is sufficient to perform one microlevel calculation in advance to calculate
one effective tensor for an appropiate reference configuration. During the algorithm no further
microlevel calculations are required.
Finally, we end up with an optimal control problem on the macrolevel which is governed by a
semilinear state equation. We refer to the textbook of Tröltzsch [35] and the references cited therein
for an overview of known results in this field. Existence and non-existence of solutions for inverse
problems have been studied in [23]. To ensure the well-posedness in our case we include a Tikhonov
regularization in the objective functional. In this way we can also control the smoothness of the
fiber orientation function α.

1.1 The Optimal Control Problem

In three dimensions the local orientation in a point x ∈ Ω can be prescribed by two angles
α1(x),α2(x), e.g., α1 prescribing the orientation within the x-y-plane which means perpendicular
to the z-axis, α2 the orientation perpendicular to the x-axis. In this article, we keep α2 constant,
for simplicity, and focus on rotations within the x-y-plane (α= α1). Generalization to optimizing
α1 and α2, respectively, is straightforward. We want to solve the following optimization problem
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given a convex functional J u , a body force f , boundary forces g and boundary displacements ud .

min
(α,u)∈Qad×U

J (α, u) := J u (u)+
c
2
‖α‖2

Q

subject to − divσ = f in Ω,

σ =A(α)e(u) in Ω,

u = ud on Γ
σ · n = g on ∂ Ω \Γ,

where Γ denotes the Dirchlet part of the boundary ∂ Ω of the bounded domain Ω⊂R3 and n is
the outward unit normal along ∂ Ω. The spacesU andQ as well as the set of admissible design
variables α ∈Qad ⊂Q will be defined in the following sections.
Besides compliance the objective functional J u might as well be the minimization of certain
deformation or stress components or arise from inverse problems (deformation or stress tracking).
As for practical purposes a smooth behaviour of the fiber orientations is desirable, we choose an
H 1-regularization for our work.
For the discretization we use the finite element method and continuous H 1-conforming finite
elements. Both the Tikhonov regularization and conformity are also necessary to ensure conver-
gence of discrete solutions with respect to the mesh size h→ 0. A detailed convergence analysis
for a similar, but simpler semilinear optimal control problem for finite element discretizations was
considered in [19].

1.2 Outline

The outline of the article is as follows: In Section 2, we derive our state equation which couples
the control variable α to the resulting deformation u. We start from multiscale theory of scale
seperation and derive the constitutive equations on the macrolevel. Furthermore, we analyze
the dependence of the stiffness tensor A(x) on the local fiber orientation α(x) and show how to
calculate it efficiently using coordinate transformation formulas. The optimal control problem is
introduced in Section 3. We prove the existence of a global minimum and derive the necessary
optimality condition as well as the KKT system. In Section 4, we formulate our adjoint-based
gradient-type algorithm. Finally, Section 5 is devoted to the presentation of a prototypical numer-
ical example to underline the capability of our method. We study its stability and convergence
with respect to different regularization parameters c and different meshes Ωh .

2 Local Upscaling

In this section, we derive the state equation from multiscale theory. We refer to [25] or [10] for
details on upscaling of the linear elasticity equation. Let ε� 1 be the ratio between micro and
macro scale. The linear elasticity equation under consideration reads

−div (Aε∇uε) = f in Ω,

uε = ud on Γ,

(Aε∇uε)n = g on ΓN = ∂ Ω \Γ.

Here, Ω⊂R3 is assumed to be sufficiently smooth and the Dirichlet part Γ⊂ ∂ Ω is of positive
measure for each. The vector n denotes the outer unit normal along ∂ Ω. To ensure the unique
solvability of the state equation, we assume the following conditions on Aε = (aεi j k l )1≤i , j ,k ,l≤3
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almost everywhere with positive constants ν and γ and the Frobenius matrix norm ‖ · ‖F

aεi j k l ∈ L∞(Ω) for all 1≤ i , j , k , l ≤ 3 (1a)

aεi j k l = aεj i k l = aεk l i j for all 1≤ i , j , k , l ≤ 3 (1b)

aεi j k l mi j mk l ≥ ν‖m‖
2
F for any symmetric matrix m (1c)

‖Aεm‖F ≤ γ‖m‖F . (1d)

It is well-known from multiscale theory [10] that for ε sufficiently small, an approximation to uε

can be calculated by solving the homogenized macroscale problem

−div
�

A0∇u0
�

= f in Ω,

u0 = ud on Γ.

