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Abstract

This contribution is the first part of two papers on the Fully Eulerian formulation for
fluid-structure interactions. We derive a monolithic variational formulation for the coupled
problem in Eulerian coordinates. Further, we present the Initial Point Set method for capturing
the moving interface. For the discretization of this interface problem, we introduce a modified
finite element scheme that is locally fitted to the moving interface while conserving structure
and connectivity of the system matrix when the interface moves. Finally, we focus on the
time-discretization for this moving interface problem.

1 Introduction

The underlying difficulty of fluid-structure interactions (fsi) is the free boundary character of
the coupled system: as the deformation or motion of the solid determines the interface to the
fluid problem, the domains (fluid as well as solid) are subject to change. In problems of solid
mechanics, the displacements are usually represented in Lagrangian coordinates, such that the
computational domain is always fixed. The shape of the current configuration is expressed by the
displacement field. This concept does not directly transfer to coupled fsi problems, as fluid flows
are usually considered in Eulerian coordinates. A direct coupling between the fixed Lagrangian
and the moving Eulerian domain is not possible.
For stiffly coupled problems, monolithic formulations of the coupled system are required for
robust implicit discretization and solution techniques. A simple approach is to reformulate the flow
problem on a fixed coordinate system, that matches the fluid-problem. By introducing a reference
domain and a mapping between this reference domain and the current configuration, the fluid
problem can be expressed on a fixed domain. All motion is hidden in the transformation, which
is now an unknown part of the system. This Arbitrary Lagrangian Eulerian (ALE) formulation
is one possibility out of two and is often used and highly successful (see. e.g. the survey [2]),
mostly due to the simple structure and the very good accuracy, that can be achieved. We notice
that the reference system for the fluid problem is artificial. Problems appear, if the fluid domain
undergoes a very large deformation. The mapping between artificial reference domain and current
configuration must be invertible and differentiable. If the deformation gets too large, e.g. if the
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topology of the domain is changed (by contact), the ALE approach will fail. By remeshing and
definition of a new reference domain, one can overcome this limitation, however at the cost of
loosing a strictly monolithic formulation.
Here, we present an Eulerian formulation for the coupled problem, which is similar to the ALE
approach, as coupling will be realized in a monolithic variational formulation. The fluid problem
is given in its natural Eulerian framework, and the solid problem will also be mapped to Eulerian
coordinates, such that both sub-problems are formulated in the moving current configuration. This
approach has first been introduced by Dunne [3] and then been further analyzed and developed
into a computational method [4,13,14,16]. Two major differences between the Eulerian and the ALE
approach are of importance: First, we do not have to use artificial reference domains. The mapping
between Lagrangian and Eulerian systems is natural and will never be the cause for a breakdown
of the approach. Large motion, deformation and contact are possible. Second, as the problems are
given in the moving current configuration on a fixed spatial coordinate system, the formulation is
of front-capturing type. The position of the interface must be carefully followed and achieving
good interface accuracy will be challenging.
The Fully Eulerian approach must be distinguished from other techniques like Euler-Lagrange
schemes based on Level-Sets [9], the XFEM dual mortar approach [10], or Peskin’s immersed bound-
ary method [12] where two different meshes are used and the information is provided by smoothed
delta-functions. The key difference of these methods to the Fully Eulerian approach is that we
neither need Lagrange-multipliers, and that we work on one common fixed background mesh,
that allows us to realize the coupling by variational techniques.
The following second section is devoted to an introduction of the Fully Eulerian formulation for
fluid-structure interactions. Then, in Section 3 we describe a spatial finite element discretization
that is able to locally resolve the interface. Section 4 discusses the temporal discretization of the
coupled system. Numerical test-cases and different applications of the Fully Eulerian formulation
are presented in the second part of this series [6].

