

Special holonomy: notes for LSGNT lecture, January 2026

Simon Donaldson

January 23, 2026

1 Holonomy groups and the Berger list

An n -dimensional Riemannian manifold (M, g) has a unique Levi Civita connection on TM which has zero torsion and is compatible with the metric. Fix a base point p in M . The *holonomy group* $G \subset O(TM_p)$ is the group of rotations effected by parallel transport around loops based at p .

Let $G \subset O(n)$. A *torsion-free G -structure* on M is a principle G -bundle $P \rightarrow M$, an isomorphism of TM with the bundle associated to the representation of G on \mathbf{R}^n and a G -connection on P which defines a torsion-free connection on TM .

The two notions are essentially equivalent. A torsion-free G -structure defines a metric with holonomy contained in G and a Riemannian manifold with holonomy G has a torsion-free G -structure.

A manifold (M, g) is locally symmetric if the curvature tensor is covariant constant $\nabla \text{Riem} = 0$. Equivalently the curvature tensor is preserved by parallel transport. Such manifold is locally isometric to a symmetric space G^+/G and has holonomy contained in G . Lie theory gives a complete classification of symmetric spaces.

The holonomy groups G which can arise for simply connected, non-symmetric, irreducible manifolds are severely constrained. The curvature tensor lies in the kernel of

$$s^2 \mathbf{g} \subset \Lambda^2 \otimes \Lambda^2 \rightarrow \Lambda^4.$$

For most groups $G \subset SO(n)$ this kernel is zero. In the 1950's Marcel Berger produced a list of possibilities which was refined subsequently by other authors. The upshot is the following list:

1. $G = SO(n)$; the generic case.
2. $n = 2m$ and $G = U(m)$, these are *Kähler metrics* on complex manifolds.
3. $n = 2m$ and $G = SU(m)$ these are *Calabi-Yau metrics*, with a covariant constant holomorphic volume form.
4. $n = 4\ell$ and $G = Sp(\ell)$, these are *hyperkähler metrics* with three compatible Kähler structures.

5. $n = 4\ell$ and $G = Sp(\ell)Sp(1)/\pm 1$, these are *quaternion Kähler metrics* with a triple of complex structures at each point but not necessarily any global complex structures.
6. the exceptional case $G_2 \subset SO(7)$.
7. the exceptional case $Spin(7) \subset SO(8)$.

James Simons showed this list almost coincides with the list of groups $G \subset SO(n)$ which act transitively on the sphere S^{n-1} .

The cases (2)-(5) can be studied via complex geometry.

Yau's Theorem states that a Calabi-Yau structure on a compact manifold is equivalent to a complex structure with non-vanishing holomorphic m -form and a Kahler class.

For the more special case $Sp(\ell) \subset SU(2\ell)$ we need a holomorphic symplectic structure.

A quaternion Kähler manifold M has a twistor space $Z \rightarrow M$ which is a complex manifold with a (non-holomorphic) fibration over M having holomorphic S^2 -fibres. (Example: $\mathbf{CP}^{2\ell+1} \rightarrow \mathbf{HP}^\ell$.)

For the rest of these notes we concentrate on the exceptional cases (6),(7). However there are reasons to think of $SU(3)$ also as an exceptional case.

2 Description of the exceptional cases

Different approaches are possible using

- exterior algebra.
- spinors
- octonions, triality. . .

We will emphasise the first route.

Begin with $\mathbf{R}^6 = \mathbf{C}^3$. We have an $SU(3)$ -invariant symplectic form ω and complex 3-form $\Theta = dz_1 dz_2 dz_3 = \tilde{\rho} - i\rho$.

Now take $\mathbf{R}^7 = \mathbf{C}^3 \times \mathbf{R}$ with co-ordinate t on \mathbf{R} . We have a 3-form

$$\phi = \rho + \omega dt,$$

which is preserved by $SU(3) \subset SO(6) \subset SO(7)$.

Define G_2 to be the stabiliser in $SO(7)$ of ϕ .

Next consider \mathbf{R}^4 with orientation and Euclidean structure. There is a space Λ^+ of self-dual 2-forms with standard basis

$$\omega_i = dx_0 dx_i + dx_j dx_k$$

(ijk) cyclic. Take $\mathbf{R}^7 = \mathbf{R}^4 \times \mathbf{R}^3$ with coordinates y_i on \mathbf{R}^3 and write

$$\phi' = dy_1 dy_2 dy_3 - \sum \omega_i dy_i.$$

If we have identify \mathbf{R}^3 with Λ^+ we see that this form ϕ' is preserved by $SO(4)$.