(A0∇u0)n = g on ΓN .

The homogenized tensor A0 is given by the solution of six microscale problems in every macro-
scopic point [10].

Remark 2.1. As we are only interested in the macroscopic part of the deformation uε, the approxima-
tion u0 is sufficiently accurate for our purposes. It has been shown that properties (1) also hold for the
effective tensor A0 (cf. [10]).

Here, we consider a unidirectional fiber orientation in every macroscopic point x ∈Ω, but which
may vary locally over Ω. The effective tensor A0(x) only depends on the local fiber orientation
α(x). We denote the operator that maps the fiber orientation function α(x) to the effective tensor
A0(x) by

A :Q→ (L∞(Ω))3×3×3×3.

Using this notation the state equation reads

−div (A(α)∇u) = f in Ω,

u = ud on Γ,

(A(α)∇u)n = g on ΓN .

Its weak formulation is given by:
Find u ∈ ud +H 1

0 (Ω;Γ), such that

(A(α)∇u,∇ϕ) = ( f ,ϕ)− (g ,ϕ)ΓN
for all ϕ ∈H 1

0 (Ω;Γ). (2)

where H 1
0 (Ω;Γ) denotes the space of H 1-functions with zero trace along Γ and ud denotes an

appropriate extension of the boundary data.

Proposition 2.2 (Meyers [21]). Assume that Ω convex or that ∂ Ω ∈C 1,1 as well as f ∈ L2(Ω), g ∈
H 1/2(ΓN ) and ud is the trace of a W 1, p (Ω) function ũd . Then, (2) has a unique solution in W 1, p (Ω)
for p ≤ 6 for every tensor A(α) fulfilling (1) and it holds for some constant C > 0

‖u‖W 1, p ≤C
�

‖ f ‖L2 + ‖g‖H 1/2(ΓN )
+ ‖ũd‖W 1, p

�

. (3)
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2.1 The Effective Stiffness Tensor

Next, we want to study the relation α→A(α) which is essential for our optimization algorithm in
detail.
Suppose, the effective stiffness tensor A0(0) = (a0

i j k l
(0)), which corresponds to a fiber-matrix

configuration with fibers oriented parallel to the x-axis, is given. We can calculate the effective
tensor for the configuration that differs by an angle α in the x-y-plane by a simple coordinate
transformation. Two-dimensional rotations in the x-y-plane can be described by the matrix
Q(α) ∈R3×3 with

Q(α) =







cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1






.

Denoting its entries by qi j , the fourth-order tensor A(α) = (ai j k l (α)) transforms in the following
way

ai j k l (α) =
∑

1≤m,n,o, p≤3

qi m(α)q j n(α)qko(α)ql p (α)a
0
mno p (0). (4)

Remark 2.3. This coordinate transformation was already used by Beatty in [6] and has been applied
to find optimal stiffness tensors in a variety of works (cf. [24] , [22]).

Remark 2.4. Note, that due to the periodicity of Q and (4) A(α) is π-periodic with respect to α.
Furthermore, the coordinate transformation conserves properties (1) such that the state equation (2) is
uniquely solvable for every α ∈ L2(Ω).

For our optimization algorithm we will need the Frechét-derivative d
dαA(α). We have to analyze

the mappings

α 7→ (sin(α), cos(α)) 7→Q(α) 7→A(α).

Typical choices for the control space Q like L2(Ω) or H 1(Ω) are not feasible, as the operators
sin(α) and cos(α) are neither differentiable from L2(Ω) nor from H 1(Ω) into L∞(Ω) (see [4]). On
the other hand Frechét differentiability is given from L∞(Ω) into L∞(Ω). We will comment on
the choice of the set of controls in the following section.For the sine operator the derivative in the
direction δα ∈ L∞(Ω) is given by

sin′(α)(δα) = cos(α)δα.

