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Abstract
We present a second order time-stepping scheme for parabolic problems on moving domains

and interfaces. The diffusion coefficient is discontinuous and jumps across an interior interface.
This causes the solution to have discontinuous derivatives in space and time. Without special
treatment of the interface, both spatial and temporal discretization will be sub-optimal.

For such problems, we develop a time-stepping method, based on a cG(1) Eulerian space-time
Galerkin approach. We show - both analytically and numerically - second order convergence
in time. Key to gaining the optimal order of convergence is the use of space-time test- and
trial-functions, that are aligned with the moving interface.

Possible applications are multiphase flow or fluid-structure interaction problems.

1 Introduction

Interface problems, where the solution has discontinuities or discontinuous derivatives along an
interface through the domain appear as typical part of various applications. Viscous multiphase-
problems, where two fluids with different physical parameters (like viscosity or density) are
coupled at a common interface, have a continuous velocity on the complete domain. Across the
interface, however, the velocity is not differentiable, neither in space nor in time. Fluid-structure
interactions show a similar behaviour: the kinematic coupling condition calls for a continuous
transition of the fluid to the solid velocity, this coupling, however, is not differentiable. A simple
example for such an interface problem is the following parabolic model problem. Let

Q := {(t ,Ω(t )), t ∈ I := [0,T ]} ⊂Rd+1,

be a convex space-time domain, that is split into two sub-domains Q =Q1∪G∪Q2 by an interface
G ⊂Rd , where Ω(t ) = Ω1(t )∪Γ(t )∪Ω2(t ):

Qi := {(t ,Ωi (t )), t ∈ I := [0,T ]} ⊂Rd+1, G := {(t ,Γ(t )), t ∈ I := [0,T ]}.

(cf. Figure 1). Given u0 ∈ L2(Ω(0)), we define the model problem by

∂t ui − div
�

ci∇ui
�

= fi in Qi , i = 1,2,

u1 = u2, n ·c1∇u1 = n ·c2∇u2 on Γ(t ),

u(·, 0) = u0 on Ω(0),
u(·, t ) = 0 on ∂ Ω(t ),

(1)
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Figure 1. Space-time domain. Both the interface Γ(t ) and the outer boundary ∂ Ω(t )might move
in time.

where the diffusion coefficient c : Q → R takes two values c1,c2 ∈ R in the sub-domains
Q1,Q2. On smooth domains Q = Q1 ∪G ∪Q2, given sufficient regularity of the right hand
side f , an initial data u0 that satisfies the compatibility conditions −c∆u0− f ∈ H 1

0 (Ω(0)) and
c1n · ∇u0

1 = c2n · ∇u0
2 and positive diffusion coefficients c1,c2 > 0, this problem has a solution

u = {u1, u2} that satisfies [9]

2
∑

k=0

‖u‖k ,2(2−k) ≤ c

 

1
∑

k=0

‖ f ‖k ,2(1−k)+ ‖u
0‖H 4(Ω1(0)∪Ω2(0))

!

. (2)

If we have additionally the compatibility condition ∂t f (0)−ci∆ f (0)+c2i∆
2u0 ∈H 1

0 (Ωi (0)) and
sufficient regularity of the data f , u0, it holds that

3
∑

k=0

‖u‖k ,2(3−k) ≤ c

 

2
∑

k=0

‖ f ‖k ,2(2−k)+ ‖u
0‖H 6(Ω1(0)∪Ω2(0))

!

. (3)

Here, we have used the norms

‖u‖k ,l :=
�

‖u‖2
H k (I ,H l (Ω1(t )))

+ ‖u‖2
H k (I ,H l (Ω2(t )))

�1/2

on the Bochner spaces

H k ,l :=H k (I , H l (Ω1(t )))∩H k (I , H l (Ω2(t )))

that are based on the usual Sobolev spaces H k , H l in space and time. By H 0(Ω) we denote the
Lebesgue space L2(Ω). The solution u has no higher global spatial or temporal regularity across
the interface G := {(t ,Γ(t )), t ∈ I }, instead it carries a weak discontinuity in space and time.
Considering the discretization of such interface problems, we have to deal with two difficulties.
First, the spatial discretization is known to fail for interface-problems [2], if the finite element mesh
does not resolve the interface, i.e., at time t = tm , there must be a compatible finite element space,
that is able to resolve the interface in such a way, that accurate interpolation results hold

‖u − ih u‖Ω+ h‖∇(u − ih u)‖Ω ≤ c h r+1
�

‖∇r+1u‖Ω1
+ ‖∇r+1u‖Ω2

�

.

This is either achieved by using fitted finite element meshes (see e.g. [5]) with triangulations of
the two sub-domains, or by enrichment of standard spaces on non-fitted meshes with additional
basis functions. A prominent example for such a technique is the extended finite element method
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(XFEM), see [16]. An alternative, very simple approach, that is based on a local parametric finite
element space on standard unfitted meshes has been presented by the authors [12].
Second, and this is the topic of the paper at hand, the temporal discretization is a major challenge. The
method of lines cannot be applied, if the domain Ω(t )⊂Rd is changing in time. Rothe’s method
relies on time-stepping tm−1→ tm . In the usual finite element setting, applying a simple one-step
method like the backward Euler scheme, Rothe’s method for the parabolic model problem reads:

1

tm − tm−1
(u m − u m−1,φ)+ (c∇u m ,∇φ) = ( f (tm),φ) ∀φ ∈V (tm), (4)

where u m−1 ∈ V (tm−1) is the solution at time tm−1 and um ∈ V (tm) is the sought solution at
time tm . But again, in the case of moving domains, it holds Ω(tm−1) 6= Ω(tm) and therefore
V (tm−1) 6=V (tm). The problem comes to the fore, if one considers the role of the scalar product
(u m − u m−1,φ) =

∫

Ω(u
m − u m−1)φdx. Whether we choose Ω(tm−1) or Ω(tm) as domain for

integration, the integral is not defined for one of the solutions u m or u m−1.
Next, let us consider interface problems on a fixed domain Q := I ×Ω where only the interior
interface moves, but where the outer boundary is fixed. Here, the problem looks less severe.
Equation (4) is well defined. However, consider a point x ∈Ω with x ∈Ω1(tm−1) and x ∈Ω2(tm)
close to the interface. Then, by (u m(x)− u m−1(x))/(tm − tm−1), no approximation to the time-
derivative u ′ is given, as u is not differentiable across the interface.
In the context of the extended finite element method, recent advances have been made in literature
for this problem. Fries and Zilian [13] presented a time-stepping scheme based on the backward
Euler method and a number of numerical tests that indicate first-order convergence order. A
complete error analysis for this approach has been presented by Zunino [19]. For a corresponding
Crank-Nicolson-like approach, Fries and Zilian found a reduced convergence order of 1.5. To
the best of our knowledge, there is, however, no rigorous convergence analysis available yet. A
second-order scheme based on a space-time dG(1) approach has been presented by Lehrenfeld and
Reusken [15] including error analysis in space and time. Their approach can not be generalized to a
continuous Galerkin scheme, however, as the spatial number of unknowns varies from time step
to time step in their scheme.
Another approach to construct accurate time-stepping schemes is to apply a transformation to
a fixed reference domain Q̂ := I × {Ω̂1 ∪ Γ̂∪ Ω̂2}. Let T̂ : Q̂ → Q be such a mapping. If T̂ is a
C 2-diffeomorphism, Problem (1) is equivalent to

det(∇̂T̂ )
�

∂t û − ∂t T̂ · ∇û
�

−Ódiv
�

det(∇̂T̂ )ĉ∇̂T̂ −1∇̂û∇̂T̂ −T
�

= det(∇̂T̂ ) f̂ in Q̂. (5)

