
Special holonomy: notes for LSGNT lecture, January 2026

Simon Donaldson

January 23, 2026

1 Holonomy groups and the Berger list

An n-dimensonal Riemannian manifold (M, g) has a unique Levi Civita connection on
TM which has zero torsion and is compatible with the metric. Fix a base point p in
M . The holonomy group G ⊂ O(TMp) is the group of rotations effected by parallel
transport around loops based at p.

Let G ⊂ O(n). A torsion-free G-structure on M is a principle G-bundle P → M , an
isomorphism of TM with the bundle associated to the representation of G on Rn and a
G-connection on P which defines a torsion-free connection on TM .

The two notions are essentially equivalent. A torsion-freeG-structure defines a metric
with holonomy contained in G and a Riemannian manifold with holonomy G has a
torsion-free G-structure.

A manifold (M, g) is locally symmmetric if the curvature tensor is covariant constant
∇Riem = 0. Equivalently the curvature tensor is preserved by parallel transport. Such
manifold is locally isometric to a symmetric space G+/G and has holonomy contained
in G. Lie theory gives a complete classification of symmetric spaces.

The holonomy groups G which can arise for simply connected, non-symmetric, ir-
reducible manifolds are severely constrained. The curvature tensor lies in the kernel
of

s2g ⊂ Λ2 ⊗ Λ2 → Λ4.

For most groups G ⊂ SO(n) this kernel is zero. In the 1950’s Marcel Berger produced
a list of posibilities which was refined subsequently by other authors. The upshot is the
following list:

1. G = SO(n); the generic case.

2. n = 2m and G = U(m), these are Kähler metrics on complex manifolds.

3. n = 2m and G = SU(m) these are Calabi-Yau metrics, with a covariant constant
holomorphic volume form.

4. n = 4ℓ and G = Sp(ℓ), these are hyperkähler metrics with three compatible Kähler
structures.
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5. n = 4ℓ and G = Sp(ℓ)Sp(1)/ ± 1, these are quaternion Kähler metrics with a
triple of complex structures at each point but not necessarily any global complex
structures.

6. the exceptional case G2 ⊂ SO(7).

7. the exceptional case Spin(7) ⊂ SO(8).

James Simons showed this list almost coincides with the list of groups G ⊂ SO(n)
which act transitively on the sphere Sn−1.

The cases (2)-(5) can be studied via complex geometry.

Yau’s Theorem states that a Calabi-Yau structure on a compact manifold is equiva-
lent to a complex structure with non-vanishing holomorphic m-form and a Kahler class.

For the more special case Sp(ℓ) ⊂ SU(2ℓ) we need a holomorphic symplectic struc-
ture.

A quaterion Kähler manifold M has a twistor space Z → M which is a complex
manifold with a (non-holomorphic) fibration over M having holomorphic S2-fibres. (Ex-
ample: CP2ℓ+1 → HPℓ.)

For the rest of these notes we concentrate on the exceptional cases (6),(7). However
there are reasons to think of SU(3) also as an exceptional case.

2 Description of the exceptional cases

Different approaches are possible using

� exteror algebra.

� spinors

� octonions, triality. . . .

We will emphasise the first route.
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Begin with R6 = C3. We have an SU(3)-invariant symplectic form ω and complex
3-form Θ = dz1dz2dz3 = ρ̃− iρ.

Now take R7 = C3 ×R with co-ordinate t on R. We have a 3-form

ϕ = ρ+ ωdt,

which is preserved by SU(3) ⊂ SO(6) ⊂ SO(7).
Define G2 to be the stabiliser in SO(7) of ϕ.
Next consider R4 with orientation and Euclidean structure. There is a space Λ+ of

self-dual 2-forms with standard basis

ωi = dx0dxi + dxjdxk

(ijk) cyclic. Take R7 = R4 ×R3 with coordinates yi on R3 and write

ϕ′ = dy1dy2dy3 −
∑

ωidyi.

If we have identify R3 with Λ+ we see that this form ϕ′ is preserved by SO(4).
It is easy to write down an isomorphism between C3 ×R and R4 ×R3 which takes

ϕ to ϕ′. (Exercise).
Then we see that SO(4) ⊂ G2 and it follows easily that

� G2 acts transitively on the unit sphere S6 ⊂ R7;

� the stabiliser of a point in S6 is SU(3), so S6 = G2/SU(3).