For the cosine operator we have analogously

cos′(α)(δα) =− sin(α)δα.

The derivatives of Q and A with respect to α read

Q ′(α)(δα) =







− sin(α)δα −cos(α)δα 0
cos(α)δα − sin(α)δα 0

0 0 0






,

A′(α)(δα) = (a′i j k l (α))1≤i , j ,k ,l≤3,

where

a′i j k l (α)(δα) =
∑

1≤m,n,o, p≤3

q̃i j k l mno p (α) δα a0
mno p ,

q̃i j k l mno p = q ′i m(α)q j n(α)qko(α)ql p (α)+ qi m(α)q
′
j n(α)qko(α)ql p (α)

+ qi m(α)q j n(α)q
′
ko(α)ql p (α)+ qi m(α)q j n(α)qko(α)q

′
l p (α).
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3 The Optimization Problem

We are now ready for a precise formulation of the optimization problem. LetU = ud +H 1
0 (Ω;Γ)

be the state space andQad a set of admissible controls. Then, the concise optimization problem
reads

min
(α,u)∈Qad×U

J (α, u) := J u (u)+
c
2
‖α‖2

H 1 (5a)

subject to (A(α)∇u,∇ϕ) = ( f ,ϕ)− (g ,ϕ)ΓN
for all ϕ ∈H 1

0 (Ω;Γ). (5b)

In addition to the notation used above, we suppose c > 0 is a constant and J u a convex and
continuous functional.

3.1 The Set of Controls

For the controls, we choose a subset of the Hilbert space H 1(Ω). There are three main reasons for
this choice: First, as we will see in the next subsection, we will needQad ⊂H 1(Ω) in order to show
existence of a global minimizer. Second, due to the nonlinearity of the state equation, we cannot
expect higher regularity for the optimal control α if we use a subset of L2(Ω) as ansatz space. Thus,
convergence of a discrete solution towards α could not be guaranteed as the grid size tends to
zero. Third, due to technical limitations regarding the construction process it might be desirable
from an application point of view that the optimal fiber orientation shows a certain smoothness.
Neverthless, we remark that according to the application under consideration different choices of
functional spaces are possible.
To ensure α ∈ L∞(Ω), one could think of imposing the pointwise constraints

Qad =
n

α ∈H 1(Ω)
�

�

� 0≤ α(x)≤π a.e. in Ω
o

as A is π-periodic with respect to α(x). However, using these artifical bounds may rule out
configurations that have fiber orientations α=π− ε and α= ε in regions close to each other. The
value α= ε, however, corresponds to the same orientation as α=π+ ε and from a practical point
of view no smoothness requirement is violated. Hence, it would be quite unnatural not to allow
this configuration.
To fix this problem, we use the set of admissible controls

Qad =
n

α ∈H 1(Ω)
�

�

� − cπ≤ α(x)≤ cπ a.e. in Ω
o

for c sufficiently large.

3.2 Existence of a Solution

Next, we show the existence of a solution to Problem (5).

Lemma 3.1. Let Ω be convex or ∂ Ω ∈C 1,1 as well as f ∈ L2(Ω), g ∈ L2(ΓN ) and ud is the trace of a
W 1,6 function. Furthermore, let A(0) fulfill (1), c> 0 and let J u be a convex and continuous functional
which is bounded from below. Then, problem (5) has at least one optimal solution (α, u) ∈Qad×U .

Proof. We will follow the lines of the standard minimal sequence argument (cf. [35], [16]). Let

W ad =
n

(α, u) ∈Qad×U
�

�

� (5b ) holds
o

,

j = inf
(α,u)∈W ad

J (α, u)>−∞
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and (αk , uk )⊂W ad a minimal sequence, i.e.,

J (αk , uk )→ j for k→∞.