This is the ALE-transform of the parabolic model problem (see e.g. [3]). Here, the domain Ω̂ allows
a fixed partitioning Ω̂ = Ω̂1 ∪ Γ̂∪ Ω̂2 that does not change in time. Standard spatial and temporal
discretization is possible. However, the ALE approach only works, if a mapping T̂ : Q̂→Q with
sufficient regularity can be constructed.
In this paper, we follow a different approach: we start by designing a space-time Galerkin method
on the space-time slots Q m = {(t ,Ω(t )), t ∈ [tm−1, tm]}. In literature, this approach is known
as the continuous Galerkin (cG) method, see [1,10], and a Galerkin scheme of Crank-Nicolson type
is found by using continuous and piece-wise linear trial functions combined with discontinuous
piece-wise constant test-functions. However, on space-time elements close to the (moving) interface
or (moving) outer boundaries, we choose trial-functions, that are aligned to the element’s faces:
the solution is not linear in direction of time t , but linear in directions that stay within each
subdomain or follow the interface line, see Figure 3.
The resulting time-stepping scheme can be seen as a moving-mesh approach where the reference
domain changes in each time step. Thus, it may be considered a variant of the Fixed-mesh ALE
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method proposed by Codina and co-workers in [6] in combination with a projection scheme that is
based on projecting residuals. In the Fixed-mesh ALE method, the authors apply a moving mesh
(ALE) technique in each time interval, but project the solution back to an original fixed mesh
afterwards. In this way, the requirement of global regularity of an ALE map is reduced to local
regularity within one time interval. As the relative movement of boundaries and interfaces with
respect to the previous time step is typically rather small, the method is able to deal with large
movements.
The novelty in this work are the application of a Galerkin time discretization within this frame-
work rather than using a finite difference scheme and the usage of a residual-based projection.
This enables us to derive a priori error estimates of optimal (second) order. To the knowledge of
the authors no convergence results are available within the Fixed-mesh ALE framework yet in
literature.
The outline of the paper is as follows: Section 2 details the space-time Galerkin approach and
derives a corresponding time-stepping method. In Section 3, we derive a priori estimates for
the temporal discretization error in the space-time L2-norm and in the L2-norm at the end time.
In Section 4, we give some details on our practical implementation, with focus on numerical
integration. Then, in Section 5, we will substantiate these results by numerical test-cases. We
conclude in Section 6.

2 Time discretization

A variational formulation of (1) is given by: Find u ∈X such that

B(u,φ) = ( f ,φ)Q +(u
0,φ(0))Ω(0) ∀φ ∈X ,

B(u,φ) := (∂t u,φ)Q +(c∇u,∇φ)Q +(u(0),φ(0))Ω(0)
(6)

where

( f , g )Q :=
∫ T

0
( f (t ), g (t ))Ω(t ) ds , (7)

and

X :=W (0,T ) =
¦

v : Q→R
�

� v ∈ L2(I , H 1
0 (Ω(t ))), ∂t v ∈ L2(I , H−1(Ω(t )))

©

.

Due to the continuous embedding W (0,T )⊂C (I , L2(Ω(t ))), point values u(ti ) in time are well-
defined and hence the initial condition can be included into the variational formulation as in (6).
The well-posedness of this variational problem for moving outer boundaries has been studied in [9].
In order to derive a time-stepping scheme, we split the time interval into discrete subintervals

I = {0} ∪ I1 ∪ I2 ∪ ...∪ IM , I j = (t j−1, t j ].

For j = 1, ..., M , we denote the resulting space-time slabs by Q j := {(x, t ) | t ∈ I j , x ∈Ω(t )} and the

space-time slabs corresponding to the subdomains by Q j
i := {(x, t ) | t ∈ I j , x ∈Ωi (t )}, (i = 1,2).

Let us for a moment assume that the outer boundary ∂ Ω(t ) is fixed such that Ω(t ) = Ω for all
times t . Then, similar to (4), we can write down a simple time-stepping scheme of Crank-Nicolson
type

1

k
(u m − u m−1,φ)Ω+

1

2
(c(tm)∇u m ,∇φ)Ω+

1

2
(c(tm−1)∇u m−1,∇φ)Ω

=
1

2
( f (tm),φ)Ω+

1

2
( f (tm−1),φ)Ω ∀φ ∈H 1

0 (Ω).
(8)
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Figure 2. Space-time domain for a fixed outer domain Ω(t ) = Ω. Functions vk ∈ X̃ 0
k , X̃ 1

k are
polynomial on vertical lines (e.g. the indicated arrows).

Remember that in the case of a moving outer boundary, it is not straight-forward to write down a
corresponding formulation, as u m and u m−1 are defined on different domains Ω(tm) and Ω(tm−1).
It is well known that the Crank-Nicolson scheme (8) is equivalent to a space-time variational
formulation with the following Galerkin trial and test spaces

uk ∈ X̃ 1
k =

n

v ∈C (I , H 1
0 (Ω))

�

�

� v|Im
∈ P1(Im , H 1

0 (Ω)), v(0) ∈H 1
0 (Ω)

o

φk ∈ X̃ 0
k =

n

v ∈ L2(I , H 1
0 (Ω))

�

�

� v|Im
∈ P0(Im , H 1

0 (Ω)), v(0) ∈H 1
0 (Ω)

o

.
(9)

If the coefficient c was continuous across the interface (in our case c1 = c2), second order
convergence estimates for the discretization error would be straight-forward. This is not the
case for a discontinuous coefficient, however, as the scheme does not account for the (moving)
discontinuity of c, f and∇u at G. Instead the functions uk ∈ X̃ 1

k
are polynomial on space-time

lines τ that cross the interface (e.g. the arrow crossing the interface in Figure 2), which means
uk ∈C∞(τ). It follows that, in general, there is no second-order in time interpolant within the
space X̃ 1

k
and we can only expect a reduced order of convergence.

To derive a second-order scheme (that will also be usable for moving outer boundaries), we
introduce a modified continuous Galerkin ansatz in time. Therefore, we define a Galerkin space
of functions that are polynomial on trajectories that stay within the subdomains and are aligned
to the space-time boundary and the interface in their vicinity. The construction of second-order
interpolants in time will be straight-forward within this space. For deriving error estimates, it
would be most convenient to introduce smooth global trajectories in the whole time-interval
I . In practice, however, it is often a challenging task to define sufficiently smooth trajectories
(consider for example large movements of the interface). Furthermore, the interface movement
often depends on the solution itself and is therefore only known from time step to time step.
Therefore, we define the trajectories piecewise in each time interval Im (see Figure 2).
Specifically, we define the following (semidiscrete) test and trial spaces:

uk ∈X 1
k =

n

v ∈C (I , H 1
0 (Ω(t )))

�

�

� (v ◦Tm)|Im
∈ P1(Im , H 1

0 (Ω(t ))), v(0) ∈H 1
0 (Ω(0))

o

φk ∈X 0
k =

n

v ∈ L2(I , H 1
0 (Ω(t )))

�

�

� (v ◦Tm)|Im
∈ P0(Im , H 1

0 (Ω(t ))), v(0) ∈H 1
0 (Ω(0))

o

.
(10)

Note that the outer domain Ω(t ) is not assumed to be fixed anymore.
By Tm we denote an arbitrary transformation from a reference domain Ω̂m to the space-time
domain Q m that maps Γ̂m to Γ(t ), Ω̂m

1 onto Ω1(t ) and Ω̂m
2 onto Ω2(t ). In this work, we choose the

domain at the new time step Ω̂m =Ω(tm) as reference domain. Other choices, e.g. Ω̂m =Ω(tm−1)
would be possible, as well. For j = 1, ..., M , we denote the space-time slabs in the reference system
by Q̂ j := Ω̂ j × I j , the space-time slabs corresponding to the subdomains (i = 1,2) by Q̂ j

i := Ω̂ j
i × I j
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Figure 3. Illustration of the modified Galerkin trial spaces X 0
k ,X 1

k . The functions vk ∈X 0
k ,X 1

k are
polynomial on trajectories that stay within each subdomain Qi , i = 1,2.
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Figure 4. Piecewise definition of maps Tm . The reference domain (right sketch) corresponds to
the new domain Ωm and changes in each time step.

