
Towards a Complete Numerical Description of
Lubricant Film Dynamics in Ball Bearings

Stefan Knauf ∗ Stefan Frei† Thomas Richter† Rolf Rannacher†

Preprint, July 2013

Abstract

In this article, we propose a framework for a detailed finite element analysis of elastohy-
drodynamic lubrication in ball bearings. Our contribution to this field is twofold. First, we
present a fully monolithic ALE method for the treatment of fluid-structure interaction. For the
lubricant, we use the full Navier-Stokes equations in combination with a pressure-dependent
viscosity law and include thermal effects. Second, we introduce a novel method for a fully
implicit treatment of the evolution of the lubricants’ free surface using Nitsches method. This
allows for arbitrarily large time steps independent of the spatial discretization. Despite the
variety of numerical challenges present in this application, such as anisotropy and extreme
values of pressure, our approach for the first time shows robustness up to high rotational speeds
as required in industrial applications. We describe the numerical ingredients we use in detail
and present numerical results that validate our approaches and demonstrate its capabilities.

1 Introduction

In this article, we present numerical methods for the simulation of lubrication flow in bearings
including fluid-structure interaction. In the literature this is referred to as ”elastohydrodynamic
lubrication” (EHL) and is considered as a particularly difficult topic embracing several disciplines
(see, e.g., Gohar [17]). We are especially interested in the design of an efficient and robust numerical
scheme for high rotational speeds, as occuring, e.g., in machines, turbines and space applications.
In such high-speed applications, typically the high pressure leads to deformation of the surround-
ing structures. These deformations are relatively small compared to the size of a ball, but might
reach the same order of magnitude as the lubrication film thickness itself. Hence, the domain
occupied by the lubricant strongly depends on the deformation of ball and race. On the other
hand, even small changes in the shape of the fluid domain lead to a large response in the pressure
profile. Hence, including fluid-structure interactions plays an important role that should not be
neglected in simulations. In order to treat this interaction implicitly, we propose a monolithic Ar-
bitrary Lagrangian Eulerian (ALE) formulation (see, e.g., Hirt, Amsden & Cook [23], Belytschko [8],
Hron & Turek [24], and Dunne et al. [14]).
For the lubricant, we consider a generalized Newtonian fluid modelled by the Navier-Stokes
equations with pressure-dependent viscosity. Until recently, research in this field has tended to
use considerably simplified models such as the Reynolds equation (see, e.g., Bayada & Chambat [5],
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Jubault et al. [27] as well as Hart et al. [21] including concepts of goal-oriented error estimation). In
the derivation of the Reynolds equation the viscosity is assumed to be constant. However, when
dealing with high pressures the viscosity strongly depends on the pressure and cannot be assumed
as constant anymore. It is emphasized in Rajagopal & Szeri [33] that including a pressure-dependent
viscosity into the Reynolds equation afterwards makes its whole derivation inconsistent. The full
system of the Navier-Stokes equations have been used in Almqvist & Larsson [1] while treating
the deformation of the fluid’s domain with a simple ad hoc model, however. Furthermore, a
splitting-type algorithm has been employed, which is computationally expensive. In this article,
we will use the full Navier-Stokes equation within a fully monolithic formulation in order to
guarantee robustness up to high-speed rotations. For the pressure-viscosity relation, we use the
Barus law, which is expected to provide a reasonable approximation at least within a certain
realistic pressure range.
In reality the viscosity is not only depending on pressure but also on temperature. The large
local variations in pressure will cause essential changes in temperature. Therefore, we propose to
include temperature as an additional variable within the fluid domain and augment the system
by an energy conservation equation. It has already been noted in Almqvist & Larsson [1] that
including thermal effects may lead to improved stability properties of the full system.
Our solution approach is based on Knauf [28] where, for the first time, a complete fluid-structure
interaction formulation has been applied to elasto-hydrodynamic problems. Independently, in
Bruyere et al. [12] a similar approach has been proposed also including fluid-structure interactions.
In both these works, however, the numerical results presented were obtained for numerically
“nice” situations, i.e., within a moderate range of rotational speed and for high temperatures. In
this article, we will give details on the numerical techniques, which are necessary to handle more
involved situations present in practical applications.
Furthermore, in contrast to Bruyere et al. [12], we are not only interested in the simulation of the
system in the contact region between ball and race but also on the inflow and outflow regions
of the lubricant. Hence, we will not assume the outer boundary of the lubricant to be fixed but
consider it as an additional variable within a free boundary problem. For including this aspect into
our simulations, we again propose the ALE approach. The ALE method has already been applied
in various publications to free surface problems. The evolution of the free boundary is hereby
treated either explicitly as in Souli & Zolesio [34] and Dettmer & Perić [13] or semi-implicitly as in
Bänsch [4]. This imposes severe restrictions on the time-step depending on the spatial discretization
that are particularly inconvenient in elastohydrodynamic simulations where the computational
domains are typically highly anistropic. In this article, we propose a novel, fully-implicit treatment
of the free boundary by means of Nitsche’s method (Nitsche [31]). In the situation of bearings it
turns out that accurately capturing the position of the fluid boundary is essential for the stability
of the whole numerical algorithm. However, once the position of this boundary is determined
with sufficient accuracy, it has only little impact on the local balance of forces, such that it is
possible to separate these two aspects of the problem.
The complete system used here for describing elastohydrodynamic lubrication in ball bearings
poses a variety of challenges for numerical computations. First, the geometry of the fluid domain
Ω f is highly anisotropic. While the oil film height lies typically within a range of nano- to
micrometers, the radius of a ball is at least some millimeters. This enforces the use of highly
aniso-tropic cells in an economical finite element discretization. Second, the pressure develops
a large peak near the center of contact between ball and race leading to extreme variations in
pressure within the lubricant. To deal with these high pressure values, “artificial” compressibility
has been used in many publications (see, e.g., Franta et al. [15]). Indeed for pressure values larger
than 0.1 GPa the assumption of incompressibility is not fully justified anymore. Therefore, we
consider it more natural to incorporate real “physical” compressibility into the model. It turns out
that including a compressibility term in the continuity equation leads to a significant reduction of
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the pressure peak and thereby to a stabilization of the numerical approximation. Furthermore, we
will make use of homotopy methods in order to cope with the strongly coupled nonlinearities in
our monolithic formulation.
By this combination of robust methods for modelling, discretization and solution, we are for the
first time able to present detailed simulations of the lubricant film dynamics in ball bearings in
the regime of relevant technical parameters with rotational speeds up to 6000 rpm and realistic
temperature environments. Former approaches were either based on simplified models or con-
sidered alleviated configurations by using small rotational speeds. Because of the complexity of
the resulting numerical algorithms, we restrict ourselves to simulations of the two dimensional
version of the model. The extension to three dimensions merely entails technical difficulties, e.g.,
in mesh generation and, of course, with respect to computing time.
The outline of this article is as follows. First, in Section 2, we derive the continuum mechanical
models used for the lubricant and the structure. We will describe our monolithic treatment of the
fluid-structure interaction and formulate the Barus-Vogel law used for the pressure-temperature-
viscosity relation. Further, we introduce our compressibility model and describe our geometric
modeling ansatz and our treatment of preloading. In Section 3, we describe the spatial discretiza-
tion, the numerical stabilization and the numerical algorithm we use. In Section 4, we derive a
fully-implicit scheme for following the evolution of the free boundary and compare it to the results
in previous works using explicit or semi-implicit algorithms. We validate our approach by means
of a benchmark problem from Bänsch [4] and show results obtained for a ball bearing configuration.
Section 5 is devoted to numerical results including fluid-structure interaction on realistic ball
bearing geometries. First, we compare our results to those obtained from the Hamrock-Dowson
formula (Hamrock et al. [18]) and study the convergence of the method under mesh refinement.
Then, we investigate the effect of “artificial” compressibility and compare it to that observed
by using real “physical” compressibility. Finally, we show some physical quantities, which are
of particular importance for understanding elastohydrodynamic effects in ball bearings. This
includes results of a comparison of loss torque values with those obtained from models developed
by our industrial partner Rockwell Collins Germany GmbH.