Due to (3) uk is bounded in W 1,6(Ω) and we can extract a subsequence of (αk , uk ) such that uk
converges weakly to u in W 1,6(Ω). Because of the compact embedding H 1(Ω)⊂ L5(Ω), we can
extract another subsequence such that αk converges weakly in H 1(Ω) and strongly in L5(Ω) to α.
AsQad is convex and closed, it is also weakly closed, and it holds α ∈Qad. Due to the Lipschitz
continuity of the sine and cosine function and their products it follows, for l = 0, ..., 4,



 sinl (αk )cos4−l (αk )− sinl (α)cos4−l (α)




L5 ≤ C‖αk −α‖L5

(cf. [35]) and thus A(αk )→A(α) in L5(Ω). These convergences are by far sufficient to deduce

(A(αk )∇uk ,∇ϕ) → (A(α)∇u,∇ϕ) for k→∞

and thus (α, u) ∈W ad. The optimality of (α, u) now follows by the lower semicontinuity of J .

3.3 Necessary Optimality Conditions

For every α ∈ Qad, we denote the unique solution u of the state equation by u(α). Using this
notation, we define the so called reduced cost functional by

j (α) = J (α, u(α)).

The necessary optimality condition for a local minimum α reads

j ′(α)(δα−α)≥ 0 for all δα ∈Qad. (6)

To calculate the functional derivative u ′(α), we use the implicit function theorem. Let

E(α, u)(ϕ) := (A(α)∇u,∇ϕ)− ( f ,ϕ)+ (g ,ϕ)ΓN
.

The implicit function theorem ensures us the existence of the Frechét-derivative δu := u ′(α)(δα)
given the differentiability of E with respect to both arguments and the boundedness of Eu . Under
these assumptions δu ∈H 1

0 (Ω;Γ) solves

Eu (α, u(α))(δu(α)) =−Eα(α, u(α)),

i.e.,

(A(α)∇δu,∇ϕ) =−
�

A′(α)(δα)∇ϕ,∇u(α)
�

∀ϕ ∈H 1
0 (Ω;Γ). (7)

We define the adjoint variable λ(α) ∈H 1
0 (Ω;Γ) as the solution of

(A(α)∇λ(α),∇ϕ) =−
�

d

d u
J u (u(α)),ϕ

�

for all ϕ ∈H 1
0 (Ω;Γ).

Now, we can rewrite j ′ in the following way

j ′(α)(δα) =
�

d

d u
J u (u(α)),δu(α)

�

+c(α,δα)+c (∇α,∇δα)

=−(A(α)∇λ(α),∇δu(α))+c(α,δα)+c(∇α,∇δα)
= (A′(α)(δα)∇λ(α),∇u(α))+c(α,δα)+c(∇α,∇δα).

(8)
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Summarizing, we get the following KKT-system for an optimal control α of (5) and its correspond-
ing optimal state u(α) ∈ ud +H 1

0 (Ω;Γ) and adjoint state λ(α) ∈H 1
0 (Ω;Γ):

(A(α)∇u,∇ϕ) = ( f ,ϕ)− (g ,ϕ)ΓN
for all ϕ ∈H 1

0 (Ω;Γ)

(A(α)∇λ(α),∇ϕ) =−
�

d

d u
J u (u(α)),ϕ

�

for all ϕ ∈H 1
0 (Ω;Γ)

�

A′(α)(δα−α)∇λ(α),∇u(α)
�

+c(α,δα−α)

+c (∇α,∇(δα−α))≥ 0 for all δα ∈Qad.

4 The Gradient Algorithm

The derivative information derived so far is sufficient to design a steepest descent algorithm for
the solution of the minimization problem under consideration.
In particular, we propose the following adjoint based gradient-type algorithm:

1. Calculate the effective stiffness tensor A0(0) by numerical upscaling (see Chapter 2) and choose
α0 ∈Qad.

For k=0,1,...:

2. Calculate uk ∈ ud +H 1
0 (Ω;Γ) solving the state equation

(A(αk )∇uk ,∇ϕ) = ( f ,ϕ)− (g ,ϕ)ΓN
∀ϕ ∈H 1

0 (Ω;Γ).

3. Calculate λk ∈H 1
0 (Ω;Γ) as solution of the adjoint equation

(A(αk )∇λk ,∇ϕ) =−
�

d

d u
J u (uk ),ϕ

�

∀ϕ ∈H 1
0 (Ω;Γ).