and the interface slabs by Ĝ j := Γ̂ j × I j . Functions u ∈X k
1 and φ ∈X k

0 can be written as

(u ◦Tm)|Im
=

t − tm−1

k
(u ◦Tm)(x, tm)+

tm − t

k
(u ◦Tm)(x, tm−1)

=:
t − tm−1

k
û m(x̂)+

tm − t

k
û m−1,+(x̂)

(φ ◦Tm)|Im
= φ̂m(x̂)

with û m , φ̂m , û m−1,+ ∈ H 1
0 (Ω̂

m) and x̂ = T −1
m (x, t ). Due to the continuity condition in X 1

k
, it

must hold that
�

û m−1,+ ◦T −1
m

�

(tm−1) = û m−1. (11)

In order to simplify notation, we will often skip the second superscript and use the notation û m−1

instead of û m−1,+ in Q̂ m .
Finally, we denote by Fm =∇Tm the spatial derivative of the transformation and by Jm = det(Fm)
its determinant. We define the following bilinear form in a time interval Im , formulated both in
Eulerian coordinates on Q m and on the reference domain Q̂ m in ALE coordinates:

B m(u,φ) := (∂t u,φ)Q m +(c∇u,∇φ)Q m (12)

=
�

Jm∂t û − ∂t Tm(Jm Fm)
−T ∇̂m û, φ̂

�

Q̂ m
+
�

ĉ(Jm Fm)
−T ∇̂m û, F −T

m ∇̂mφ̂
�

Q̂ m
.

Here, the notation ∇̂m denotes the gradient with respect to the coordinates x̂m on the reference
domain Ω̂m . For better readability, we will often skip the subscripts m if there is no risk for
ambiguity. Comparing (6), it holds that

B(u,φ) =
M
∑

m=1

B m(u,φ)+ (u(0),φ(0))Ω(0).
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The discrete formulation in the trial and test spaces defined in (10) reads: Find uk ∈X 1
k

such that

B(uk ,φk ) = ( f ,φk )Q +(u
0,φ(0))Ω(0) ∀φk ∈X 0

k . (13)

This formulation splits into the time-stepping scheme

B m(uk ,φk ) =
�

J f̂ , φ̂k

�

Q̂ m
(14)

where

B m(uk ,φk ) :=
1

k

�

J (û m
k − û m−1

k
), φ̂m

k

�

Q̂ m

−
�

∂t T J F −T
� t − tm−1

k
∇̂û m

k +
tm − t

k
∇̂û m−1

k

�

, φ̂m
k

�

Q̂ m

+
�

ĉ J F −T
� t − tm−1

k
∇̂û m

k +
tm − t

k
∇̂û m−1

k

�

, F −T ∇̂φ̂m
k

�

Q̂ m
.

(15)

In practice, the interface and boundary movement are often implicitly defined by the solution
variables and might thus be available only at the time points tm−1 and tm . To deal with this kind
of problems, we want to use a further simplification of (13). We use approximations of the form

a(t )b (t )≈
1

4
(a(tm)+ a(tm−1))(b (tm)+ b (tm−1))

and use the notation J m =
1
2

�

Jm(tm)+ Jm(tm−1)
�

and analogously J F
−T

m , F
−T

m and ∂t T m . Again,
we will skip the subscript m if there is no risk for ambiguity. We define the discrete bilinear forms

B m
k (u,φ) =

�

J∂t û, φ̂
�

Q̂ m
−
�

∂t T J F
−T
∇̂û, φ̂

�

Q̂ m
+
�

ĉJ F
−T
∇̂û, F

−T
∇̂φ̂
�

Q̂ m
,

Bk (u,φ) =
M
∑

m=1

B m
k (u,φ)+ (u(0),φ(0))Ω(0).

We will show below that this approximation of the bilinear form B(·, ·) is of second order and will
thus not perturb the overall accuracy. For uk ∈X 1

k
and φk ∈X 0

k
, it holds that

B m
k (uk ,φk ) =

1

k

�

J
�

û m
k − û m−1

k

�

, φ̂m
k )
�

Q̂ m
−

1

2

�

∂t T J F
−T
∇̂
�

û m
k + û m−1

k

�

, φ̂m
k

�

Q̂ m

+
1

2

�

ĉJ F
−T
∇̂
�

û m
k + û m−1

k

�

, F
−T
∇̂φ̂m

k

�

Q̂ m
.

The corresponding discrete variational formulation reads: Find uk ∈X 1
k

such that

Bk (uk ,φk ) =
�

f ,φk
�

Q +(u
0,φk (0))Ω(0) ∀φk ∈X 0

k . (16)

As the continuous solution u fulfills

B(u,φk ) = ( f ,φk )Q +(u
0,φ0

k )Ω(0) ∀φk ∈X 0
k ,

we have the Galerkin orthogonality

B(u,φk )−Bk (uk ,φk ) = 0 ∀φk ∈X 0
k . (17)
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Remark 2.1 (Fixed-mesh ALE). The resulting time-stepping scheme can be considered a variant
of the Fixed-mesh ALE method [6]. There are two peculiarities that have not been used within the
Fixed-Mesh-ALE method yet: The first one lies in the approximation of the quantities J , F and ∂t T
related to the transformation. Secondly, to fit into this framework, we define u m−1,+

k
by the projection

of the residual

B m
old(u

m−1,+
k

,φ) = B m−1
old (u

m−1,−
k

,φ) ∀φ ∈H 1
0 (Ω(tm−1)) (18)

where

B m
old(w,φ) :=

�

−J ŵ +
k

2
∂t T J F

−T
∇̂ŵ, φ̂

�

Ω̂m

+
k

2

�

ĉJ F
−T
∇̂ŵ, F

−T
∇̂φ̂
�

Ω̂m
.

For our practical implementation that avoids the calculation of such a projection, see Section 4.2.

3 A priori error estimates

We will make the following regularity assumptions for the domain movement Tm .

Assumption 3.1. – For every interval Im , there exists a map Tm : Ω̂m× Im→Ω(t ) such that for
t ∈ Im

Tm(Ω̂
m
i , t ) = Ωi (t ) (i = 1,2), Tm(Γ̂

m , t ) = Γ(t ).

– Furthermore, it holds for i = 1,2 that

sup
t∈Im

 

‖Tm(t )‖W 2,∞(Ω̂m
i )
+

3
∑

k=1

‖∂ k
t Tm(t )‖W 3−k ,∞(Ω̂m

i )

!

≤ c

sup
t∈Im

 

‖T −1
m (t )‖W 2,∞(Ω̂m

i )
+

2
∑

k=1

‖∂ k
t T −1

m (t )‖W 3−k ,∞(Ω̂m
i )

!

≤ c .

– Finally, we assume that Tm and ∂t Tm are continuous across the interface Γ̂m .

Remark 3.2 (On Assumption 3.1). Assumption 3.1 implies that

sup
t∈Im

‖Fm(t )‖W 1,∞(Ω̂m ) + sup
t∈Im

‖F −1
m (t )‖W 1,∞(Ω̂m ) + sup

t∈Im

‖Jm(t )‖W 1,∞(Ω̂m ) ≤ c .

The latter holds true as the determinant of Fm can be written as a summed product of the entries of Fm .