It is easy to write down an isomorphism between $\mathbf{C}^3 \times \mathbf{R}$ and $\mathbf{R}^4 \times \mathbf{R}^3$ which takes ϕ to ϕ' . (Exercise).

Then we see that $SO(4) \subset G_2$ and it follows easily that

- G_2 acts transitively on the unit sphere $S^6 \subset \mathbf{R}^7$;
- the stabiliser of a point in S^6 is $SU(3)$, so $S^6 = G_2/SU(3)$.

Hence $\dim G_2 = 14$. It is an exceptional Lie group of rank 2. A maximal torus in G_2 can be obtained either from that in $SU(3)$ or in $SO(4)$.

On \mathbf{R}^7 we have a 4-form $*\phi = \tilde{\rho} dt + \omega^2$.

Take $\mathbf{R}^8 = \mathbf{R}^7 \times \mathbf{R}$ with co-ordinate s on \mathbf{R} . We have a 4-form

$$\Omega = \phi ds + *\phi,$$

which is preserved by $G_2 \subset SO(7) \subset SO(8)$. Define a group G to be the stabiliser of Ω in $SO(8)$.

Next take $\mathbf{R}^8 = \mathbf{C}^4$. Write $\tilde{\omega}$ for the standard symplectic form and $\tilde{\Theta}$ for the complex 4-form $dz_1 dz_2 dz_3 dz_4$. Define and $SU(4)$ -invariant 4-form

$$\Omega' = \tilde{\omega}^2 + \text{Re}(\Theta).$$

It is easy to write down an isomorphism between $\mathbf{R}^7 \times \mathbf{R}$ and \mathbf{C}^4 which takes Ω to Ω' . (Exercise)

Then we see that $SU(4) \subset G$ and it follows easily that

- G acts transitively on the unit sphere $S^7 \subset \mathbf{R}^8$;
- the stabiliser of a point in S^7 is G_2 , so $S^7 = G/G_2$.

Hence $\dim G = 21$. In fact this subgroup $G \subset SO(8)$ is isomorphic to $\text{Spin}(7)$, the double cover of $SO(7)$.

One way to see this is to consider the G -invariant decomposition

$$\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{21}^2,$$

where Λ_{21}^2 is the Lie algebra of G . The action on the other factor gives a homomorphism

$$G/\pm 1 \rightarrow SO(7)$$

which one checks is an isomorphism.

Another way is to consider the spin representation S of $\text{Spin}(7)$. This can be considered as an 8-dimensional real vector space and we get a subgroup $\text{Spin}(7) \subset SO(8)$.

The conclusion of the above is that

- a Riemannian 6-manifold has holonomy (contained in) $SU(3)$ if it has covariant constant forms ω, ρ , algebraically equivalent to the model above at each point;
- a Riemannian 7-manifold M has holonomy (contained in) G_2 if it has a covariant constant form ϕ , algebraically equivalent to the model above at each point;
- a Riemannian 8-manifold M has holonomy (contained in) $\text{Spin}(7)$ if it has a covariant constant form Ω , algebraically equivalent to the model above at each point.

An alternative spinorial approach is

- In dimension 6, the positive spin representation is on \mathbf{C}^4 and $\text{Spin}(6)$ act transitively on the unit sphere S^7 . The group $SU(3) \subset SO(6)$ is the stabiliser of a unit spinor.
- In dimension 7, the spin representation is on \mathbf{R}^8 and $\text{Spin}(7)$ act transitively on the unit sphere S^7 . The group $G_2 \subset SO(7)$ is the stabiliser of a unit spinor.
- In dimension 8, the positive spin representation is on \mathbf{R}^8 and $\text{Spin}(8)$ act transitively on the unit sphere S^7 . The group $\text{Spin}(7) \subset SO(8)$ is the stabiliser of a unit spinor.

It follows that manifolds with holonomy (contained in) $SU(3), G_2, \text{Spin}(7)$ are exactly those with a covariant constant unit spinor field.

Additional facts

1. Define a cross product $\mathbf{R}^7 \times \mathbf{R}^7 \rightarrow \mathbf{R}^7$ by

$$\phi(u, v, w) = \langle u \times v, w \rangle.$$

This defines the product on the imaginary octonions.