2 Fluid-structure interactions in Eulerian coordinates

Let Ω ⊂ Rd be a two- or three-dimensional domain, that is split into a fluid-domain F and a
solid-domain S and a common interface I by Ω =F ∪I ∪S . By Ω = Ω(0), F =F (0) and
I =I (0) we denote the stress-free reference configuration. On the sub-domainF we prescribe
the incompressible Navier-Stokes equations, while S is governed by an elastic structure. The two
problems are coupled on the common interface by prescribing continuity of velocities v f = vs
as well as continuity of normal stresses σσσ f n=σσσ s n, where by σσσ f and σσσ s we denote the Cauchy
stresses of fluid and solid and n denotes the normal vector. By the dynamics of the coupled problem,
the solid domain will undergo a motion or deformation S →S (t ) and the fluid-domain will
move along, such that the joint domain Ω(t ) = F (t ) ∪ I (t ) ∪S (t ) will neither overlap nor
produce gaps. The main task for a monolithic variational formulation of the coupled problem is
to state the solid equations on this moving Eulerian domain S (t ). Details on the derivation of
the equations as well as differences to the traditional ALE formulation are presented in detail in
the literature, see e.g. [4].
Here, by vs and us we denote solid velocity and displacement in the Eulerian framework. By
the relation x̂ := x −u(x, t ) we define the mapping of a Eulerian coordinate x ∈S (t ) back the
reference coordinate x ∈ S = S (0) of the particle. By F := I −∇u we denote the Eulerian
displacement gradient with determinant J := det F. It holds F = F̂−1, where F̂ is the usual
Lagrangian displacement gradient [4]. Finally, the Green Lagrange strain tensor has the Eulerian
representation E := 1

2 (F
−T F−1 − I ). This notation allows to state various constitutive laws of

elastic materials in Eulerian coordinates. For simplicity, we restrict all considerations to the St.
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Venant-Kirchhoff material, where the Cauchy stresses are given by

σσσ s := J F−1 �2µs E+λs tr(E)I
�

F−T ,

with Lamé coefficients µs and λs .

2.1 Variational formulation in Eulerian coordinates

We start by defining the correct functional spaces for the solution of the coupled problem. As
velocities of fluid and solid are continuous on the complete domain Ω(t ) =F (t )∪I (t )∪S (t ),
we define a global function space that directly incorporates the kinematic coupling condition

v ∈ vD +V , V :=H 1
0 (Ω(t );Γ

D (t ))d ,

where ΓD (t ) is that part of the domain’s boundary, where Dirichlet conditions are prescribed and
vD ∈H 1(Ω(t ))d is an extension of the Dirichlet data into the domain. Fluid and solid velocities are
given by restriction of v to the subdomains v f := v|F (t ) and vs := v|S (t ), respectively. Considering
compressible elastic structures, the pressure is only given in the fluid domain

p f ∈L f := L2(F (t )).

As the Eulerian formulation does not involve transformation of the fluid-domain, no additional
displacement variable (like in the ALE approach) is required. We find the solid displacement in
the form

us ∈ uD
s +Ws , Ws :=H 1

0 (S (t );Γ
D
s (t ))

d ,

where by ΓD
s (t ) we denote the Dirichlet part of the solid boundary and by uD

s ∈H 1(S (t ))d an
extension of the Dirichlet values into the solid domain. Finally, velocities v ∈ vD+V , displacement
us ∈ uD

s +Ws and pressure p f ∈L f are defined by the system:

(ρ f (∂t v f + v f · ∇v f ),φ f )F (t )+(Jsρ
0
s (∂t vs + vs · ∇vs ),φs )S (t )

+(σσσ f ,∇φ f )F (t )+(σσσ s ,∇φs )S (t ) = (ρ f f f ,φ f )F (t )+(Jρ
0
s fs ,φs )S (t ) ∀φ ∈ V

(∂t us + vs · ∇us ,ψs )S (t ) = (vs ,ψs )S (t ) ∀ψs ∈Ws

(div v f ,ξ f )F (t ) = 0 ∀ξ f ∈L f ,

(1)

where by ρ f and ρ0
s we denote the densities of fluid and solid in reference state, by σσσ f :=−p f I +

ρ f ν f (∇v f +∇vT
f ) the fluid stresses with kinematic viscosity ν f . The global definition of the

test-function φ ∈ V ensures the dynamic coupling condition of the normal stresses. As for the
velocities, we use the notation φ f :=φ|F (t ) and φs :=φ|S (t ).
This system of equations in not closed, as the motion of the domains is determined in an implicit
sense only. Without knowledge of the solution, the affiliation of a coordinate x ∈Ω(t ) to either
solid- or fluid-domain is not immediately possible. The next section will focus on this issue.