Remark 3.3 (On Assumption 3.1). In many practical cases, the position of the interface and the outer
boundaries depends on the solution itself and is only available at discrete points in time (e.g. by level set
functions ψm ,ψm−1). Let

x m−1 := Tm(x
m , tm−1) ∈Ω(tm−1) (19)

be the transformed coordinate corresponding to a point x m ∈Ω(tm). Then, a suitable transformation
in the interval Im is given by

Tm(x
m , t ) =

t − tm−1

k
x m +

tm − t

k
x m−1.

Here, the first time derivative is ∂t Tm = 1/k (x m − x m−1), higher time derivatives vanish. Assump-
tion 3.1 reduces to the boundedness of the velocity of the domain movement and its spatial derivatives.
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Remark 3.4 (Construction of a mapping Tm). Assume the interface movement is given by a vector-
valued function

ψ : Γ(tm)→ Γ(tm−1).

Such a function is available in the context of fluid-structure interactions by the Initial Point Set function
(see [8] or Section 5.2), sometimes also called the Backward Characteristics method (see [7]), that traces
back points to their original position in Ω(0). An extension of ψ to the complete domain Ω(tm) (again
denoted by ψ) can be obtained by e.g. a harmonic extension. Then, a transformation T :Ω(tm)→Ω(t )
is given by

Tm(x, t ) =
t − tm−1

k
x +

tm − t

k
ψ(x).

The regularity of Tm depends only on the regularity of the boundary movement ψ and its extension at
time tm .

Remark 3.5 (Regularity). In contrast to the ALE approach (5), we need regularity of the transforma-
tions Tm only locally in each time interval Im . No global regularity of a mapping T is required.

3.1 Interpolation and projection

We begin by an auxiliary result for the transformation of derivatives that we will need frequently.

Lemma 3.6. (Transformation of derivatives) Let Assumption 3.1 be valid and û(x̂) := (u ◦T −1
m )(x)

on Q̂ m . For u ∈H 1(Q), û lies piecewise in H 1(Q̂ m) and it holds that




∇̂û






Q̂ m
≤ c‖∇u‖Q m and ‖∂t û‖Q̂ m ≤ c

¦

‖∂t u‖Q m + ‖∇u‖Q m

©

. (20)

For u in H 2 �I , L2(Ω(t ))
�

∩H 1
�

I , H 1
0 (Ω(t ))

�

it holds that





∂ 2
t û






Q̂ m
≤ c
§




∂ 2
t u






Q m
+ ‖∂t∇u‖Q m + ‖∇u‖Q m

ª

. (21)

Proof. The proof is standard, see e.g. [17].

We define the interpolation ik u as standard nodal interpolant in each reference space-time slab
Q̂ m . This is equivalent to setting

ik u(tm) = u(tm) ∀m = 1, ..., M

in each time-grid point tm .

Lemma 3.7. Assume Assumption 3.1. If u ∈H 2(Q1 ∪Q2), it holds for the interpolation error that





∂ l
t (u − ik u)







Q
≤ ck2−l

�





∂ 2
t u






Q1∪Q2

+ ‖∂t∇u‖Q1∪Q2
+ ‖∇u‖Q

�

. (22)

for l = 0,1.

Proof. We begin with the case l = 0 and transform to the reference domain where we use a standard
estimate. The determinant J is bounded by Assumption 3.1

‖u − ik u‖2
Q m =





J 1/2
�

û −Óik u
�





2

Q̂ m
≤
 

sup
t∈Im

‖J‖∞,Ω̂m

!

‖û − ik û‖2
Q̂ m ≤ ck4‖∂ 2

t û‖2
Q̂ m

1 ∪Q̂ m
2

9



Transformation of derivatives (see Lemma 3.6), summation over m = 1, ..., M and taking the square
root complete the proof. The case l = 1 follows analogously by using

‖∂t (u − ik u)‖2
Q m ≤ c ‖∂t (û − ik û)‖2

Q̂ m +




∇̂(û − ik û)






2

Q̂ m
≤ ck2

�




∂ 2
t û






2

Q̂ m
+




∂t ∇̂û






2

Q̂ m

�

.

Remark 3.8. Even in the case of a fixed outer boundary ∂ Ω(t ), an analogous interpolation estimate
is not possible for an interpolant in the space X̃ 1

k
if the interface Γ(t ) is moving.

Next, we prove a lemma that estimates the interpolation error within the discrete bilinear form.

Lemma 3.9. Let u ∈H 2,1 ∩H 1,2. For φk ∈X 0
k

, it holds under Assumption 3.1 that

Bk (u − ik u,φk )≤ ck2
�

‖∂ 2
t ∇u‖Q + ‖∂t∇

2u‖Q + ‖∇
2u‖Q

�

‖∇φk‖Q . (23)

Proof. We write ηk = u − ik u. By definition, we have on each space-time slab

B m
k (ηk ,φk ) = (J∂t η̂k , φ̂k )Q̂ m −

�

∂t T J F
−T
∇̂η̂k , φ̂m

k

�

Q̂ m
+
�

ĉJ F
−T
∇̂η̂k , F

−T
∇̂φ̂m

k

�

Q̂ m
.

The first part vanishes as φ̂k is piecewise constant and ηk (t j ) = 0 for a time grid point t j

(J∂t η̂k , φ̂k )Q̂ m =−(J η̂k ,∂t φ̂k )Q̂ m +(J η̂k (tm), φ̂k )Ω̂m − (J η̂k (tm−1), φ̂k )Ω̂m = 0.

For the remaining terms, we apply the Cauchy-Schwarz inequality and use Assumption 3.1

B m
k (ηk ,φk )≤C





∇̂η̂k







Q̂ m





∇̂φ̂m
k







Q̂ m
≤C ‖∇ηk‖Q m ‖∇φk‖Q m .

Summation over m = 1, ..., M and Lemma 3.7 gives the statement (23).

Finally, we define a projection into the space of piecewise constant functions by setting in each
time interval Im

P 0
k : X →X 0

k ,
�

P 0
k v ◦Tm

�

|Im
=

1

2

�

v̂(tm)+ v̂(tm−1)
�

. (24)

3.2 Error between discrete and continuous bilinear forms

Next, we provide a result that estimates the difference between the bilinear forms B(·, ·) and Bk (·, ·).
Before, we provide an auxiliary result that will be needed to deal with the domain movement.

Lemma 3.10. Let a, b ∈W 1,∞(I , L∞(Ω(t ))) and define a function a by
a = 1/2(a(tm)+ a(tm−1)). For arbitrary functions f , g ∈ L2(Ω̂m) and ti ∈ Im , it holds that

�

(a(ti )− a) f , g
�

Q̂ m ≤ ck
�

� ( f , g )Q̂ m

�

�, (25)

((a− a) f , g )Q̂ m ≤ ck
�

� ( f , g )Q̂ m

�

�, (26)
�

(a(t )b (t )− ab ) f , g
�

Q̂ m
≤ ck‖ f ‖Q̂ m‖g‖Q̂ m . (27)
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For g ∈X 0
k

piecewise constant, f ∈H 1(Q) and a, b ∈W 2,∞(I , L∞(Ω(t ))), it holds that

((a(t )− a) f , g )Q̂ m ≤ ck2‖ f ‖H 1(Im ,L2(Ω̂m ))‖g‖Q̂ m , (28)
�

(a(t )b (t )− ab ) f , g
�

Q̂ m
≤ ck2‖ f ‖H 1(Im ,L2(Ω̂m ))‖g‖Q̂ m . (29)

Similar results hold true for vector-valued functions.

