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Abstract

This contribution is the second part of two papers on the Fully Eulerian formulation for
fluid-structure interactions (fsi). We present different fsi applications using the Fully Eulerian
scheme, where traditional interface-tracking approaches like the Arbitrary Lagrangian-Eulerian
(ALE) framework show difficulties. Furthermore, we present examples where parts of the
geometry undergo a large motion or deformation that might lead to contact and/or topology
changes. Finally, we present an application of the scheme for growing structures. The verifica-
tion of the framework is performed with mesh convergence studies and comparisons to ALE
techniques.

1 Introduction

In this second part of the series on the Fully Eulerian formulation for fluid-structure interactions
(fsi), we present different test-cases and applications to highlight the potential of this novel for-
mulation. We focus on specific difficulties like large deformations, motion and contact, where
interface-tracking approaches such as the Arbitrary Lagrangian Eulerian (ALE) formulation tend
to fail without remeshing. Details on the derivation of the model, as well as the finite element
discretization of the resulting equations are given in the first part [7].
The paper is organized as follows: In Section 2 we verify the Eulerian formulation by means of
benchmark problems and comparison with ALE computations. Further, by modification of the
benchmark descriptions, we go beyond the limit that can be reached by ALE techniques. Next,
Section 3 presents test-cases, where the solid undergoes a very large motion. In Section 4 we focus
on problems with contact and break of contact. In Section 5, we apply the locally modified finite
element technique described in the first part to a simple fsi problem. Finally, in Section 6 we
discuss applications with growing structures, as they appear in the growth and rupture of plaque in
blood vessels. We conclude in Section 7, where we also discuss some open topics and shortcomings
of the Fully Eulerian approach for fluid-structure interactions. All tests are computed either with
the finite software library Gascoigne [2] or with the fsi-code [11] based on deal.II [1].
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Table 1. Results for CSM 1 test in Eulerian coordinates. Force gs = 2ms−2 (left) and gs = 8ms−2

(right).

DoF ux (A)[×10−3] uy (A)[×10−3]
4004 −4.6371 −65.7587

12868 −8.7366 −67.5678
48768 −7.8551 −66.5940

179936 −7.0841 −66.2150
ALE −7.1455 −65.8808

DoF ux (A)[×10−3] uy (A)[×10−3]
20988 −25.26 −192.61
54744 −54.55 −195.26

184629 −53.33 −196.11
691233 −55.04 −196.89
(ref. [9]) −66.857 −192.35

Table 2. Results for the FSI 1 benchmark.

Level DoF ux (A)[×10−3] uy (A)[×10−3] Drag Lift
3 131976 0.0236 0.8146 18.831 0.7784

(ref. [8]) 0.0227 0.8209 14.295 0.7638

2 Numerical validation - benchmark problems

In this section, we present two test cases. The first test is based on a Computational Structure
Mechanics (CSM) benchmark in which a gravitational force acts on an elastic beam deflecting it
towards the bottom of the configuration (see the results in Figure 1). The second example is an
extension to fluid-structure interaction. Although both tests reach a stationary limit, important
issues such as interface cuts are already present. The CSM test case is split into two sub-cases. The
first case is a widely used benchmark [3], in the second one we increase the force acting on the
beam such that it touches the lower wall. This test case is motivated by studies of Dunne [4] and it
shows the potential of the fully Eulerian formulation. The results of the first case are summarized
in Table 1 (left) and compared to results obtained with an ALE code. In the second test (Wick [12])
we are able to simulate the situation where the beam touches the lower wall (up to one mesh
cell because otherwise the fluid continuum equations are no longer valid), see Figure 1. For the
y-displacement, the results are very similar to results obtained by Richter [9] (see Table 1 at right).
For the x-displacements, we observe a slight difference, however, our findings are in reasonable
agreement.
In the second test, the FSI 1 benchmark [3] is considered in which a parabolic inflow is prescribed.
The elastic beam deforms caused by a pressure difference because of the non-symmetric location
of the cylinder. First results using a stationary code were presented in [10]. Now, we use our recent
advances [9,12] to recompute this example with a nonstationary code version. Our findings are
summarized in Table 2. In order to keep the computational cost reasonable, local mesh refinement
around the elastic beam is applied.