4. Calculate the Riesz representation g k of the gradient j ′(αk )(δα) in H 1(Ω) by solving
�

∇g k ,∇δα
�

+
�

g k ,δα
�

= j ′(αk )(δα) ∀δα ∈H 1(Ω),

where

j ′(αk )(δα) =
�

A′(α)(δα)∇λ(α),∇u(α)
�

+c(α,δα)+c(∇α,∇δα).

5. Set s k = g k

‖g k‖H1
, choose a step size σ k and set

αk+1 = PQad(αk −σ k s k ),

where PQad denotes the projection ontoQad.

Remark 4.1. Of course, instead of the gradient type algorithm proposed, a higher-order acurate scheme,
e.g., a Newton-type algorithm in combination with an active set strategy can be used (cf. [16] for different
possibilities).

Remark 4.2. Note, that in step 2 to 4, we need the stiffness tensor A(α)(x) and its derivative A′(α)(x)
in every Gaussian point x of the mesh. These tensors are calculated according to section 2.1 by the
coordinate transformation formulas for rotation of α(x). In this way the costly subsequent solution of
microlevel problems is avoided.
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Remark 4.3. To find an appropriate step size in step 5 we use the projected Armijo rule [5,16]. We
choose the maximal σ k ∈ {1, 1

2 , 1
4 , ...} such that

j
�

PQad(αk −σ k s k )
�

− j
�

αk
�

≤−
γ

σ k



PQad(αk −σ k s k )−αk


H 1

holds.

Remark 4.4. As the relationship α → u(α) is highly nonlinear, j defines in general a nonconvex
functional on H 1(Ω), even if J u is convex. I.e., standard optimization algorithms will in general only
converge to a local minimum. In order to find a minimum with good properties from a global point
of view, we calculate the functional value of several reference configurations in advance and take the
best configuration as a starting value. Furthermore, in practical applications a good initial guess might
often be available. For more involved strategies in order to find global minima we refer to [17]. Here,
we are only seeking local minima.

Remark 4.5. The algorithm requires in step 2 to 4 the solution of 2 linear systems of linear elasticity
type and one system of scalar elliptic type in every iteration. Furthermore, using the Armijo rule, we
have to calculate u(α) for several candidates α, which requires to solve the state equation once for every
candidate. Hence, typically we end up by solving 3 to 6 systems of linear ellipticity type and one of
scalar elliptic type in each iteration. In comparison to solving several microproblems in every iteration
the computational cost per iteration is very low. As stopping criterion, we choose

‖αk − PQad(αk −σ k s k )‖H 1

‖α0− PQad(α0−σ0 s0)‖H 1

≤ TOL

where g k stands again for the Riesz representation of the gradient of j.

Remark 4.6. In our numerical tests the choice of c=2 inQad was sufficient to ensure that both bounds
were not becoming active.

5 Numerical Examples

In this section, we study a prototypical numerical example in order to demonstrate the capabilities
of our algorithm. Our objective is to design a material which shows minimal deformation in
x-direction under a given stretching in y-direction.

5.1 Model problem

As a model problem, we want to optimize the fiber orientation in a structure consisting of a cube
containing a cylindrical hole in the middle

Ωc =
n

(x, y, z) ∈R3
�

�

� − 10< x, y < 10, 0< z < 10,
Æ

(x2+ y2)> 4
o

.

We set the volume force f = 0 and prescribe the displacement of the boundary on the lower face
and upper face of the cube (cf. Figure 1, left side). Furthermore, we impose zero displacement
in normal direction on the frontface and backface. As mentioned above, we are interested in the
displacement in x-direction u1. Clearly, the indicated stretching will lead to a deformation u1
towards the midplane x = 0. Due to symmetry reasons, it is sufficient to simulate a quarter of the
structure (cf. Figure 1, right side).