2.2 The Initial Point Set method

One common possibility to capture the interface in fixed mesh methods is to use Level-Set
functions [15] that transport the interface as zero contour of a signed distance function with
the fluid and solid velocity. Eulerian Level-Set methods for fsi problems are discussed in the
literature [7,8]. Here, we refrain from using Level-Sets due to two reasons: first, Level-Sets have
difficulties capturing sharp edges. And second, an additional equation has to be solved and the
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Figure 1. Left: triangulation Ωh with interface I . Patch P is cut by I at xP
1 and xP

2 . Right:
subdivision of reference patches P̂1, ..., P̂4 into eight triangles each.

problem complexity increases. Instead, we base the interface capturing on a transportation of the
complete reference domain instead of the interface:

∂tΩ(t )+ v · ∇Ω(t ) = 0.

Within the solid domain, the displacement us exactly takes this role. For x ∈S (t ), the displace-
ment vector points back to the reference domain x − us (x, t ) ∈ S = S (0). Hence, if x and u
are available, we can decide, whether x − u is part of the reference solid or not. To apply this
concept, we must define a displacement field u on the complete domain Ω(t ). Then, the Initial
Point Set [3,13] is given as

ΦIPS(x, t ) :=

(

x −us (x, t ) x ∈S (t ),
x − ext(us )(x, t ) x ∈F (t ).

The extension of the solid displacement is only required in a close neighborhood of the interface [13].
Given the initial point set, the domain affiliation of x ∈Ω(t ) is determined by ΦIPS(x, t ) ∈S (0)
for the solid domain and ΦIPS(x, t ) 6∈ S (0) for coordinates in the fluid domainF (t ). Here, we
stress one detail in the realization: a coordinate x ∈ Ω(t ) belongs to the fluid part, if the Initial
Point Set ΦIPS maps out of the reference solid domain. No mapping betweenF (0) andF (t ) is
required, see [13] for a discussion. The extension can be embedded into the variational system and
the coupling condition u f = us is realized by finding a global displacement field on the whole
domain u ∈ uD +W , whereW :=H 1

0 (Ω(t );Γ
D
s )

d .

3 Finite element discretization

Typically, in fluid-structure interaction problems the overall dynamics of the system strongly
depend on the dynamics in the interface region. Hence, one key ingredient for both stability
and accuracy reasons is to capture the interface accurately. The combined velocity consisting of
solid and fluid part typically shows a kink at the interface. It is important to resolve this kink
accurately in our discretization scheme. One standard approach to include jumps or kinks into
the discrete space is the Extended Finite Element Method [11]. A drawback of the XFEM method
is the addition and elimination of degrees of freedom which leads to a local distortion of the
connectivity and structure of the system matrix. Furthermore, one may have to deal with so called
“blending” cells lying next to the interface cells that might distort the method’s accuracy. Finally,
the condition number of the system matrix does not necessarily remain bounded. Here, we present
a method [5], that avoids these issues. The idea is to use a fixed background mesh consisting of
patches that remains unchanged for all time steps. Inside the patches we adjust degrees of freedom
locally by choosing a special parametric finite element space.

Locally modified parametric finite element scheme Let Ωh be a form and shape-regular de-
composition of the domain Ω ⊂ R2 into open quadrangles. The mesh Ωh does not necessarily
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Figure 2. Different types of cut patches. From left to right: A, B , C and D . The subdivision can
be anisotropic with r, s ∈ (0,1) arbitrary.

resolve the partitioning Ω(t ) =F (t )∪I (t )∪S (t ) and the interface I (t ) can cut the elements
K ∈Ωh . We further assume, that the mesh Ωh has a patch-hierarchy in such a way, that each four
adjacent quads arise from uniform refinement of one common father-element, see Figure 1. The
interface I may cut the patches in the following way: Each (open) patch P ∈Ωh is either not cut
P ∩I = ; or cut in exactly two points on its boundary: P ∩I 6= ; and ∂ P ∩I = {xP

1 , xP
2 }.