3 Large motion - 360o rotation

Usually, the reason for the break-down of the ALE approach is loss of regularity in the ALE
transformation map and not the large deformation or motion of the structure itself.
In Figure 2, we show a prototypical configuration: an (elastic or rigid) body S =S (0) is centered
in a flow container S ⊂Ω. By a rotational flow in the fluid-domainF =F (0) = Ω \S (0) the
object starts to rotate. Here, it is not a deformation of the solid but a rigid body rotation that
causes severe problems in ALE computations (top line of Figure 2).
In the Fully Eulerian formulation, the large motion and rotation does not cause any problems,
as the fluid problem is given in the Eulerian framework, see the bottom line of Figure 2. In this
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Figure 1. CSM-1 benchmark test (left) and CSM touching the lower wall for gs = 8ms−2 (right).
The left figure displays the ALE computation with the moving mesh whereas the right shows the
Eulerian result.

Figure 2. Rotational flow around an unmounted obstacle at different time steps. Top row: ALE
computation. Bottom row: Fully Eulerian.

framework, the interface moves through the domain and must be captured by the Initial Point
Set. As these computations have been done without a specially fitted interface finite element
method, we observe a strong loss of accuracy. For the Eulerian framework, meshes with a finer
resolution are required to reach the same accuracy as with an ALE approach. In order to obtain
approximately the same accuracy, we used about 4 000 locally refined elements for the Eulerian
approach vs. 400 elements in the ALE case (cf. Figure 2) .
As an interface-capturing technique, the Fully Eulerian approach is not strictly mass-conserving,
the solid mass

ms (u) =
∫

S (t )
J (u)ρ0

s dx

depends on the accuracy of the captured interface. For this test-case, we observe, that linear finite
elements (even without fitted interface modifications) show second order in capturing the solid
mass

|ms (u)−ms (uh )|=O(h2).

4 Touching the boundary

We consider a test problem, that has been introduced in [9]. An elastic ball “falls” due to gravity
in a viscous fluid until it touches the bottom of the rigid fluid domain. Due to elasticity, the ball
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Figure 3. Left: height of the falling ball over the ground, wall-stress and solid Cauchy stress. Right:
configuration at the time of closest contact t = 0.675. Small undershoots in the wall-stress are due
to the forces of the incompressible fluid on the boundary at separation time.

bounces off and is elevated, then falls down again for several times until the motion is finally
damped by viscous effects.
The fixed computational domain is set to Ω= (−1,1)2m, and at reference time t = 0 the system
is at rest, with the ball being centered in the origin S (0) = {x ∈ Ω : |x| < 0.4m}. The fluid-
domain F (0) = Ω \ S (0) is governed by a viscous incompressible Navier-Stokes fluid with
density ρ f = 103k g m−3 and kinematic viscosity ν f = 10−2m2 s−1. The elastic ball has density
ρ0

s = 103k g m−3 and the Lamé coefficients µs = 104k g m−1 s−2 and λs = 4 · 104k g m−1 s−2. The
problem is driven by a right hand side, that acts on the solid-domain only, fs =−1ms−2 and f f = 0.
On the bottom part of the boundary Γbot = {(−1,1)×{−1}} we prescribe homogenous Dirichlet
conditions for the velocities v = 0. On all other parts of the boundary ∂ Ω \Γbot we prescribe
the “do-nothing” outflow condition for the fluid −p f n+ ρ f ν f ∂nv f = 0. Finally, we prescribe
homogenous Neumann conditions for the displacement ∂nu= 0 on the complete boundary ∂ Ω.
The main interest of this test case is the contact of the structure with the boundary of the domain.
In Figure 3, we plot the distance of the ball to the ground. First we observe, that the ball touches
the ground for a short time-interval and then bounces off. The maximum elevation is reduced
after each contact with the domain’s boundary. Further, we show the normal wall stress on the
lower boundary and the norm of the Cauchy stresses within the solid:

Jwall-stress =
∫

Γbot

n ·σσσ f ndo, Jsolid-stress =
∫

S (t )
σσσ s :σσσ s dx.

There will always be a thin layer of fluid around the structure, such that there is no real “contact”
between both phases. The right part in Figure 3 shows a plot of the elastic ball on the fixed
background mesh at the time where ball and boundary are closest. The forces are transferred via
the remaining small layer of fluid. These results are stable under refinement of the temporal and
spatial discretization. It however still remains to show, that the realization of contact, which is
modeled by the discretization only, gives realistic results. Here, comparisons to experiments and
numerical benchmarking with alternative formulations are necessary steps in future work.