Ω=
n

(x, y, z)
�

�

� 0< x, y, z < 10,
Æ

(x2+ y2)> 4
o

.
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u = (0,1,0)

u = (0,−1,0)

①

③②

✉ � ✁

✉ � ✂✁✄ ☎✄ ✁✆

✉ � ✁

✉ � ✁✶

✷

✸

Figure 1. Model problem

We impose the following Dirichlet boundary conditions ud = (ud
1 , ud

2 , ud
3 )

ud = (0,1,0) on Γtop,

ud
2 = 0 on Γleft,

ud
3 = 0 on Γfront ∪Γback.

with the intuitive notation for top, front, back and left boundary.
We want to design an optimal material which shows minimal deformation in x-direction under
this load, i.e.,

min
(α,u)∈Qad×U

J (α, u) :=
1

2
‖u1‖

2
L2 +
c
2
‖α‖2

H 1

subject to − div (A(α)∇u) = 0 inΩ,

ui = ud
i on Γi i = 1,2,3,

(A(α)∇u · n)i = 0 on ∂ Ω \Γi i = 1,2,3,

where
Γ1 =Γtop, Γ2 =Γleft ∪Γtop, Γ3 =Γtop ∪Γfront ∪Γback.

As material parameters we choose the Young’s modulus E and Poisson’s ratio ν for fiber and matrix
material by

Emat = 0.3, νmat = 0.2 Efib = 100, νfib = 0.3.

On the microscale we assume Hooke’s law for the fiber and matrix material, respectively, which
reads in matrix notation
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According to Section 2 we calculate the effective tensor A0(0) for fibers parallel to the x-axis by
solving six cell problems in a reference structure Y . For the generation of the microstructure
geometry, we use the software GeoDict [14] where we impose a fiber-volume fraction of 5%. The
microstructure obtained using GeoDict is shown in Figure 2.
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Figure 2. Microstructure for calculating A0(0)

5.2 Discretization

Let Th be a family of quasiuniform triangulations of Ω into closed tetrahedrons Ti , i = 1...N . P1
the space of H 1-conforming P1 finite elements on this triangulation. We define the discrete state
space by

Uh =U ∩ (P1)
3.

For the discretization of the control space we set

Qad
h = P1 ∩Q

ad.

5.3 Results

In order to find a good initial value α0 and to be able to compare the obtained optimal solution,
we calculated the functional

J u (u(α)) =
1

2
‖u1(α)‖

2
L2

for different constant fiber orientations αi and the corresponding deformations u(αi ) in advance.
After calculating A0(0) we obtain the remaining tensors again using the transformation formulas
given in chapter 2.1. We realized calculations for

αk ≡
5kπ

180
, k = 0, ....35.

For our simulations we used the finite element software FeelMath (Finite Elements for elastic
Materials and Homogenization [12]), which has been developed at the Fraunhofer Institute for
Industrial Mathematics. The results are shown in Figure 3. For further comparison, we also
calculated J u for a random fiber distribution and for a pure matrix material without fibers and
plotted the respective values as constant dashed lines. As we can see, we get the lowest value for
a fiber orientation of 115 degrees (k = 23). Thus, we choose α0 = α23 ≡

115π
180 as initial control

function.
For our optimization algorithm, we set c = 10−5 and use a mesh of nearly constant cell size
h = 0.5 inside the domain, while we impose a cell size of h = 0.2 near critical boundaries. The
mesh is shown in Figure 4. The dependence of the algorithms’s convergence on the regularization
parameter and mesh will be analyzed in the next subsections.
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Figure 3. Values of the objective functional for different constant fiber orientations, random
oriented fibers, a homogeneous material without fibers and the optimal orientation found using
the algorithm given in section 4

Figure 4. Used mesh (left) and the optimal fiber orientation (right)

While the lowest value we get for constant fiber orientation was J u (u(α23)) = 5.939, our opti-
mization algorithm converges to α with J u (u(α)) = 3.310. Thus, we were able to reduce the
deformation in x-direction by 44,3% in comparison to the best constant fiber orientation. For
comparison, we have included the value of the objective functional for the optimal configuration
as another dashed line in Figure 4. The optimal fiber orientation α is illustrated in Figure 4
on the right. We can see that in regions near the right and the lower boundary, a larger angle
than 115 degrees is favorable while in the middle of the domain the optimal fiber orientation
we found shows an angle smaller than the starting value of 115 degrees. As we chose a rather
small regularization parameter c fiber orientations change quite quickly between different regions.
Neverthless, we observe a sufficiently smooth behaviour of α for practical purposes. Increasing
c leads to a bigger influence of the H 1- Tikhonov regularization and a slower variation of fiber
angles.