Proof. The estimates (25) to (27) follow by simple interpolation arguments. To show (28), we add
± f

((a(t )− a) f , g ))Q̂ m =
�

(a(t )− a)( f − f ), g )
�

Q̂ m
+
�

(a(t )− a) f , g )
�

Q̂ m
. (30)

We estimate the first term by using the Hölder inequality
�

(a(t )− a)( f − f ), g )
�

Q̂ m
≤ sup

t∈Im

‖a− a‖∞,Ω̂m‖ f − f ‖Q̂ m‖g‖Q̂ m

≤ ck2 sup
t∈Im

‖∂t a‖∞,Ω̂m‖∂t f ‖Q̂ m‖g‖Q̂ m .
(31)

For the second term, we notice that neither f nor g depend on time and thus, time integration
reduces to an error estimate for the trapezoidal rule for a

�

(a(t )− a) f , g )
�

Q̂ m
=
∫

Ω̂m
f g
∫

Im

(a(t )− a)dt ≤ ck2 sup
t∈Im

‖∂ 2
t a‖∞,Ω̂m‖ f ‖Q̂ m‖g‖Q̂ m . (32)

The term including f can be estimated by

‖ f ‖Q̂ m ≤ ‖ f − f ‖Q̂ m + ‖ f ‖Q̂ m ≤ ck‖∂t f ‖Q̂ m + ‖ f ‖Q̂ m . (33)

The estimates(30) to (33) imply (28). To show (29), we use a similar argumentation and split the
corresponding first term into

sup
x∈Ω̂m

 

∫

Im

a(t )b (t )− ab dt

!

= sup
x∈Ω̂m

�

∫

Im

(a(t )− a)
�

b (t )− b
�

dt

+
∫

Im

(a(t )− a) b dt +
∫

Im

a
�

b (t )− b
�

dt
�

.

Lemma 3.11. Let Assumption 3.1 be valid. For u ∈ H 2(Q1 ∪Q2) and zk ∈ X 0
k

it holds that
(m = 1, ..., M )

�

�B m(u, zk )−B m
k (u, zk )

�

�≤ ck2 ‖û‖H 2(Q̂ m
1 ∪Q̂ m

2 )
‖∇̂ẑk‖

m
Q̂

≤ ck2 ‖u‖H 2(Q m
1 ∪Q m

2 )
‖∇zk‖

m
Q

(34)

and
�

�B(u, zk )−Bk (u, zk )
�

�≤ ck2 ‖u‖H 2(Q1∪Q2)
‖∇zk‖Q . (35)
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Proof. By definition, we have

B m(u, zk )−B m
k (u, zk ) =

�

(J − J )∂t û −
�

∂t T J F −T − ∂t T J F
−T
�

∇̂û, ẑ m
k

�

Q̂ m

+
�

ĉ
�

J F −1F −T − J F
−1

F
−T
�

∇̂û,∇̂ẑ m
k

�

Q̂ m
. (36)

We estimate the integrals on the domains Q̂ m
1 and Q̂ m

2 separately. Applying (28)
for the determinant J , the first term in (36) is bounded by

�

(J − J )∂t û, ẑ m
k

�

Q̂ m ≤ ck2
�

‖∂ 2
t û‖Q̂ m

1
+ ‖∂ 2

t û‖Q̂ m
2

�

‖ẑ m
k ‖Q̂ m .

Similarly, we get for the remaining terms in (36) using the Poincaré inequality
�

ĉ
�

J F −T F −1− J F
−T

F
−1�
∇̂û,∇̂ẑ m

k

�

Q̂ m
−
�

�

∂t T J F −T − ∂t T J F
−T �
∇̂û, ẑ m

k

�

Q̂ m

≤ ck2
�

‖∂t ∇̂û‖Q̂ m
1
+ ‖∂t ∇̂û‖Q̂ m

2

�

‖∇̂ẑ m
k ‖Q̂ m .

Transformation of derivatives (Lemma 3.6) yields (34). (35) follows by summation over m =
1, ..., M .

3.3 Error estimates

Our error estimates will be based on the following lemma.

Lemma 3.12 (Discrete Gronwall lemma). Let (wn)n≥0, (pn)n≥0, (an)n≥0 and (bn)n≥0 be sequences
of non-negative numbers and c0 ≥ 0. Furthermore, let the inequality

wM +
M
∑

n=1

pn ≤
M
∑

n=1

(an wn + bn)+ c0

be valid for all n ≥ 0. For σM = 1− aM > 0, it holds that

wM +
M
∑

n=1

pn ≤ exp

 

σ−1
M

M
∑

n=1

an

! 

c0+
M
∑

n=1

bn

!

.

A proof for this result can be found e.g. in [14]. Our first theorem estimates the error u − uk at a
time grid point tm .

Theorem 3.13. Let u ∈ X be the solution of (6), uk ∈ X 1
k

the time discrete solution of (16) and
ek = u − uk . Furthermore, let f ∈ H 2,0 ∩H 1,2 ∩H 0,4, u0 ∈ H 6(Ω1(0) ∪ Ω2(0)), Q1 and Q2
sufficiently smooth and let u0 satisfy the compatibility conditions such that the regularity estimate (3) is
fulfilled. Under Assumption 3.1, it holds that

‖ek (tm)‖Ω(tm )
≤ ck2 exp(c tm)

 

2
∑

k=0

‖ f ‖k ,2(m−k)+ ‖u
0‖H 6(Ω1(0)∪Ω2(0))

!

. (37)

Proof. We start with the Galerkin orthogonality (17)

B(u,φk )−Bk (uk ,φk ) = 0 ∀φk ∈X 0
k

12



and write again ηk = u − ik u for the interpolation error and ξk = ik u − uk . With the Galerkin
orthogonality it follows that

Bk (ξk ,φk ) = Bk (u,φk )−B(u,φk )−Bk (ηk ,φk ) ∀φk ∈X 0
k . (38)

We test (38) with φk = P 0
k

ek = P 0
k
ξk which means φ̂m = 1

2 (ê
m
k
+ ê m−1

k
) and get on every time

interval Im :

1

2k

�

J (ê m
k −ê m−1

k
), ê m

k + ê m−1
k

�

Q̂ m −
1

4

�

∂t T J F
−T
(∇̂ê m

k + ∇̂ê m−1
k
), ê m

k + ê m−1
k

�

Q̂ m

+
1

4

�

ĉJ F
−T
∇̂(ê m

k + ê m−1
k
), F

−T
∇̂(ê m

k + ê m−1
k
)
�

Q̂ m

= B m
k (u, P 0

k ek )−B m(u, P 0
k ek )−B m

k (ηk , P 0
k ek ).

(39)

Before we estimate (39) term by term, note that with the help of Lemma 3.10 and Assumption 3.1,
we have for an arbitrary function f ∈ L2(Ω(ti )), i = m−1 or i = m and its counterpart f̂ ∈ L2(Ω̂m)









J
1/2

f̂








2

Ω̂m
=
�

J f̂ , f̂
�

Ω̂m
=
�

J (ti ) f̂ , f̂
�

Ω̂m
+
�
�

J − J (ti )
�

f̂ , f̂
�

Ω̂m

≥




J (ti )
1/2 f̂







2

Ω̂m
− ck





 f̂






2

Ω̂m

≥ (1− ck)




J (ti )
1/2 f̂







2

Ω̂m
= (1− ck)‖ f ‖2

Ω(ti )
.

The same argumentation can be used e.g. for F −T instead of J . We get for the first term in (39)

1

2k

�

J (ê m
k − ê m−1

k
), ê m

k + ê m−1
k

�

Q̂ m =
1

2









J
1/2

ê m
k









2

Ω̂m
−

1

2









J
1/2

ê m−1
k









2

Ω̂m

≥
�1

2
− ck

�

‖ek (tm)‖
2
Ω(tm )
−
�1

2
+ ck

�



ek (tm−1)




2
Ω(tm−1)

.