2 Models

In this section, we describe the important physical effects included in our lubrication model. The
domain of interest for modeling and simulation is depicted in Figure 1. In this work, we restrict
ourselves to study one ball of the bearing neglecting possible interactions with neighbouring balls
which might be subject to future work. We consider a cut plane through the midpoint of a ball
which includes the contact region between ball and race. The latter depends on the direction
(angle α) in which a prescribed preloading force is acting (cf. Sections 2.5 and 2.6). The ball rotates
around the horizontal axis with angular velocityω.
One ball within a ball bearing is completely surrounded by a thin oil film. At the upper and lower
side the ball is nearly in contact with the inner and outer race, respectively, separated only by the
lubricant. At the left and right-hand side, the lubricant has a free surface, outside of it being either
atmospheric air or vacuum in applications in aeronautics.

2.1 Equations

For modeling fluid flow, we use the full Navier-Stokes equations for a generalized Newtonian
fluid with pressure- and temperature-dependent viscosity. These equations are given in Eulerian
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Figure 1. Cut plane through the contact regions for a 2d simulation for a contact angle α and
rotational velocityω

coordinates by

−∇ ·σ f +ρ f v f · ∇v f = 0 inΩ f , (1a)

∇ · (ρ f v f ) = 0 inΩ f . (1b)

Here, v f denotes the fluid velocity, ρ f the fluid density and Ω f the domain occupied by the
lubricant film, which will depend on the deformation of ball and race. The stress tensor σ f
consists of a pressure and a shear part,

σ f =−p f I +µ(p f ,θ f )(∇v f +∇vT
f ). (2)

The fluid viscosity µ depends on the pressure p f and the temperature θ f . In order to prescribe
this relationship, different models have been suggested in the literature (see, e.g., Hamrock et
al. [19], Jubault et al. [27]). One of the most common models is the Barus’ law. Assuming for a
moment constant temperature, θ f ≡ θ0, the pressure-viscosity relationship reads

µ(p f ) =µ0eα0 p f . (3)

The constants µ0 and α0 depend on the temperature and will be given later. Barus’ law is known to
yield a reasonable approximation within a moderate pressure range, but may fail at high values near
1 GPa (see, e.g., Ohno et al. [32]). Hence, we will include a cutoff-value for the pressure-viscosity
relationship,

µ(p f ) =min{µ0eα0 p f ,µcutoff}. (4)

While the expected deformation of the structure domain Ω̂s (ball and race) is relatively large in
comparison to the fluid film thickness, its deformation will in general be rather small in comparison
to its size. Therefore, we can use the linear St.Venant-Kirchhoff material law for the structure. Let
ûs denote the structure’s deformation, T̂s (x̂) = x̂ + ûs (x̂) the transformation map, F̂s = I + ∇̂ûs
its Jacobian and Ĵs = det(F̂s ) the Jacobian determinant. We use the “hat” notation in order to
indicate Lagrangian quantities. Defining the strain tensor Ês and the first Piola-Kirchhoff stress
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Figure 2. Scheme of the ALE transformation for a part of a ball bearing geometry

tensor P̂s by

Ês =
1
2 (F̂

T
s F̂s − I ), (5)

P̂s = F̂s (λ(tr(Ês ))+ 2µÊs ) =: Ĵs σ̂s F̂ −T
s , (6)

the resulting structure equations read in Lagrangian coordinates as follows:

−∇̂ · P̂s = 0 in Ω̂s ,

P̂s · n = g f on Γ̂FSI.
(7)

Here, Γ̂FSI refers to the interface between fluid and structure. By g f , we denote the boundary
force the fluid exerts on the structure. In (6), we also introduced the Cauchy stress tensor σ̂s for
later purposes.

2.2 Fluid-structure interaction

As explained in the introduction, one of the most crucial aspects in modeling lubrication flow in
ball bearings is the interaction of the lubricant with the surrounding structures, typically steel in
ball and race. When considering high rotational speeds (e.g., > 1000 rounds per minute), high
pressure values arise in the contact region between ball and race. This leads to considerable defor-
mations in relation to the lubricant film thickness. On the other hand the fluid’s pressure profile is
quite sensitive to changes in the shape of the fluid’s domain. Eventually, the system reaches a state
fulfilling a balance of forces between fluid and structure. In view of its importance, we treat this
interaction in an implicit way within a monolithic ALE approach. The monolithic ALE approach
is known to yield a robust numerical scheme, which allows for large time steps. Furthermore,
having our particular application in mind, the system is expected to reach a stationary limit. This
limit can be calculated directly using a monolithic scheme while partitioned schemes would require
an expensive time stepping to reach the stationary limit.
The idea behind the ALE approach is to formulate the fluid equations on a fixed reference domain
Ω̂ f via a transformation onto the “physical” domain Ω f ,

T̂ f : Ω̂ f 7→Ω f , T̂ f (x̂) = x̂ + û f (x̂). (8)

The scheme of the ALE transformation for a part of a ball bearing geometry is shown in Figure 2.
Here, Ω̂s ,1 stands for one ball in a bearing geometry and Ω̂s ,2 for the corresponding race in the
reference state, which is before deformation. By Ω̂ f , we denote the domain occupied by the
lubricant in the reference state. The treatment of the free boundary Γ f will be the subject of
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Section 4. The union of the interfaces between Ω̂ f and Ω̂s ,i is denoted by Γ̂F SI . Its transformation
is given by the solid’s deformation

T̂ f |Γ̂FSI
= i d + ûs . (9)

Inside the domain Ω̂ f , we can use an arbitrary deformation. In the following, we will use a
harmonic extension inside Ω̂ f , but other extensions are possible as well (see, e.g., Dunne et
al. [14]). Similar as for the structure part, we introduce the flow deformation gradient F̂ f and its
determinant Ĵ f by

F̂ f = I + ∇̂û f , Ĵ f = det F̂ f . (10)

Then, the fluid equations in ALE coordinates read as follows:

Ĵ f ρ f F̂ −1v̂ f ·∇̂v̂ f −∇̂·
�

Ĵ f σ̂ f F̂ −T
�

= 0 in Ω̂ f , (11a)

∇̂·(Ĵ f ρ f F̂ −1
f

v̂ f ) = 0 in Ω̂ f , (11b)

where

σ̂ f =− p̂ f I +µ f ( p̂ f )
�

∇̂v̂ f F̂ −1
f
+ F̂ −T

f
∇̂v̂T

f

�

. (12)

The coupling conditions between fluid and solid are given by

v̂ f = v̂s ,

Ĵs σ̂s F̂ −T
s n̂ = Ĵ f σ̂ f F̂ −T

f
n̂ (= g f ) on Γ̂FSI.