2. Part of the symmetry of the 4-form $\Omega \in \Lambda^4 \mathbf{R}^8$ can be seen as follows. Let \mathbf{A} be 3-dimensional affine space over the field of two elements. This contains 8 points and 14 planes. Take a real vector space V with basis elements e_i corresponding to the points p_i of \mathbf{A} . Then a monomial $\pm e_i \wedge e_j \wedge e_k \wedge e_l$ occurs in Ω if and only if p_i, p_j, p_k, p_l lie on a plane.
- Similarly for the 3-form ϕ and the projective plane over this field (the Fano plane).
3. The 3-form ϕ defines the Euclidean structure on \mathbf{R}^7 via the quadratic form $v \mapsto i_v(\phi)^2 \wedge \phi$. Thus it defines the 4-form $*\phi$. Similarly the 4-form Ω determines the Euclidean structure on \mathbf{R}^8 .
4. The $GL(7)$ orbit of ϕ in $\Lambda^3(\mathbf{R}^7)$ is *open*. The $GL(8)$ orbit of Ω in $\Lambda^4(\mathbf{R}^8)$ is a submanifold of dimension $64-21=43$.
5. A closed 4-form on M^8 which is algebraically equivalent to Ω at each point defines a torsion-free $Spin(7)$ structure. Similarly for a 3-form on M^7 algebraically equivalent to the model at each point and such that $\phi, *\phi$ are both closed. (Theorem of Fernandez and Gray)
6. Metrics with holonomy $G_2, Spin(7)$ have zero Ricci curvature.

3 Geometry in special holonomy manifolds

Submanifolds

A subset $X \subset \text{Gr}_p(\mathbf{R}^n)$ is *calibrated* by a p -form $a \in \Lambda^p$ if for any p -dimensional subspace $\Pi \subset \mathbf{R}^7$ the restriction of a is \leq the volume form with equality if $\alpha \in X$. If M is an n -manifold and α is a closed p -form on M which is algebraically equivalent to a at each point we get the notion of a calibrated submanifold. These are minimal submanifolds (in the compact case, absolutely area minimising in their homology class).

In $(\mathbf{C}^3, \omega, \Theta)$ the set of complex lines is calibrated by ω , similarly for planes and ω^2 . Complex curves and surfaces in Kähler manifolds are calibrated.

Special Lagrangian 3-planes $\Pi \subset \mathbf{C}^3$ are defined by the conditions that ω and $\tilde{\rho}$ restrict to zero. They are calibrated by ρ . We get the notion of Special Lagrangian submanifolds in Calabi-Yau threefold. More generally we can rotate the holomorphic form by a phase $e^{i\theta}$ so for each θ we get a class of $SLag_\theta$ submanifolds..

In \mathbf{R}^7, ϕ a 4-dimensional subspace Π is *coassociative* if $\phi|_{\Pi} = 0$. They are calibrated by $*\phi$. A 3-dimensional subspace is *associative* if its orthogonal complement is co-associative. The group G_2 acts transitively on the set of associative/co-associative subspaces. We get the notions of associative and co-associative submanifolds in a manifold (M, ϕ) of holonomy G_2 .

In $CY^3 \times \mathbf{R}$, $SLag_0 \times \text{point}$ and complex curve $\times \mathbf{R}$ are associative while $SLag_{\pi/2} \times \mathbf{R}$ and Complex surface $\times \text{point}$ are co-associative.

In (\mathbf{R}^8, Ω) a 4-plane Π is *Cayley* if for any normal vector v the contraction $i_v \Omega$ vanishes on Π . These are calibrated by Ω and we get the notion of Cayley submanifolds.

All of these submanifolds have elliptic deformation theories.

Gauge Theory

On a manifold M^8 with torsion free G_2 structure Ω we have $\Lambda^2 = \Lambda_{21}^2 + \Lambda_7^2$. A connection on a bundle $E \rightarrow M$ is called a Spin(7)-instanton if the component F_7 of its curvature is zero. This is an elliptic equation modulo gauge equivalence. The quadratic form

$$\alpha \mapsto \alpha^2 \wedge \Omega$$

has opposite signs on Λ_7^2 and Λ_{21}^2 . It follows from Chern-Weil theory that such a connection minimises the L^2 norm of the curvature over all connections on E . In the case when M is a Calabi-Yau 4-fold, Hermitian Yang-Mills connections on stable holomorphic bundles are Spin(7)-instantons.

Similarly, on a manifold M^7 with torsion free G_2 structure ϕ we have $\Lambda^2 = \Lambda_{14}^2 + \Lambda_7^2$ and we define G_2 -instantons in the same way. This is also an elliptic equation, when suitably formulated. On $CY^3 \times \mathbf{R}$ the pull-back of Hermitian-Yang Mills connections on CY^3 are G_2 -instantons.