For the second term we use Assumption 3.1, Lemma 3.10 and Young’s inequality and obtain

1

4

�

∂t T J F
−T
∇̂(ê m

k + ê m−1
k
), ê m

k + ê m−1
k

�

Q̂ m

≥−c








J F
−T
∇̂(ê m

k + ê m−1
k
)








Q̂ m





ê m
k + ê m−1

k







Q̂ m

≥−c‖J F −T ∇̂(ê m
k + ê m−1

k
)‖Q̂ m k1/2

�

‖ê m
k ‖Ω̂m + ‖ê m−1

k
‖Ω̂m

�

≥−
cmin

8
‖∇P 0

k ek‖
2
Q m − ck

�

‖e m
k ‖

2
Ω(tm )
+ ‖e m−1

k
‖2
Ω(tm−1)

�

.

With similar arguments we get for the third term

1

4

�

ĉJ F
−T
∇̂(ê m

k + ê m−1
k
), F

−T
∇̂(ê m

k + ê m−1
k
)
�

Q̂ m
≥ (1− ck)cmin‖∇P 0

k ek‖
2
Q m .

For the first part on the right-hand side of (39), we use Lemma 3.11 and Young’s inequality

B m
k (u, P 0

k ek )−B m(u, P 0
k ek )≤ ck2 ‖u‖H 2(Q m

1 ∪Q m
2 )
‖∇P 0

k ek‖
2
Q m ≤ ck4 ‖u‖2

H 2(Q m
1 ∪Q m

2 )
+
cmin

8
‖∇P 0

k ek‖
2
Q m .

For the second part, it follows with Lemma 3.9

B m
k (ηk ,P 0

k ek )≤ ck4
�

‖∂ 2
t ∇u‖2

Q m
1 ∪Q m

2
+ ‖∂t∇

2u‖2
Q m

1 ∪Q m
2
+ ‖∇2u‖2

Q

�

+
cmin

8
‖∇P 0

k ek‖
2
Q m
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Altogether we have shown that



ek (tm)




2
Ω(tm )
−


ek (tm−1)




2
Ω(tm−1)

+
cmin

4





∇P 0
k ek







2

Q m

≤ ck
n

‖ek (tm)‖
2
Ω(tm )
+


ek (tm−1)




2
Ω(tm−1)

o

+ ck4
�

‖∂ 2
t ∇u‖Q m

1 ∪Q m
2
+ ‖∂t∇

2u‖Q m
1 ∪Q m

2
+ ‖u‖2

H 2(Q m
1 ∪Q m

2 )

�

.

Finally, summation over m and the regularity estimate (3) yield

‖ek (T )‖
2
Ω(T )+

cmin

4
‖∇P 0

k ek‖
2
Q

≤ c
M
∑

m=1

�

k‖ek (tm)‖
2
Ω(tm )

�

+ ck4

 

2
∑

k=0

‖ f ‖k ,2(2−k)+ ‖u
0‖H 6(Ω1(0)∪Ω2(0))

!

.

Applying the discrete Gronwall lemma (Lemma 3.12) and using the regularity estimate (3) prove
the assertion.

Next, we show a similar result for the space-time L2 norm:

Theorem 3.14. Let u ∈ X be the solution of (6), uk ∈ X 1
k

the time discrete solution of (16) and
ek = u − uk . Under the conditions of Theorem 3.13, it holds that

‖ek‖Q ≤ ck2 exp(cT )

 

2
∑

k=0

‖ f ‖k ,2(m−k)+ ‖u
0‖H 6(Ω1(0)∪Ω2(0))

!

. (40)

Proof. We split the error ek again into an interpolation error ηk = u − ik u and a discrete part
ξk = ik u − uk

‖ek‖Q ≤ ‖ηk‖Q + ‖ξk‖Q .

The interpolation error is bounded by Lemma 3.7

‖ηk‖Q ≤ ck2 ‖u‖H 2(Q1∪Q2)
.

For the discrete part, note that ξk (tm) = ek (tm) and thus the result of Theorem 3.13 is valid for ξk
as well. By definition, we have

‖ξk‖
2
Q m =

∫

Q̂ m
J
� t − tm−1

k
ξ̂k (tm)+

tm − t

k
ξ̂k (tm−1)

�2

d x̂ d t

≤ 2(1+ ck)
�

‖J (tm)ξ̂k (tm)‖
2
Q̂ m + ‖J (tm−1)ξ̂k (tm−1)‖

2
Q̂ m

�

≤ ck
�

‖ξk (tm)‖
2
Ω(tm )
+ ‖ξk (tm−1)‖

2
Ω(tm−1)

�

.

We sum over all time intervals m = 1, ..., M , use Theorem 3.13 and M = T /k to get

‖ξk‖
2
Q ≤

M
∑

m=1

ck‖ξk (tm)‖
2
Ω(tm )

≤ ck4 exp(cT )

 

2
∑

k=0

‖ f ‖k ,2(m−k)+ ‖u
0‖H 6(Ω1(0)∪Ω2(0))

!

.
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3.4 On the regularity of the data

The regularity for the data f and u0 on the right-hand side in the Theorems 3.13 and 3.14 is not
optimal. Instead, the estimate

‖ek‖ ≤ ck2 exp(cT )

 

1
∑

k=0

‖ f ‖k ,2(m−k)+ ‖u
0‖H 4(Ω1(0)∪Ω2(0))

!

.

is possible for both norms by a more involved argumentation. The necessity for the higher
regularity for the data in the argumentation above comes from Lemma 3.9. There, we estimated
the diffusive term by

(ĉJ F
−T
∇̂η̂k , F

−T
∇̂ÕP 0

k ek )Q̂ m ≤C‖∇ηk‖Q m‖∇P 0
k ek‖Q m . (41)

and used a bound for ‖∇ηk‖Q m that depends on the term ‖∂ 2
t ∇u‖ which by (3) requires higher

regularity of the data. To avoid this, one could think of applying integration by parts for the
left-hand side in (41). Then, however, we would need a stability bound for

∆P 0
k ek :=Ódiv

�

F
−1

J F
−T
∇̂ÕP 0

k ek

�

.

This is possible in the case of a fixed interface by a similar argumentation as in the proof of
Theorem 3.13. In the case of a moving interface, we have the additional terms

B m
k (ηk ,∆P 0

k ek ) and
�

�

∆P 0
k ek , n̂(ĉF

−1
J F
−T
∇̂ÕP 0

k ek )
�

�

Γ̂m

when testing (39) by ∆P 0
k

ek . We do not see any way to estimate these terms by an appropriate
bound to show the desired stability estimate. To circumvent the necessity for higher regularity
of the data, there is another possibility, however. Therefore, we define zk ∈X 0

k
as solution to the

discrete dual problem

Bk (φk , zk ) = (ek ,φk ) ∀φk ∈X 1
k .

By using Galerkin orthogonality, this yields

(ek ,ξk ) = Bk (ξk , zk ) = Bk (ik u, zk )−B(u, zk ) = Bk (u, zk )−B(u, zk )−Bk (ηk , zk ). (42)

The only difficult term to estimate is again the diffusive part of Bk (ηk , zk ). In contrast to the
situation above, we have zk instead of P 0

k
ek in (42). The advantage of this situation is now that to

zk , there is a corresponding continuous counterpart z which is the dual solution to

B(φ, z) = (ek ,φ) ∀φ ∈X .

For z integration by parts will not cause any problematic terms. Inserting±z and using integration
by parts yields

(c∇ηk ,∇zk )Q m = (c∇ηk ,∇(zk − z))Q m +(c∇ηk ,∇z)Q m

=−
�

div(c∇ηk ), (zk − z)
�

Q m +
�

[n(t )c∇ηk], zk − z
�

Γm +
�

ηk , div(c∇z)
�

Q m .