(13)

Both conditions will be incorporated implicitly into a monolithic variational formulation, the
first one strongly by requiring continuity of the trial functions for the velocity, the second one
weakly as a natural boundary condition. For details on the derivation of the ALE formulation, we
refer to Dunne et al. [14]. For better readability, we define global functions v by v|Ω f

:= v f and
v|Ωs

:= vs and similarly for the other variables. Altogether the monolithic weak formulation reads
as follows:
Find (û, v̂, p̂) ∈

�

(uD +U )× (vD +U )×X
�

, such that

(ĴρF̂ −1v̂ · ∇̂v̂,φv )Ω̂ f
+(Ĵ σ̂ f F̂ −T ,∇̂φv )Ω̂ f

+(ĴρF̂ −1v̂,∇̂φp )Ω̂ f
+αu (∇̂û,∇̂φu )Ω̂ f

+(Ĵρσ̂s F̂ −T ,∇̂φv )Ω̂s

= 0 ∀
�

(φu ,φv ,φp ) ∈ (U ×U ×X )
�

(14)

2.3 Thermal model

The large variations in pressure within the lubricant lead to local temperature effects such that the
assumption of a constant temperature within the lubricant is not justified anymore. On the other
hand, viscosity is quite sensitive with respect to temperature. Hence, we will treat the temperature
θ f as an additional variable within the fluid. The constitutive (stationary) energy conservation
equation reads

cpρ f v f∇θ f −σ f :∇v f −∇·(cc∇θ f ) = 0 in Ω f , (15)
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where cp is the heat capacity and cc the (known) heat conductivity of the lubricant. For modeling
the temperature-viscosity relation, we use the so-called “Vogel equation”. The combined Barus-
Vogel law for the pressure-temperature-viscosity relation reads

µ(p f ,θ f ) = eα(θ f )p f
�

eA/θm
f −C

�

, (16)

with constants C , m and A corresponding to the lubricant under consideration.

Remark 2.1. In our numerical simulations, it turned out that including thermal effects had a positive
effect on numerical stability in the case of high-speed rotations. The reason for this is the following:
An increase in speed leads to an even higher pressure peak in the area of contact. Due to Barus’ law
this affects the exponential viscosity profile which causes severe difficulties in the numerical simulation.
However, when including temperature dependence, the increase of frictional forces caused by the
high velocity increases temperature as well. This effect corresponds to the second term in our energy
model (15). An increase in temperature, on the other hand, would lead to a decay in viscosity if
pressure remained fixed. Thus, the temperature effect limits the increase in viscosity caused by pressure.
Altogether, the account for variability of temperature leads to a smoothening of the viscosity profile
which makes simulations at high rotational speeds possible at all. This effect has already been found in
Almqvist & Larsson [1] for rather moderate speeds < 1m/s.

For our application in mind, there might occur temperature differences up to several degrees
Kelvin between race and ball. The assumption of continuity of temperature between oil and
steel would be too strong and unrealistic. Hence, we suggest Robin boundary conditions on the
fluid-structure interface

ΓFSI = Γball ∪Γrace. (17)

Denoting the free boundary of the lubricant by Γ f , the boundary conditions we use read as
follows:

∂nθ= 0 on Γ f

cc∂nθ=−αs/o(θ−θball) on Γball

cc∂nθ=−αs/o(θ−θrace) on Γrace

(18)

Here, we use the heat transfer coefficient αs/o given by

αs/o ≈ cc/δ, (19)

where δ denotes the height of the thermal boundary layer. While local thermal effects play an
important role in the fluid, the solid’s material parameters are much less sensitive to temperature.
In the numerical simulations conducted for this paper, the solid’s temparature was known from
experiments and we could set them as input parameters θbal l and θrace for the fluid’s thermal
equation. In principle, it would also be possible to solve an additional energy equation in the solid
domain. One has to take care of spurious feedback effects to the fluid’s temperature, however.

2.4 Compressibility

One of the most critical aspects to be considered in deriving a robust numerical algorithm for ball
bearing simulations is the treatment of the pressure peak arising near the center of contact. In
addition to the smoothing effect of including temperature described above, we have to develop
a strategy for controling the pressure. In the literature, the use of artificial compressibility is
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mostly the method of choice (see, e.g., Franta et al. [15] for a theoretical analysis). This consists in
weakening the incompressibility constraint (1b) by adding a small diffusive term,

∇·(ρ f v f )− ε∆p f = 0. (20)

The parameter ε is not a physical one, but is rather introduced for numerical stability. Typically,
one chooses ε= O (h2

T ) where hT is a local mesh size parameter (e.g., the diameter of a mesh cell
T ). Due to the geometry in ball bearing applications, however, we have to use rather small cells
in the area of contact where the pressure peak arises. Hence, the meshsize-based regularization
strategy may fail and simulation break down for numerically involved situations. In the numerical
simulations conducted for this paper it turned out that we had to fix ε to a rather moderate
value independent of the local hT in order to ensure our nonlinear iteration to converge with
reasonable speed. This however leads to unphysical perturbations in the pressure and velocity
profile (see Section 5). Hence, we follow another more natural way of dealing with large pressures
by considering a pressure-density relation of the form

ρ f (p f ) = ρ0e p f /K (21)

with the lubricant specific bulk modulus K . Using this relation, the continuity equation takes the
form

ρ0e p f /K∇·v f +
ρ0

K
e p f /K v f ·∇p f = 0 inΩ f . (22)

Though this introduces another nonlinearity into our variational formulation, our numerical
results indicate that it leads to even better stability properties than the artificial compressibility
ansatz without perturbing the pressure profile in an unphysical way.

2.5 Treatment of preloading

In reality, ball bearings are preloaded, which means that the ball is pressed against the race by a
spring-like structure with defined force. This force changes the initial geometry of the structure. It
leads to a flattening of the ball near the center of contact and causes high pressure between ball and
race.
In order to incorporate preloading, we will make use of the so-called “Hertzian” contact theory
(Hertz [22]). This theory is widely used in the literature for ball bearings. It describes pressure
profiles and resulting deformations analytically for two simple-shaped bodies pressed against each
other. As the force acting on a ball is in general not orthogonal to the race, the contact surface
will be elliptic with semi-axis a and b . Denoting the center of this ellipse by (x0, y0) the resulting
pressure profile for a prescribed force F is given by

p0(x, y) = pmax

s

1−
� x − x0

a

�2

−
� y − y0

b

�2

,

pmax =
3

2

F

πab
.