4 Moduli theory of exceptional holonomy structures

The decomposition of Λ^4 as a Spin(7) representation is

$$\Lambda^4 = \Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{27}^4 \oplus \Lambda_{35}^4.$$

Here Λ_1^4 is spanned by Ω and $\Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{35}^4$ is the tangent space to the $GL(8, \mathbf{R})$ orbit of Ω .

The map $v \mapsto i_v(\Omega)$ defines an irreducible component $\Lambda_8^3 \subset \Lambda^3$.

It follows that an infinitesimal deformation of a torsion free $\text{Spin}(7)$ structure Ω on a manifold M^8 is given by a closed form σ in $\Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{35}^4$.

The Lie derivative of Ω along a vector field v is $di_v\Omega$. The map $v \mapsto i_v(\Omega)$ defines an irreducible component $\Lambda_8^3 \subset \Lambda^3$.

So we expect that the tangent space to the moduli space \mathcal{M} of torsion-free $\text{Spin}(7)$ -structures to be

$$T\mathcal{M} = \frac{\text{closed forms } \sigma \in \Omega_1^4 \oplus \Omega_7^4 \oplus \Omega_{35}^4}{\text{Im } d : \Omega_8^3 \rightarrow \Omega^4}.$$

The component $d : \Omega_8^3 \rightarrow \Omega_1^4 \oplus \Omega_7^4$ can be identified with the Dirac operator and this implies that its cokernel is $\mathbf{R}\Omega$. The space Λ_{35}^4 is the set of anti-self dual forms Λ_-^4 . It follows that

$$T\mathcal{M} = \mathbf{R} \oplus H_-^4$$

where H_-^4 is the space of closed anti-self dual 4-forms, which forms a maximal negative subspace for the cup product form on H^4 .

It can be shown that the map $\Omega \rightarrow [\Omega] \in H^4(M)$ embeds \mathcal{M} locally as a submanifold of H^4 of dimension $1 + b_-^4$.

Similarly in the G_2 -case the cohomology class of ϕ gives a local equivalence between the moduli space and H^3 .

5 Constructions

All known constructions of compact manifolds of exceptional holonomy involve singular perturbation techniques.

Resolving orbifolds (Joyce, Joyce-Karigiannis)

A prototype is the Kummer construction for $K3$ surfaces (real dimension 4). In a complex geometry description we start with a complex torus X and consider the involution $x \mapsto -x$. This has 16 fixed points. The quotient M_0 of the torus by the involution has 16 singular points, with neighbourhoods modelled on $\mathbf{C}^2/\pm 1$. We get a smooth complex surface M by blowing up the singular points, so M contains 16 2-spheres of self-intersection -2.

The Calabi-Yau metrics on M depend on a choice of Kahler class, which specifies the area of each -2 sphere. Consider the case when these are all equal to a small number ϵ . The Calabi-Yau metric can be contained by a gluing construction using

- The flat metric on M_0 ;
- The Eguchi-Hanson metric on $Y = T^*S^2$, which is hyperkahler and asymptotic to $\mathbf{C}^2/\pm 1$.

In the simplest case of the higher dimensional situation, Joyce consider flat 7-dimension orbifold M_0 with singular set locally equivalent to $T^3 \times \mathbf{C}^2/\pm 1$, then glues in $T^3 \times Y$.

Twisted connected sums (Kovalev, Corti *et al*)

There is another prototype with $K3$ surfaces. Let S_1, S_2 be rational elliptic surfaces containing isomorphic smooth elliptic curves D_1, D_2 . Form a singular surface M_0 by identifying D_1 and D_2 . It can be shown that M_0 has a smoothing M_t .

For small t the Calabi-Yau metric on M_t can be described as follows. The complement $S_1 \setminus D_1$ has a Tian-Yau hyperkahler metric which is complete and asymptotic to the cylinder $T^3 \times \mathbf{R}$. Similarly for $S_2 \setminus D_2$. The metric on M_t is obtained by gluing these two asymptotically cylindrical metrics with a very long neck (length $\sim -\log |t|$).

In higher dimensions, we take a pair of complex 3-folds Z_1, Z_2 and anti-canonical divisors D_1, D_2 with trivial normal bundles. Then $Z_i \setminus D_i$ have Tian-Yau metrics, asymptotic to $D_i \times S^1 \times \mathbf{R}$.

Now take the products $S^1 \times (Z_i \setminus D_i)$ and glue the cylindrical ends but *interchanging* the S^1 factors. This requires a more subtle matching condition on the divisors D_i .