It remains to derive an error estimate for the dual solutions in the L2-norm as well as the estimation
of the interface term. For the details, we refer to [11].
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ΓhΩ1

Ω2

Γ
Figure 5. Left: Patches P ∈Ω2h with interface Γ. Right: Cells T ∈Ωh that arise from subdivision
of patches P̂1, ..., P̂4 into eight triangles or four quadrilaterals and the piecewise linear discrete
interface Γh .

r

srs

s

Figure 6. Different types of cut patches. From left to right: A, B , C and D . The subdivision can
be anisotropic with r, s ∈ (0,1) arbitrary.

4 Practical aspects

An important component of the numerical algorithm is the choice of a projection of the solution
at the previous time step u m−1

k
from the old to the new reference domain. In this section, we will

show that we do not need to calculate such a projection, as we can directly evaluate the arising
integrals including u m−1

k
. Therefore, we will derive a numerical integration scheme that integrates

scalar products including functions from two different reference domains exactly. We will see in
Section 5 that exact integration is crucial in order to obtain second-order accuracy.
Before, we describe the integration scheme we use, we introduce a spatial discretization scheme
that guarantees optimal convergence in space in Section 4.1. The time discretization scheme
presented here is, however, not restricted to this spatial discretization, other choices e.g. based on
the extended finite element method (XFEM, [16]), are possible.

4.1 Spatial discretization: A locally modified finite element scheme

For spatial discretization, we use the modified finite element scheme introduced in [12]. The key
idea is to use one fixed background mesh consisting of patches P ∈Ωc

h
for all time steps. In this

way, we avoid the need for remeshing as we advance in time and the reference domain changes.
Furthermore, the transition from functions defined on an old reference domain Ω̂m−1 to the
new domain Ω̂m by means of exact numerical integration will be considerably simplified (see
Section 4.2).
The region for triangulation for Ωc

h
has to be chosen large enough to cover all domains Ω(t ), t ∈ I .

Grid points that lie outside the reference domain Ω̂m may be eliminated from the system matrix
in time step m. In order to obtain a spatial discretization of optimal order, special care has to be
taken for the cells that are cut by the interface. If a patch is cut by the interface, we divide it into 8
triangles in such a way that the interface is resolved properly, see Figure 5. Furthermore, in order
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T1

T2

T1

T3
T2

Figure 7. Left: Two overlapping elements P ∈Ωm,c
h

and P̃ ∈ Ω̃m−1,c
h

. Right: A triangle can be cut
by a line in two different ways: The cut goes through two edges or through an edge end a vertex.
We add three or two triangles to the listL , respectively.

to avoid hanging nodes and to have the same number of degrees of freedom independent of the
interface location, we split a patch into four quadrilaterals if P ∩Γ(t ) = ;.
The four cases that have to be dealt with are shown in Figure 6: In all four cases, we can adjust the
edge midpoints and the midpoint of the cell in such a way that the interface is resolved in a linear
approximation. On the patch mesh Ωc

h
, we define the finite element trial space Vh ⊂H 1

0 (Ω) as an
iso-parametric space. If a patch is not cut by the interface, we use the standard space of bilinear
functions Q̂ (bilinear on each of the four sub-quads) for both reference element transformation
and the finite element basis. If a patch P ∈ Ωc

h
is cut, we use the space Q̂mod of piecewise linear

functions (linear on each of the eight triangles) for transformation and basis.
Although this ansatz is in principle equivalent to a finite element ansatz on a hybrid mesh consisting
of quadrilaterals and triangles, we base our implementation on the patch mesh Ωc

h
and use whole

patches P̂ as reference elements. The local subdivision into triangles and quadrilaterals is hereby
included in the local transformation

ξ̂P : P̂ → P, ξ̂P ∈ Q̂mod (or Q̂ resp).

For m = 1, ..., M , we obtain meshes Ωm
h

consisting of quadrilaterals and triangles that differ from
each other in the interface region. The arising subcells can become arbitrarily anisotropic for
r, s → 0,1 (Figure 6). We can guarantee, however, that a maximum angle condition remains
valid. This enables us to show optimal error estimates of second order. Furthermore, using
a hierarchical finite element basis, the condition number of the corresponding system matrix
remains bounded [12].

4.2 Projection between reference domains and numerical integration

In the time-stepping scheme (16), the old solution û m−1
k

appears as û m−1,+
k

on the new reference

domain Ω̂m . However, from the previous time-step, û m−1
k

is given as a function on Ω̂m−1. To
evaluate the expressions in (16), we have to apply a projection to the new reference domain.
Using interpolation may lead to a reduced order of convergence (see Section 5). A projection that
conserves the order of convergence is given in (18). Here, however, we will show that it is not
necessary to calculate this projection.
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By definition of the trial space X 1
k
, we have the continuity relation (11)

û m−1,+
k

= û m−1
k
◦T −1

m (tm−1),

i.e. continuity in the current configuration on Ω(tm−1). For the derivatives, we have

∇̂m û m−1,+
k

=
�

F −T
m−1(tm−1)∇̂m−1 û m−1

k

�

◦T −1
m (tm−1).

In our practical implementation we use these expressions to evaluate û m−1,+ on the old domain
Ω̂m−1. As an example, let us consider the evaluation of

∫

Ω̂m
û m−1,+

k
· φ̂m

k dx̂ =
∫

Ω̂m

�

û m−1
k
◦T −1

m (tm−1)
�

· φ̂m
k dx̂. (43)

While the first factor on the right-hand side is a smooth function on the cells of the moved grid
Ω̃m−1

h
= T −1

m (tm−1)(Ω
m−1
h
), the second factor is smooth on Ωm

h
(see Figure 7 for an example of two

overlapping patches P ∈Ωm,c
h

and P̃ ∈ Ω̃m−1,c
h

). A high-order integration formula has to account
for both the singularities of the integrands. For this purpose, we construct a cut grid consisting
of triangles that contains the mesh lines of both grids. In two dimensions, this cut grid can be
constructed by a rather simple algorithm:

Algorithm 4.1. We initialize a list of trianglesL that contains the elements of Ω̂m (quadrilaterals
are split into two triangles). Then, we augment the list in the following way: For all mesh lines ei in
Ω̃m−1

h
:

1. Check which triangles inL are cut by ei .

2. If a triangle is cut, eliminate the triangle from the listL , split it into two or three subtriangles
(see Figure 7) and add them toL .

In three space dimension, the construction of a cut grid is much more technical. We refer to
Sudakhar & Wall [18] and Bastian & Engwer [4] for possible approaches. Once the listL has been
created, we use a standard Gauß quadrature rule on the triangles inL .

Remark 4.1. The movement T −1
m (tm−1) of grid cells is bounded by Assumption 3.1. In our practical

implementation, we make the additional assumption that the interface does not jump over more than
one patch within one time step. In the opposite case, we decrease the time step k = tm − tm−1. In this
way, we only have to check if the triangles that are part of the same patch and the neighboring patches
are affected by ei in 1.

5 Numerical Examples

Finally, we present two numerical examples to substantiate the findings of the previous section.

5.1 Numerical example with analytical solution

We consider Problem (1) on a moving domain Ω(t ) = Ω1(t )∪Ω2(t )∪Γ(t ). The subdomains are
defined by

Ω1(t ) = [−1,1]× [−1, t], Ω2(t ) = [−1,1]× [t , 1+ t].
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Figure 8. End time error of the modified dG(0) and cG(1) schemes for k = h and a fixed outer
boundary (interface movement prescribed by y = T )

We use the diffusion coefficients c1 = 1,c2 = 0.1 and choose Dirichlet boundary data ud and a
right-hand side f such that the exact solution is given by

u(x, t ) =

(

sin( c2c1 (x2− t )), x ∈Ω1(t ),

sin(x2− t ), x ∈Ω2(t ).