(23)

The semi-axis a and b depend on the force F themselves and can be calculated by the Hertzian
theory (see, e.g., Hamrock et al. [19]).
We assume a splitting of the total pressure

p = p0+ p f
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into a part p0 arising from the preloading force and a hydrodynamic part p f which is a reasonable
approximation for small preloading. Instead of (13), the balance of forces is then given by

Ĵs σ̂s F̂ −T
s n̂ = Ĵ f σ̂ f F̂ −T

f
n̂− Ĵ f p0n̂. (24)

Clearly, this strategy only works for relatively small preloading. For higher preloading, we have to
incorporate the initial deformation directly by modifying the initial geometry and solving for the
total pressure p. An entirely physical formulation of contact forces would require the simulation
of a contact problem leading to a variational inequality. This approach is however beyond the
scope of the present article.

2.6 Geometric Modeling

In the present work, we consider a cut plane through the middle of a ball which includes the major
semiaxis of the Herzian contact ellipsoid neglecting the third dimension normal to this plane (see
Figure 1).
Now, the two dimensional Hertzian pressure profile on ΓFSI is given by

p0(x) = pmax

s

1−
� x − x0

a

�2

and the minimum of the film thickness will be taken within this plane. All effects perpendicular
to the cut plane can only be integrated by a projection onto the plane. In our case, the radial
preloading leads to different boundary conditions for the velocity at the fluid-structure interface.
Furthermore, the amount of lubricant that is present, is determined by the initial geometry which
thus influences quantities like the fluid film thickness, etc.

3 Numerical aspects

3.1 Discretization

For the discretization of the Navier-Stokes- and the elasticity equations, there is available a variety
of different finite element methods. First of all, we may choose between “inf-sup stable” and
stabilized elements. “Equal-order” finite elements, e.g., Q1Q1-elements for velocity and pressure,
are easy to implement and very efficient algebraic solvers can be constructed. However, they
do not fulfill the inf-sup-stability condition and therefore have to be stabilized (see Tezduyar et
al. [35] or Girault & Raviart [16] for a general discussion on the discretization of incompressible
flows). For this stabilization, we can choose between the Local Projection Stabilization (LPS)
(see Becker & Braack [6]) or the Galerkin Least-Squares Stabilization (GLS) (see Hughes et al. [26]).
Stabilization on highly anistropic meshes is not straightforward, however. The standard stabi-
lization techniques are not robust with respect to the cell aspect ratio. Therefore, we have to
take into account the local anistropy within the stabilization terms (see Braack [9] for LPS and
Apel et al. [3] for GLS). The type of stabilization is crucial when considering pressure-dependent
viscosities fulfilling for instance Barus’ equation. When employing GLS, we observed unphysical
boundary layers in the pressure at Neumann-type boundaries, which is especially a problem for
free boundary value problems. Hence, for the numerical results shown in Section 4, we have used
anisotropic LPS.
The LPS technique is based on local projection of the pressure onto a coarser grid. In two
dimensions typically four cells of a triangulation Th are combined to form a patch P ∈T2h . We
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Figure 3. Arrangement of the velocity • and pressure × degrees of freedom for the inf-sup stable
Q2Q1 Taylor-Hood and Q2P disc

1 element.

define the projection πh as the L2-projection into the space of patchwise constant functions

πh (q) :=
1

|P |

∫

P
q d x. (25)

Then, the operator

ch = i d −πh , (26)

with i d being the identity, is used as fluctuation filter for stabilization. Robust stabilization,
independent of the cell aspect ratio (in x- and y coordinate direction), is now ensured by adding
the term

slps :=
�

αx∂x (ch p),∂x (chφ
p )
�

+
�

αy∂y (ch p),∂x (chφ
p )
�

+
�

δx v1∂x (ch v), v1∂x (chφ
v )
�

+
�

δy v2∂y (ch v), v2∂y (chφ
v )
�

(27)

in the variational formulation. Defining a local anisotropic variant of the Peclét number on a cell
T by

PeT :=
‖v‖T ,∞min

�

h x
T , hy

T

�

µ
, (28)

the cell parameters δx ,δy ,αx ,αy are given by

αx |T = α0

(h x
T )

2

µ
min

�

1, Pe−1
T

�

,

δx |T = ‖v‖
2
T ,∞αx |T ,

αy |T = α0

(hy
T
)2

µ
min

�

1, Pe−1
T

�

,

δy |T = ‖v‖
2
T ,∞αy |T .

(29)

This choice of parameters leads to a discretization that fulfills an inf-sup stability condition indepen-
dently of the cell aspect ratio, while preserving the optimal order of convergence (Braack [9]).
As alternative to the equal-order finite element, we will also consider the inf-sup stable Q2Q1- and
Q2P disc

1 -Taylor-Hood elements (see Girault & Raviart [16]). Figure 3 illustrates the arrangement
of the degrees of freedom for both elements. In both free surface and fluid-structure-interaction
problems, local mass conservation plays an important role, which requires the use of cellwise
discontinuous pressure trial functions. Furthermore, for fluid-structure interaction it appears
advantageous to have a discontinuous pressure along the interface. Both of these requirements
favour the Q2P disc

1 - element, which has been used for the simulation of fluid-structure interaction
in Section 5. For discretization of the temperature and the structure’s deformation, we will always
consider the velocity element.
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3.2 Stabilization of Temperature

The energy equation (15) written in terms of temperature takes the following form

cpρ f v f ·∇θ f −∇ · (cc∇θ f ) = F (p f , v f ) in Ω f (30)

In lubrication flow this equation is usually strongly transport dominated as cpρ f � cc . Hence,
we have to include a cellwise stabilization term into the variational equation. Here, we will make
use of the streamline-diffusion method (Hughes & Brooks [25]) by adding the term

∑

T∈Th

�

cpρ f δ0v f ·∇θ f , v f ·∇φ
�

T
, (31)

where

δ0 =min
n

hT ,
cpρ f h2

T

cc

o

, hT = diam(T ). (32)

3.3 Numerical algorithm

In order to get a robust algorithm for high-speed situations, we use a discretization scheme which
is based on a fully-coupled monolithic model formulation combining (14) and (15). We emphasize
that this also includes the deformation of the domain due to the fluid-structure interaction. This
is in contrast to Almqvist & Larsson [1] where the aspects fluid dynamics, thermal effects and
deformation appear separated within a partitioned solution approach. In addition to its robustness,
the monolithic approach allows for a direct calculation of stationary states, which are of primary
interest in this paper. To deal with the nonlinearities, we use certain variants of the Newton
method.
The simulation of high-speed situations requires good initial values for the Newton iteration. This
is achieved by the use of homotopy techniques. Starting from a small rotational velocity vD , we
increase the velocity gradually taking in each step the solution from the previous step as initial
value. This is done in a self-adaptive way, i.e., we try to increase the speed increment as far as
possible as long as Newton convergence is achieved within a reasonable number of iterations.
An important ingredient for the fluid-structure interaction calculation is a suitable initial geometry
which depends on free surfaces in the fluid domain. In our numerical simulations, it turned out
that once a suitable initial geometry is known, the free surface conditions play a minor role for
the overall dynamics. Furthermore, for simulations at high rotational velocities, it is difficult to
combine both the free boundary problem and the fluid-structure interaction in one computation.
Hence, we decided to split both problems calculating the position of the free boundary in advance
and solving the FSI problem afterwards with fixed outer boundaries. For the latter problem, we
solve directly for a stationary state using Newton’s method.