5.4 Regularization Parameter Studies

To study the dependence of our algorithm on the regularization parameter c, we realized calcu-
lations for c= 10−3, 10−4, and 10−5 on the mesh introduced in the last section. As initial value
we used α ≡ π

2 and as stopping criterion, we imposed a reduction factor of TOL=10−2 for the
H 1-norm of the reduced gradient. The results are shown in Figure 5. Figure 5 (a) shows the
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Figure 5. Influence of the regularization parameter c

convergence behaviour of the cost functional

J (u,α) = J u (u(α))+ Jα(α) =
1

2
‖u1‖

2+
c
2
‖α‖2

H 1 .

Clearly, a bigger regularization parameter leads to a bigger value in the objective functional as the
regularization part increases. Figure 5 (b) shows the value of the deformation part

J u (u(α)) =
1

2
‖u1(α)‖

2.

We get a slightly larger deformation for bigger values of c. This is because c is the weight of the
regularization part and thus, a bigger c makes smaller and smoother angle distributions more
favourable. In Figure 5 (c) we plot the behaviour of the penalty part

Jα(α) =
1

2
‖α‖2

H 1 .

As one would expect, the bigger the regularization parameter c, the smaller gets ‖α‖H 1 . Finally, in 5
(d) we plotted the behaviour of the reduced gradient. We observe that the bigger the regularization
parameter the faster the decrease of the reduced gradient and hence less iterations are required.
Clearly, this is also what we had expected. The initial reduced gradient is reduced by a two orders
of magnitude after 23 to 27 iterations.

5.5 Dependence on the Mesh

In this section, we fix the regularization parameter to c = 10−5 and analyze the convergence
behaviour on different meshes. Therefore, we realized calculations on meshes with nearly constant
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Table 1. Discretization

Triangulation Cell size Number of Elements

T1 1 8768
T2 0.5 69284
T3 0.25 553145
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Figure 6. Convergence behaviour on different meshes Ti

cell size h1 = 1, h2 = 0.5 and h3 = 0.25. The number of elements and cellsizes are summarized
in Table 1. In Figure 6(a-c), we plot the decrease of the objective functional J (u(α),α) and its
components J u (u(α)) and Jα(α). We notice a similar convergence behaviour on all meshes. In
Figure 6(a) and (b), we see that the functional values on finer grids are slightly larger than those on
coarser grids. The deviation lies within the range of the discretization error, however and is much
smaller on the finer meshes. Finally, in Figure 6(d) we see that the decrease of the reduced gradient
shows a very similar behaviour on all meshes. Thus, we have shown that our algorithm is almost
independent with respect to grid size and mesh.

6 Conclusions

We presented an efficient algorithm to find an optimal fiber orientation in composite materials.
Fiber orientation is regarded as a function of space on the macrolevel which allows for a big class
of different fiber orientation distributions and does not restrict orientation to be constant within,
e.g., a given layer. The approach is proposed within a function space setting which makes the
imposition of smoothness requirements straightforward and allows for rather general objective
functionals. In order to guarantee its well-posedness we use a Tikhonov regularization term.
The algorithm we proposed is a one level optimization algorithm which optimizes with respect
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to the fiber orientation directly. The costly solve of a big number of microlevel problems is
avoided using coordinate transformation formulas. Therefore, it is sufficient to do one microlevel
calculation in advance. We used an adjoint-based gradient type algorithm, but generalization to
higher-order schemes is straightforward. The algorithm was tested for a prototypical example and
showed good behaviour with respect to mesh independence and regularization parameter studies.
Furthermore, the framework we developed is clearly not restricted to linearized elasticity. Other
applications where anistropy plays an important role can be treated in an analogous way. As an
example consider for example the design of an optimal porous media for filter applications.
Within the context of composite materials, optimization with respect to local fiber volume frac-
tion (FVF) might be treated in a similar way. For simultaneous material optimization, we pro-
pose a combination of the presented approach with the Discrete Material Optimization Method
(DMO, [31], [32]).
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