In an interval Im = [tm−1, tm], we use the transformations

Tm(x, t ) =







�

x1, x2−
1+x2
1+tm
(tm − t )

�

, x ∈Ω1(t ),
�

x1, x2− tm + t )
�

, x ∈Ω2(t ),

that fulfill the conditions of Assumption 3.1. In Figure 8, we plot the error at the end time
T = 0.512 for the modified cG(1) scheme presented in this paper and a modified dG(0) scheme that
is defined analogously using a dG(0)Galerkin ansatz in time. We decrease the spatial and temporal
discretization parameter simultaneously using k = h. As expected, we observe second-order
convergence for the modified cG(1) scheme and first-order convergence for the modified dG(0)
scheme.
Next, we study the effect of numerical integration and inexact projection schemes. First, we use
a linear interpolation as projection from Ω̃m−1

h
to Ω̂m

h
after every time step. The interpolation

operator i m
h

is defined by the relation

i m
h u m−1,+

k h
(x̂i ) =

�

û m−1
k h
◦T −1

m (tm−1)
�

(x̂i )

in each grid point xi ∈ Ω̂m . Secondly, we use a summed midpoint rule with 64 points per patch for
the evaluation of integrals like (43) instead of the exact quadrature scheme presented in Section 4.2.
In Figure 9, we compare the errors for these two schemes to the exact integration scheme. For
the linear interpolation, we observe only linear convergence. As one would expect the projection
error dominates the total error. The midpoint rule behaves similarly to our quadrature formula for
larger time-steps k. For smaller time-step size, however, we observe again a reduction in the order
of convergence. For k = h ≈ 10−2 the convergence rate is close to linear convergence. Here, again,
the quadrature error becomes the dominant part of the total error. Our integration scheme, on
the other hand, does not affect the quadratic convergence behaviour of the time stepping method.
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Figure 9. End time error for the modified cG(1) scheme applied to the model problem. We
observe a reduced order of convergence when using non-exact integration formulas or projection
schemes.

5.2 Rotating ellipsoid

As a second example, we consider a rotating ellipsoid Ωell(t ) inside a fixed outer box Ω =
[−1.2,1.2]2 (see Figure 10). Initially, the ellipsoid has the Cartesian vectors as semi-principal
axes with length 0.25 in vertical and 0.5 in horizontal direction. We apply a counter-clockwise
rotation of the ellipsoid driven by the prescribed velocity field

vdom = 0.1
�

x2
−x1

�

.

Despite the fact that we could use this analytical velocity field to compute an analytical transfor-
mation Tm near the interface, we take a different approach here in order to show how to calculate
a suitable transformation for realistic interface problems where the domain movement is only
known at discrete points in time. A standard approach to capture the interface would be to define
a scalar level-set function Φ that moves with the interface

∂tΦ+ vdom · ∇Φ= 0 in Ω.

In order to define suitable transformations Tm , however, we follow a slightly different approach
inspired by fluid-structure interaction problems [8]. We use the vector-valued Initial Point Set
function ΦIPS(t ) :Ω→R2 defined by the equation

∂tΦIPS− vdom · ∇ΦIPS = 0 in Ω

with initial value ΦIPS(t = 0) = id. This function traces back points x ∈ Ωell(t ) to their original
position in Ωell(0). Thus, we can define the inner subdomain Ωell(t ) by setting

Ωell(t ) = {x ∈Ω, ΦIPS(x, t ) ∈Ωell(0)}

and the outer domain is given by Ω2(t ) = Ω \Ωell(t ). Note that we do not define any spatial
boundary conditions for ΦIPS, as this could lead to a degeneration of the function before a full
rotation of the ellipsoid is complete. Using the Initial Point Set function ΦIPS, it is straight-forward
to define a map that maps Ωell(tm) to Ωell(t ) and Γi (tm) to Γi (t ) such that for t ∈ Im

T̃m(t ) = (ΦIPS(t ))
−1 ◦ΦIPS(tm).
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Ωell(0)

Ω2(0)

Figure 10. Subdomains of the second test configuration. The ellipsoid rotates counter-clockwise,
while the outer domain Ω is fixed.

Figure 11. Spatial grid at time t = 0, t = 15, t = 30 and t = 45. The ellipsoid rotates counter-
clockwise.

In our practical implementation, we determine the point x m−1 := Tm(x
m) ∈Ω(tm−1) by solving

ΦIPS(tm−1)(x
m−1) = ΦIPS(tm)(x

m)

with Newton’s method and extend it linearly to the time interval Im . To map the outer domain
Ω2(tm) to Ω2(t ), we use an interpolation between the movement at the interface and the identity,
id, at the outer boundary ∂ Ω

Tm(t ) = g (x)T̃m(t )+ (1− g (x))id.

where g denotes a smooth function with g = 1 in Ωell(tm)∪Γ(tm) and g = 0 on ∂ Ω.

As data, we choose f =
p

(1+ cos(5t )) as well as homogeneous initial data u0 = 0 and Dirichlet
data ud = 0. The diffusion coefficients are again given by c1 = 1 and c2 = 0.1. The movement of
the ellipsoid as well as the spatial grid are illustrated in Figure 11.
To study convergence, we compare the functional values for ‖uk (T )‖Ω(T ) and ‖uk‖Q for different
time step sizes k, grid size h = k and a modified cG(1) as well as a modified dG(0) scheme in
Table 1. Furthermore, we calculate an extrapolated value e0 as well as an estimated convergence
order α by a least squares fit of the function e(k) = e0+ ckα. For both functionals, we observe
second-order convergence for the modified cG(1) approach and first-order convergence for the
dG(0) variant. Finally, we plot the errors over the mesh/time-step size h = k in Figure 12 to
illustrate the convergence behaviour.

6 Conclusion

We have presented a time-stepping scheme for parabolic interface problems with a moving interface.
The method is based on a Galerkin formulation of Crank-Nicolson type. To obtain the optimal
order of convergence we use space-time test- and trial-functions, that are aligned with the moving
interface. The resulting method is in each time step equivalent to a standard Galerkin approach
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‖uk (T )‖Ω ‖uk‖Q
k = h dG(0) cG(1) dG(0) cG(1)

0.15 0.619 0.5858 2.121 2.1286
0.075 0.605 0.5890 2.134 2.1423

0.0375 0.598 0.5899 2.140 2.1456
0.01875 0.594 0.5900 2.143 2.1463
Extrap. 0.589 0.5901 2.146 2.1466

Conv. 0.87 2.01 1.11 2.08

Table 1. Functional values for the ellipsoid problem in the space-time L2-norm and in the L2-
norm at time T = 15 for a modified dG(0) and a modified cG(1) time stepping scheme and
k = h. Furthermore, we give an extrapolated functional values for k = h → 0 and estimate
the convergence orders. The convergence orders are in good agreement with the theoretical
predictions.

O(k2)

O(k)

dG(0)

cG(1)

End time error

time step size k

10.10.01

0.1

0.01

0.001

0.0001

1e-05

O(k2)O(k)

dG(0)

cG(1)

Space-time error

time step size k

10.10.01

0.1

0.01

0.001

0.0001

Figure 12. Functional errors for the ellipsoid problem in the end time L2-norm and the L2-norm
over the space-time domain Q for h = k → 0. As our theoretical results predict, we observe
second-order convergence for the modified cG(1) approach and first-order convergence for a
modified dG(0) approach.

applied to an ALE formulation on a fixed reference domain. For realization, the Galerkin
formulation is approximated by suitable quadrature rules on every space-time slab. For this
numerical approximation, we prove second order convergence in the L2-norm in time and for
the error at the end time. While we require the typical regularity of the unknown solution, a
very smooth interface motion is needed. Numerical tests demonstrate the expected order of
convergence.
Problems with moving interfaces appear in various application fields, such as multiphase flows or
fluid-structure interactions. Future work will focus on the efficient application of the time-stepping
scheme to such complex applications.
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