4 Numerical treatment of the free surface problem

In this section, we introduce a discretization scheme for free surface problems including a fully
implicit treatment of the free boundary movement. As already mentioned above, in ball bearing
applications the outer boundary of the lubricant is unknown. In our two dimensional simulation
domain we have to include two free boundary parts Γ f at the left and right meniscus (cf. Figure 2).
To study the influence of the free boundary parts perpendicular to the running direction, we
would need a three dimensional simulation. This is however beyond the scope of the present
paper.
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A similar free-boundary value problem has been considered, e.g., in Bänsch [4]. Let the velocity
of the evolution of the free boundary be denoted by Vn , which will become an unknown in our
approximation later on. Further, let Ω f (t ) denote the time-dependent domain with boundary
Γ(t ) = Γ f (t )∪ΓD consisting of a free boundary componentΓ f (t ) and a fixed component ΓD ,
at which for simplicity, we impose Dirichlet boundary conditions. Then, the system under
consideration reads as follows:

ρ∂t v +ρ(v ·∇)v −∇·σ(p, v) = ρ f , inΩf(t) (33)

∇·v = 0, inΩf(t) (34)

σ(p, v) =−pI +µ(∇v +(∇v)T ), (35)

v(·, 0) = v0, Ω f (0) = Ω0, (36)

Vn = (n ·v)n, on Γf(t), (37)

v = 0, on ΓD, (38)

t ·σ ·n = 0, on Γf(t), (39)

n ·σ ·n = γcn, on Γf(t). (40)

Here, γ is a surface tension parameter and c denotes the curvature of the free boundary. As
in Section 2.2, we will make use of an Arbitrary Lagrangian Eulerian (ALE) method in order to
incorporate the movement of the domain Ω f (t ) into a variational formulation. We will use the
notation introduced in Section 2.2, e.g.,

T̂ f : Ω̂ f × [0,T ] 7→Ω f (t ), T̂ f (x̂, t ) = x̂ + û(x̂)(t ).

The boundary condition (37) reads in ALE coordinates

∂t û =
� F −T n̂

||F −T n̂||
· v̂
� F −T n̂

||F −T n̂||
, on Γ f (0). (41)

We note that here the velocity Vn of the evolution of the free boundary is incorporated by means
of the additional unknown û.

4.1 Time-stepping schemes

In order to derive a fully implicit algorithm and for comparison, we start with a short review of
related algorithms used in the literature. The ALE method has been used in Souli & Zolesio [34]

and Dettmer & Perić [13] within time-stepping schemes that include the movement of the boundary
explicitly, however.

Problem 4.1 (Semi-implicit formulation of the free boundary value problem). Let the time interval
[0,T ] be divided into m equidistant time-steps of size ∆t . For n ∈ {0, ..., m− 1} proceed as follows:

1. Find vn := v(t n), un := u(t n) ∈V , pn := p(t n) ∈X , such that

∆t−1(Ĵ n+1ρv̂n+1− Ĵ nρvn ,φ)+θ(Ĵ n+1ρ(v̂n+1− ∂t ûn+1)·∇̂v̂n+1,φ)

+θ(Ĵ σ̂( p̂n+1,v̂n+1)F̂ −T ,n+1,∇̂φ)+ (1−θ)(Ĵ nρ(v̂n − ∂t ûn)·∇̂v̂n ,φ)

+(1−θ)(Ĵ nσ̂( p̂n , v̂n)F̂ −T ,n ,∇̂φ) (42)

= θ(Ĵ n+1ρ f n+1,φ)+ (1−θ)(Ĵ nρ f n ,φ)+ γ < cn,φ>Γ f
(43)

(∇̂ · (Ĵ n+1v̂n+1 F̂ −1,n),χ ) = 0, (44)

ûn+1,∇ψ) = 0, (45)
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for all φ,ψ ∈V , χ ∈X .

2. Update the position of the free boundary

ûn+1 = ûn +∆t (nn ·v̂n)nn , on Γ̂. (46)

Here, θ= 1 corresponds to the backward Euler scheme, while θ= 0.5 yields the Crank-Nicolson
scheme (trapezoidal rule). For better readability, we have used the notation

n =
F̂ −T n̂

||F̂ −T n̂||
. (47)

The curvature term (43) can be evaluated numerically using the Laplace-Beltrami operator. When
including the curvature terms explicitly, we set, for t ∈ [tn , tn+1] ,

< cn,φ>Γ f (t )
≈
∫

Γn
f

cnφd s

=
∫

Γn
f

∆i d |Γn
f
φd s

=−
∫

Γn
f

∇i d |Γn
f
∇φd s .

(48)

In ALE coordinates this can be evaluated by
∫

Γn
f

∇i d |Γn
f
∇φd s =

∫

Γ̂ f

�

F̂ −1,n∇̂− nF̂ −1,n∇̂n
�

i dΓ̂ f

·
�

F̂ −1,n∇̂− nF̂ −1,n∇̂n
�

φ Ĵ n‖F̂ −T ,n n̂‖d ŝ ,

using the transformed normal n given in (47). This time-discrete variational formulation is explicit
with respect to the movement of the free boundary since its new position only depends on data
of the last time-step. Such a discretization therefore can only be conditionally stable, i.e., the
algorithm is stable only for sufficiently small time-steps. This means that temporal and spatial
discretization are coupling, i.e., refinement of the spatial mesh may require progressively smaller
time-steps. This effect has occurred in the various test simulations conducted for this paper and is
also well known in the literature. A corresponding qualitative as well as quantitative analysis can
be found in Brackbill et al. [11]. In order to ensure stability, the condition

∆t <
� h3ρ

γ

�1/2
. (49)

has to be fulfilled. To overcome this restriction a semi-implicit treatment of the curvature terms
has been proposed in Bänsch [4]. The new position of the free boundary at time tn+1 can be
approximated by

Γn+1
f
=Γn

f +∆t (vn+1 ·nn)nn . (50)

Inserting (50) into the Laplace-Beltrami term in (48) the curvature term at the new time level can
be evaluated semi-implicitly as follows:

< cn,φ>Γ f (t )
≈
∫

Γn
f

∇i d |Γn+1
f
∇φ

=
∫

Γn
f

∇
�

i d |Γn
f
+∆t (vn+1 · nn)nn

�

∇φ.
(51)
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This semi-implicit treatment allows for much larger time-steps in practice. However, numerical
experiments indicate that in fact the stability is still conditional and the problem has not completely
been cured. This makes this approach delicate in the case of local mesh refinement and for the
anisotropic grids we consider for elastohydrodynamic simulations.
For the following, we propose a fully implicit approach using a weak imposition of boundary
values via Nitsche’s method (Nitsche [31]). In the previous algorithms the equations are solved for
fixed Dirichlet boundary values for the transformation û and are thus inherently explicit with
respect to the treatment of the evolution of the free boundary. In order to impose the boundary
condition

∂t u = (n ·v)n on Γn+1
f

, (52)

Nitsche’s method adds a penalty term to the variational formulation (43). A first-order approxima-
tion in time consists in adding the boundary term

γN

h




un+1− un −∆t (nn+1 ·vn+1)nn+1,φ
�

Γn+1
f

, (53)

for γN sufficiently large. For a second-order approximation, we can use the term
γN

h




un+1− un − 1
2∆t ((nn+1 ·vn+1)nn+1

+(nn ·vn)nn ,φ)
�

Γn+1
f

.
(54)

The unknown boundary Γn+1
f

is hereby included implicitly by means of the ALE deformation

map. Due to the transformations the terms (53) and (54) contain strong nonlinearities. Different
variants of Nitsche’s method and strategies to choose γN with regard to stability issues have been
proposed and analyzed in the literature (cf. Hansbo and Hansbo [20] or Annavaparu et al. [2]). Their
application to the boundary condition (41) is not straightforward, however. For our numerical
tests, we used a simple ad hoc strategy to determine γN .