We define the finite element trial space Vh ⊂H 1
0 (Ω) as iso-parametric space on the triangulation Ωh .

If a patch is not cut by the interface, we use the standard space of bilinear functions Q̂ (bilinear on
each of the four sub-quads) for both reference element transformation and finite element basis. If a
patch P ∈Ωh however is cut, we use the space Q̂mod of piecewise linear functions (linear on each
of the eight triangles) for transformation and basis. Depending on the position of the interface
I in the patch P , three different reference configurations are considered, see the right sketch in
Figure 1. Note that the functions in Q̂ and Q̂mod are all piecewise linear on the edges ∂ P , such that
mixing different element types does not affect the continuity of the global finite element space.
Next, we present the subdivision of interface patches P into eight triangles each. We distinguish
four different types of interface cuts, see Figure 2: Configurations A and B are based on the
reference patches P̂2 and P̂3, configurations C and D use the reference patch P̂4, see Figure 1. If an
edge is intersected by the interface we move the corresponding point ei on this edge to the point
of intersection. The position of the midpoint xm depends on the specific configuration. As the
cut of the elements can be arbitrary with r, s → 0, the triangle’s aspect ratio can be very large,
considering h→ 0 it is not necessarily bounded. We can however guarantee, that the maximum
angles in all triangles will be bounded away from 180◦. This result allows us to define stable
interpolation operators and to derive error estimates [5].
To cope with the condition number of the system matrix, that can be unbound for some configu-
rations r, s → 0, we modify the parametric basis in a hierarchical way. By splitting of the finite
element space Vh =V2h +Vb , where V2h is the standard space of linear functions on the patches
P ⊂Ωh and Vb is the space with only local contributions, the effect of the interface motion is kept
locally. This modification allows us to show an interface-independent condition number for the
system matrix of elliptic problems [5].

4 Outlook - Accurate Temporal Discretization

As time-stepping scheme we use the implicit Euler method. The implicit Euler method has
excellent stability properties, may suffer from strong dissipation, however. Due to the hyperbolic
character of the structure equation, it is desirable to use a scheme with better dissipation properties.
Furthermore, for stability and accuracy reasons, it is important to capture the interface movement
accurately. The combined functions v and u both typically show kinks, their gradients are
typically discontinuous across the interface. A standard time-stepping scheme for the first equation
in (1) reads

k−1(ρ f (v
m
f − vm−1

f
),φ f )F (tm )

+(θvm
f · ∇vm

f +(1−θ)v
m−1
f
· ∇vm−1

f
,φ f )F (tm )

+ . . .
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Figure 3. Extract of the space-time domain with moving interface I (t ). We use an ALE time
stepping scheme near the interface to track the interface movement accurately. The transformations
Tm and Tm+1 are indicated by arrows. Outside of the interface region, we use a standard θ-scheme.

Implementation of this scheme is not straightforward, however, as the domainsF and S change
with time. Points belonging to S at time tm−1 might lie inF at time tm . In this case the fluid
velocity v m−1

f
is not defined in some parts ofF (tm).

In order to capture the velocity kinks accurately and not depend on artificial extensions, we
propose the use of a moving mesh technique at each time step in the interface region. Similar to
the ALE Method, we define a transformation Tm from a fixed reference domain (e.g. Ω(tm)) back
in time to the time slab Q(t ) =

�

(x, t )
�

� t ∈ (tm−1, tm), x ∈Ω(t )
	

that mapsF (tm) toF (t ),S (tm)
to S (t ) and I (tm) to I (t ). We use this transformation in a neighborhood of the interface I (tm)
only, outside we set Tm = id the identity (cf. Figure 3). The reference domain (e.g. Ω(tm)) changes
in every time step. A similar method has been proposed by Baiges and Codina [1]. In order to
avoid the need for remeshing around the interface, we use the same mesh in all time steps, with
the only difference that -as explained in Section 3- patches cut by the interface are arranged in such
a way that the interface is captured. Note that with this technique the interface motion is tracked
accurately by a moving mesh line that moves with the interface.
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