5 Locally modified finite element scheme

In this section, we present first nonstationary results using the Locally Modified Finite Element
scheme described in the first part [5,7] applied to a simplified fluid-structure interaction problem.
The problem under consideration consists of an elastic ball in the middle of a fluid governed by
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Figure 4. Screen-shots of a moving elastic ball simulated using the Locally Modified Finite Element
scheme at time T = 0.05, T = 0.1, T = 0.15 and T = 0.2.

the linear Stokes equation. The elastic solid is governed by a fully linearized elasticity model. The
flow field is driven by a prescribed parabolic inflow on the left-hand side of the domain. This
causes the elastic ball to move towards the right side where we prescribe the do-nothing outflow
condition. In Figure 4, we show screen-shots of simulation results at four different time steps. The
time step was chosen k = 10−3.
As described in [5,7], we use a fixed patch mesh for all time steps. Outside the interface region,
we split each patch P ∈Ωh into four quadrilaterals (type 1). Patches cut by the interface are split
into eight triangles that resolve the interface with a linear approximation (types 2 to 4). The
type assigned to a patch may vary in every time step depending on the position of the interface.
Although the aspect ratio of the triangles can get arbitrarily bad, we can make sure, that all triangles
have interior angles bound away from π. This guarantees robust interpolation estimates. To cope
with the bad conditioning of the system matrix, we use a hierarchical basis on those patches, that
are cut by the interface.
This approach is equivalent to a fitted finite element method using a mixed triangular-quadrilateral
mesh, which is well known to give optimal approximation properties. However, instead of
modifying the mesh, we locally modify the finite element basis. The number of unknowns and
the connectivity of the system matrix does not depend on the interface location.

6 Growing structures and clogging phenomena

In this final example, we present results showing our recent efforts in modeling and simulating
growing solids and clogging phenomena. The key idea relies on a multiplicative decomposition of
the displacement gradient into an elastic and a growth part. The fundamental relation (see Part
I [7]) is given by

F = F̂
−1

. (1)

Now, the Eulerian displacement gradient is split into a growth part and an elastic part using
relation (1):

F = F̂
−1
= F̂

−1
g F̂

−1
e =: F̂

−1
g F e , F e := F̂

−1
e ,

and
J := Ĵ−1 = Ĵ−1

g Ĵ−1
e =: Ĵ−1

g Je , Je := det F e = Ĵ−1
e .

The growth tensor is defined as F̂
−1
g := ĝ (x̂, t )I .

The problem is driven by a pressure difference described as cosine function and simultaneously
by growth of the structure. Consequently, we consider two effects, namely, fsi-interaction and
solid-growth. The configuration and the material parameters are taken from [6], Example 2. In
addition to these tests, we now consider growth and back-growth of the solid (for instance when a
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Figure 5. Configuration 2: Deformation at times T = 10,40 in the time interval [0,80].
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Figure 6. Deformation of the top solid at channel’s mid-point at times T = 10,40 in the time
interval [0,80].

plaque-disease occurs and vanishes after treatment). By observing Figure 5 and Figure 6, we see
that the findings in both frameworks show similar qualitative behavior. The results of the Eulerian
approach are less accurate and stable, as this test-case is computed using the standard non-fitted
finite element approach without the modifications described in Section 5.

7 Conclusion

As shown in our studies, the Fully Eulerian formulation for fluid-structure interactions offers
an alternative modeling approach, that can be preferable for certain classes of problems. As a
monolithic model, one can use strong implicit discretization schemes with large time-steps, inde-
pendent of the problem’s stiffness. One benefit of the Eulerian scheme is the simple incorporation
of complex models, like, e.g. active growing solids. As a drawback, we point out the interface-
capturing type of this approach. To achieve good approximation at the interface, additional
computational effort is required. Often, finer meshes are required, however, the Fully Eulerian
approach will not fail, if motion of the solid gets large. The full use of the locally modified finite
elemente scheme [5,7] for nonstationary problems will essentially remove this drawbacks. Among
the large variety of different schemes for fluid-structure interactions that are able to deal with large
deformation and motion, the peculiarity of the Fully Eulerian approach is its strictly monolithic
character. If implicit discretization schemes and solvers are desirable or if adjoint schemes for error
estimation or optimization are to be used, the Eulerian scheme can be easily embedded into the
usual variational framework.
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