Problem 4.2 (Fully implicit formulation of the free boundary value problem). Let the interval
[0,T ] be divided into m equidistant time-steps of size ∆t . For n ∈ {0, ..., m− 1} find vn := v(t n),
un := u(t n) ∈V and pn := p(t n) ∈X , such that

∆t−1(Ĵ n+1ρv̂n+1− Ĵ nρv̂n ,φ)+θ(Ĵ n+1ρ(v̂n+1− ∂t ûn+1) · ∇̂v̂n+1,φ)

+θ(Ĵ σ̂( p̂n+1, v̂n+1)F̂ −T ,n+1,∇̂φ)+ (1−θ)(Ĵ nρ(v̂n − ∂t ûn) · ∇̂v̂n ,φ)

+ (1−θ)(Ĵ σ̂( p̂n , v̂n)F̂ −T ,n ,∇̂φ)+ γ



∇i dΓn+1
f

,∇φ
�

Γn+1
f

−
γN

h




un+1− un −∆t
�

θN (n
n+1 · vn+1)nn+1+(1−θN )(n

n · vn)nn�,φ
�

Γn+1
f

= θ(Ĵρ f n+1,φ)+ (1−θ)(Ĵρ f n ,φ), (55)

(∇̂ · (Ĵ v̂n+1 F̂ −1,n),χ ) = 0, (56)

(∇̂ûn+1,∇̂ψ) = 0, (57)

for all φ,ψ ∈V , χ ∈X .

The above time-discrete formulation is stable for all choices of the time step size.

4.2 Numerical results for the free surface simulation

In order to compare and validate the numerical methods described above, we test them at the
benchmark configuration given in Bänsch [4] known as “oscillating liquid drop“. In two dimensions,
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Figure 4. Oscillating bubble at four successive instances of time

Figure 5. Time evolution of the position of the upper and right tip of the oscillating liquid drop
for the fully implicit and semi-implicit scheme.

the computational domain consists of an ellipsoid with semi-axis r1 = 1, r2 = 1.2. The non-
constant curvature of the boundary leads to oscillatory behaviour if viscous damping is small
enough. The Reynolds number in this example is chosen as Re= 300. According to the discussion
in Section 3.1, we used the Q2P disc

1 -, the Q2Q1-Taylor-Hood element and the LPS-stabilized Q1Q1-
element for spatial discretization. The penalty parameter γN was chosen as 107. All our simulations
were done using the Finite Element Toolkit GA S C O I G N E 3 D (Becker et al. [7]). For more details
on the software implementation, we refer to Knauf [28].
In Figure 4, we depict the shape of the ellipsoid at different instances of time, t = 0 sec, t = 0.75
sec and t = 1.5 sec. Figure 5 shows the time evolution of the position of the upper and the right
tip for the semi-implicit and the implicit scheme. The results of both schemes show very good
agreement with the results given in Bänsch [4].
Next, we analyze our discretization schemes with respect to spatial and temporal accuracy. One of
the most important quantities for free boundary applications is the error in mass conservation.
In reality the mass remains constant and is given by m = πr1 r2. The mass at time tn in our
numerical scheme is given by

m(tn) =
∫

Ω̂
Ĵ n d x̂. (58)

In Figure 6, we show the change of volume in the course of time for the LPS-stabilized Q1Q1-
as well as the stable Q2P disc

1 -element for three sucessively refined mesh with 337, 1313 and 5185
nodes. Computations using the Q2Q1 element showed qualititavely and quantitively a very similar
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Figure 6. Mass error in the course of time for a) the LPS-stabilized Q1Q1-, and b) the Q2P disc
1 -

element on different meshes

a) b)

Figure 7. a) Global mass error related to spatial discretization for the stabilized Q1Q1-, Q2Q1- and
Q2P disc

1 -element. b) Absolute change of mass at time t = 0.8 related to temporal discretization for
the fully-implicit scheme with θN = 0.5, θN = 1 and the semi-implicit scheme.

behaviour to the Q2P disc
1 -element. Due to ρ= 1 , the change of volume is equivalent to the change

of mass. In order to focus on the error related to spatial discretization, we choose a very small time
step ∆t = 10−6. We observe that the change of volume for the stabilized element is significantly
larger (10−4) compared to that for the stable elements (10−8).
To have a closer look at the rates of convergence, we plot the mass error at time t = 0.05, for several
refinement levels in Figure 7a). For the Q2P disc

1 - and Q2Q1-element the mass error goes to zero
quadratically, i.e., with order 4 with respect to the mesh size h. The high order of convergence in
the global mass error can be explained by the high order of regularity of the corresponding adjoint
problem.
We find that for the stabilized Q1Q1-element, the mass error goes to zero linearly for increasing
number of nodes, i. e., it is of order 2 with respect to the mesh size h. The results obtained for
fully implicit, semi-implicit and explicit treatment of the free boundary are nearly identical. Due
to the additional nonlinearity introduced by the Nitsche term, the Newton convergence in each
time step is considerably slower for the implicit algorithm. On the other hand, we can use a larger
time step ∆t , such that in total the implicit method leads to a gain in efficiency.
In Figure 7b), we show the mass error related to time discretization for the fully-implicit scheme
using θN = 0.5 and θN = 1 and the semi-implicit scheme at time t = 0.8. For spatial discretization,
we used the Q2Q1-element and chose the mesh size fine enough such that the error related to time
discretization is dominant. Clearly, the mass error goes down only linearly for the semi-implicit
scheme and the implicit one when choosing θN = 1. The absolute values for the change of mass are
almost identical, but the sign of the error is different. For the fully implicit scheme with θN = 0.5,
the error in mass converges quadratically. Consequently, the fully implicit scheme with θN = 0.5,



Lubricant Film Dynamics in Ball Bearings 17

a)

b)

c)

Figure 8. Extracts of the computational domain for simulations of one ball in a ball bearing a).
Curved boundaries at inflow b) and outflow region c) as obtained by the free-boundary simulations.

is superior to the semi-implicit one with respect to mass conservation.
In this benchmark problem the physical oscillations occur for Reynolds numbers larger than
approximately Re = 1.5. Clearly, the oscillations impose a restriction on the appropriate time
step by its own. On the other hand, for lubrication flows the Reynolds number is typically
much smaller than Re= 1 so that no oscillations occur and larger time-steps are possible. This
is the situation where the fully implicit method is really advantageous. We close this section by
presenting numerical results for a ball bearing geometry neglecting for a moment the effect of
fluid-structure interaction. The velocity field near the menisci obtained for a ball bearing geometry
is depicted in Figures 8b) and c).
A robust numerical treatment of the free boundary dynamics in lubrication flow is crucial for
determining the distribution of the lubricant as, e.g., needed for calculations of oil consumption
and its optimization. Here, a high order of approximation and thus small numerical diffusion of
mass is particularly important.

5 Numerical results on ball bearing geometries

In this section, we show numerical results obtained for lubrication flow in ball bearings using the
approaches described in the previous sections. It turns out that having a realistic geometry to start
from, especially with respect to the initial position of the menisci, is essential for our simulation.
Otherwise computation at higher entrainment velocities break down. For our application in mind,
we need to be able to simulate entrainment velocities of up to 6000 rpm which corresponds to
approximately 9.1m/s for a ball of radius 3mm and a contact angle of 18◦.
In the following, we assume an initial geometry is given as the result of a free surface simulation.
Our initial geometry has a minimal gap of 1.2 · 10−7 m at the center of contact and a fluid film
thickness up to 1.5 · 10−6m at the menisci. To study the effect of lubrication, we restrict ourselves
to one ball in a bearing and a region near the center of contact between ball and race, which is
chosen sufficiently large to cover the essential effects of interest (see Figure 8a)). Outside of this
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region the velocity field is nearly identical to the velocity of the ball and pressure is negligible. We
choose the coordinate system in such a way that the center of the ball is located at the origion.
Thus, we are concerned with rotation of the ball, while the race undergoes only a translation.
Further, we will make the assumption of “pure rolling”, i.e., the radial velocity of the ball at the
boundary equals the velocity of the corresponding race. Finally, we assume that a quasi-stationary
state is reached after a certain time.
We use the monolithic ALE scheme descibed in (14), the Barus-Vogel law for the viscosity-pressure-
temperature dependence and the compressibility modeling via the term introduced in Section 2.4.
The boundary conditions for deformation, velocity and pressure in the fluid domain are as follows:

v f = vD , u f = uD on Γoil,

n ·σ f = γcn, ∂n u = 0 on Γ f ,

v f = vs , u f = us on ΓFSI,

(59)

where Γoil stands for the boundary at which the oil film is cut, Γ f denotes the free boundary and
ΓFSI stands for the fluid-structure interface. The conditions on the FSI boundary Γrace ∪Γball are
incorporated via the continuity requirement of the trail functions, the term respresenting surface
tension is calculated using the Laplace-Beltrami operator (51). The rotation of the ball and the
translation of the race is taken into account via an L2-projection of a given velocity vD in the
solid domain,

(v̂s − F̂ −T
s vD ,φu )Ω̂s

= 0 ∀φu ∈U . (60)

Furthermore, we include temperature as an additional variable according to Section 2.3 and
preloading as described in Section 2.5. For discretization, we use the “inf-sup” stable Q2P disc

1 /Q2Q2-
element with biquadratic velocity, temperature and deformation coupled to linear discontinues
pressures as well as the algorithm described in Section 3.3. As all boundaries are strongly curved,
see e.g. Figure 8b) and c), all finite element approaches are iso-parametric (see Braack & Richter [10]).
The initial mesh corresponds to the situation at rest. At this state, ball and race are nearly in
contact separated only by a very thin oil film. In our computational domain the distance at the
closest point is about 10−7 m. On the other hand, the results of our simulations indicate that for
high-speed situations the left and right meniscus are at a distance of up to 10−4 m from the center
of contact. The use of isotropic cells in the fluid domain would thus be prohibitively expensive.
Actually, we use a mesh with maximum cell-aspect ratio up to 400 .
In the following, we will concentrate on two dimensional simulations. The material parameters
we used for structure and oil are specified in Table ??. An extension to three dimensions is
straightforward, in principle, but entails several technical complications, due to more complex
mesh generation, higher storage requirements and longer computing times.
Figure 9 shows pressure, temperature and x-velocity profiles on the computational domain. The
pressure profile shows a huge peak of almost 1 GPa near the center of contact. Outside the contact
area the pressure is relatively small. In the structure pressure has no physical meaning and is
simply defined by harmonic continuation. Starting from the inflow boundary on the left, the
temperature profile reaches its maximum at the central point and a minimum behind it. Due
to the high variations of pressure and velocity, the temperature shows considerable variations
within the lubricant. The x-velocity takes its maximum before the central point. Near the left and
right meniscus the normal velocity should be close to zero given the initial geometry is chosen
sufficiently accurate.



Lubricant Film Dynamics in Ball Bearings 19

Lubricant
Density ρ0 800 kg/m3

Surface Tension γ 0.03 N/m
Barus-Vogel parameters A 1.034435 · 108 -

C 2.144741 -
m 2.942414 -
α(θ) 51.736 · 10−9 m2/N

−0.118θ · 10−9

Heat conductivity cc 0.16 W/(mK)
Heat capacity cP 2131 Ws/(kgK)
Bulk modulus K 1 GPa
Heat transfer coefficient αs/o 5 · 106 -
Structure
Young modulus E 199.945 GPa
Poisson ratio ν 0.25 -

Table 1. Material parameters of the lubricant oil and steel

5.1 The effect of compressibility

In Figure 10a), we compare the effect of using the exact (“physical”) or the artificial compressibility
prescription for a rotational velocity of 1.5m/s. For the artificial compressibility, we used the
parameter value ε= 10−14. For this value, and even smaller ones, adding compressibility has already
a rather strong quantitative effect on the pressure profile compared to that obtained assuming
“pure” incompressibility. Though, qualitatively the pressure profiles obtained for the different
models appear similar the major difference is in the position of the pressure peak, which has also a
strong influence on other quantities, e.g., the velocity field. For higher rotational velocities the
differences in the pressure profiles corresponding to the different models increase, until finally
there occur oscillations in the pressure profile for the artificial compressibility model and velocities
bigger than 10m/s. For comparison, in Figure 10a), we have also plotted the pressure profile for
constant viscosity µ≡µ0 . For constant viscosity a significantly larger region of negative pressure
occurs where cavitation might take place. This effect, which seems to be suppressed by using either
one of the compressibility models, lies outside the scope of the present article. For the numerical
treatment of cavitation, we refer to Almqvist & Larsson [1] or Nilsson & Hansbo [30].
In Figure 10b), we compare the number of Newton iterations for the different regularization
strategies. For comparison, we started the computations with an entrainment velocity of 0.05m/s
and increased the speed within the homotopy process by only 0.05m/s per step. As stopping
criterion, we used the reduction of the initial residual by a factor of 10−8. In the regularization,
we used the “physical” compressibility module K = 109 N/m2 and the rather small “artificial”
compressibility parameter ε= 10−16 and compare the results to those obtained for a rather small
compressibility module K = 1012 N/m2 and an artificial compressibility parameter ε= 2 · 10−15.
This was the smallest value of ε for which we were able to get results up to rotational speed
9m/s. For bigger ε the artificial compressibility has significant impact on pressure, velocity and
temperature. Further, we indicate the Newton convergence obtained for rather small values of
both parameters, ε = 10−16 and K = 1012 N/m2. Even in these extreme cases, we still observe
reasonable Newton convergence for rotational speeds up to 2m/s. But we were not able to obtain
any results for speeds bigger than 2.3m/s. For the other two sets of parameter values, we observe
similar behavior of the Newton iteration, which requires only between 2 and 6 iterations in each
homotopy step. The small homotopy increment was chosen in order to get a fair comparison for
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Ωball
s

Ωrace
s

Ω f

Figure 9. Pressure in GPa (top left), temperature in K (top right) and x-velocity (bottom left) in
m/s plotted over the two dimensional computational domain where the race is in the front and
the ball in the back part, θrace = 313.15K , θball = 317.15K and a velocity of 6000 rpm (≈ 9.1m/s ).
Bottom right: Scheme of the computational domain

a) b)

Figure 10. a) Pressure profiles along a line through the fluid domain computed by using “artificial”
compressibility, “exact” (physical) compressibility and constant viscosity. b) Number of Newton
iterations for “artificial” compressibility, “exact” compressibility and “pure” incompressibility

all the three sets of parameters. Actually, within the homotopy method described in Section 3.3
using the “physical” compressibility with a small ε, it was possible to use a ten times bigger
homotopy increment.

5.2 Study of mesh convergence

Before proceeding to the computation of the physically interesting quantities in ball bearings,
we want to investigate the accuracy, which can be achieved on the spatial meshes used in our
simulations. To this end, we realize computations on a rather coarse mesh consisting of 30032
cells and on meshes obtained by one or two global uniform refinements steps consisting of 120128
cells and 480512 cells. In Figure 11a) and b), we show the pressure profiles and the profile of the
deformation of the race for an entrainment velocity of 9.1m/s, respectively, obtained on these
meshes. This velocity corresponds to 6000 rpm, the maximum working speed of the bearings.
For both quantities, we observe good agreement on all meshes, i.e., the spatial discretization is
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a) b)

c) d)

Figure 11. Pressure a) and deformation profile of the ball b) for a high-speed simulation (9.1m/s),
drag c) and lift d) forces over entrainment velocity, obtained on three different levels of successive
mesh refinement

converged. Furthermore, in Figure 11c) and d), we plot the drag and lift forces

cdrag :=
∫

Γball

t ·σ f ·n d s , clift :=
∫

Γball

n ·σ f ·n, (61)

acting on the ball as functions of the entrainment velocity. For the lift force, we observe a
satisfactory convergence behaviour. The values on the finer meshes are almost identical, while the
values obtained on the coarse mesh deviate slightly for higher rotational velocities. The drag force
is a lot more sensitive and difficult to compute. Here, the values obtained on the coarse mesh do
not seem to provide a reasonable approximation at all for rotational velocities larger than 3m/s .
We remark that on this mesh the fluid domain Ω f is covered by only 4 cells in vertical direction.
This is by far too little resolution for getting reasonable approximations for the velocity gradient,
which is the dominant part of the contribution of σ f to the drag force.

5.3 Computation of relevant physical quantities

First, we study the dependence of the lubricant film thickness with respect to the rotational
speed. For minimal and central film thickness, we compare our results with those obtained from
the analytical Hamrock-Dowson-Formula (Hamrock et al. [18]), which is widely used within the
engineering community and has been validated by many experiments (see, e.g., Krupka et al. [29]).
Figure 12 shows our numerical results and those by this formula for preloading of 0.5N and 5N
and different inflow velocities. For considerably larger preloading the modeling error due to our
simplified treatment of preloading becomes too large such that a quantitative agreement cannot be
expected anymore (see Section 2.5). The central film thickness obtained by our computation is in
almost perfect agreement with the analytical theory. Only for very small rotational velocity the
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Figure 12. Central and minimal film thickness for preloading 0.5N a) and 5N b). “Solid lines”
are the values obtained from the Hamrock-Dowson formula and “dots” are our computed values.

a) b)

Figure 13. Dependence of drag a) and lift b) force on the rotational speed for temperatures of
20,30,40 and 60◦C in the race

curves deviate considerably. This happens in a region of film thicknesses of about 10nm, where
any kind of modeling based on continuum assumptions seems dubious.
Next, we consider the influence of temperature on the frictional forces. In Figure 13, we show
drag and lift force values for different temperatures in ball and race. Here, the ball is assumed to be
0.5◦C warmer than the race while the temperature in the race is 20,30,40 and 60◦C . While former
approaches simulating the elastohydrodynamic behavior of lubricant films fails for temperatures
as small as 20◦ C, our proposed numerical scheme is robust for the complete range of physical
relevant temperature and velocity values.
The drag force seems quite unsensitive to temperature variations above 40◦C . But, below 40◦C
the drag force increases rather quickly for high rotational speed. For temperatures below 0◦C
our numerical simulation became unstable. The lift force shows a more uniform monotone
dependence on temperature.
Finally, we compare the loss torque for a realistic configuration and compare our results to
analytical models developed by our industrial partner Rockwell Collins Germany GmbH. Details
of this comparison will be given in a forthcoming paper. Although, we concentrated on a relatively
small part of a ball bearing domain in our computations, the results shown in Figure 14 show
good qualitative agreement.
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Figure 14. Loss torque computed from analytical models developed by Rockwell Collins Germany
GmbH compared to our simulation results

6 Conclusion

In this article, we propose a framework for detailed finite element simulations of elastohydro-
dynamic lubrication in ball bearings. We introduced a novel solution method, which treats the
evolution of the free boundary fully implicitly and therefore does not suffer from the usual time
step-size restriction. We validated our approach by applying it to a benchmark problem from the
literature and also used it for a ball bearing configuration. We compared different finite element
discretizations with respect to the error in mass conservation. In our numerical tests both “inf-sup”
stable Q2Q1- and Q2P disc

1 -elements showed excellent performance. Further, we found that in
time discretization the fully-implicit scheme leads to higher-order accuracy in the conservation of
mass compared to algorithms previously used in literature which treat the evolution of the free
boundary explicitly or semi-implicitly.
For the elastohydrodynamic lubrication problem, we developed a fully monolithic ALE method
including local thermal effects by means of an additional variable. We showed that our approach
gives reasonable results in terms of film thickness, frictional forces and loss torque. Despite the
variety of numerical challenges present in this application, our approach showed robustness also
for situations with high rotational speed. We described the ingredients of our numerical method
in detail and particularly investigated the gain of pressure regularization by allowing for some
degree of compressibility in the model. We found that the size of the regularization parameter ε
has to be chosen carefully if artificial compressibility is needed at all. Finally, we demonstrated the
importance of including thermal effects in computing frictional forces.
In this article, we used the Navier-Stokes equations for a non-Newtonian-fluid which is governed
by a Barus-Vogel law and a St.Venant-Kirchhoff material for the structure. Our method, however,
is flexible and robust with respect to fluid and structure models, geometry and parameters. The
results presented here are exemplary and the numerical algorithm easily carries over to other types
of lubrication problems with different fluids. While parts of the experimental data can be matched
precisely by analytical approximations such as the Hamrock-Dowson formula, numerical methods
are able to predict nearly every quantity of interest like drag and lift, film thickness profiles or
heat transfer for which no analytical formula is available.
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