Hence dimG2 = 14. It is an exceptional Lie group of rank 2. A maximal torus in G2

can be obtained either from that in SU(3) or in SO(4).
On R7 we have a 4-form ∗ϕ = ρ̃dt+ ω2.

Take R8 = R7 ×R with co-ordinate s on R. We have a 4-form

Ω = ϕds+ ∗ϕ,

which is preserved by G2 ⊂ SO(7) ⊂ SO(8). Define a group G to be the stabiliser of Ω
in SO(8).

Next take R8 = C4. Write ω̃ for the standard symplectic form and Θ̃ for the complex
4-form dz1dz2dz3dz4. Define and SU(4)-invariant 4-form

Ω′ = ω̃2 +Re(Θ).

It is easy to write down an isomorphism between R7 × R and C4 wich takes Ω to
Ω′. (Exercise)

Then we see that SU(4) ⊂ G and it follows easily that
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� G acts transitively on the unit sphere S7 ⊂ R8;

� the stabiliser of a point in S7 is G2, so S7 = G/G2.

Hence dim G = 21. In fact this subgroup G ⊂ SO(8) is isomorphic to Spin(7), the
double cover of SO(7).

One way to see this is to consider the G-invariant decomposition

Λ2 = Λ2
7 ⊕ Λ2

21,

where Λ2
21 is the Lie algebra of G. The action on the other factor gives a homomorphism

G/± 1 → SO(7)

which one checks is an isomorphism.
Another way is to consider the spin representation S of Spin(7). This can be consid-

ered as an 8-dimensional real vector space and we get a subgroup Spin(7) ⊂ SO(8).
The conclusion of the above is that

� a Riemannian 6-manifold has holonomy (contained in) SU(3) if it has covariant
constant forms ω, ρ, algebraically equivalent to the model above at each point;

� a Riemannian 7-manifold M has holonomy (contained in) G2 if it has a covariant
constant form ϕ, algebraically equivalent to the model above at each point;

� a Riemannian 8-manifold M has holonomy (contained in) Spin(7) if it has a co-
variant constant form Ω, algebraically equivalent to the model above at each point.

An alternative spinorial approach is

� In dimension 6, the positive spin representation is on C4 and Spin(6) act transi-
tively on the unit sphere S7. The group SU(3) ⊂ SO(6) is the stabiliser of a unit
spinor.

� In dimension 7, the spin representation is on R8 and Spin(7) act transitively on
the unit sphere S7. The group G2 ⊂ SO(7) is the stabiliser of a unit spinor.

� In dimension 8, the positive spin representation is on R8 and Spin(8) act transi-
tively on the unit sphere S7. The group Spin(7) ⊂ SO(8) is the stabiliser of a unit
spinor.

It follows that manifolds with holonomy (contained in) SU(3), G2, Spin(7) are exactly
those with a covariant constant unit spinor field.

Additional facts
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1. Define a cross product R7 ×R7 → R7 by

ϕ(u, v, w) = ⟨u× v, w⟩.

This defines the product on the imaginary octonions.

2. Part of the symmetry of the 4-form Ω ∈ Λ4R8 can be seen as follows. Let A be
3-dimensional affine space over the field of two elements. This contains 8 points
and 14 planes. Take a real vector space V with basis elements ei corresponding to
the points pi of A. Then a monomial ±ei ∧ ej ∧ ek ∧ el occurs in Ω if and only if
pi, pj , pk, pl lie on a plane.

Similarly for the 3-form ϕ and the projective plane over this field (the Fano plane).

3. The 3-form ϕ defines the Euclidean structure on R7 via the quadratic form v 7→
iv(ϕ)

2 ∧ ϕ. Thus it defines the 4-form ∗ϕ. Similarly the 4-form Ω determines the
Euclidean structure on R8.

4. The GL(7) orbit of ϕ in Λ3(R7) is open. The GL(8) orbit of Ω in Λ4(R8) is a
submanifold of dimension 64-21=43.

5. A closed 4-form on M8 which is algebraically equivalent to Ω at each point defines
a torsion-free Spin(7) structure. Similarly for a 3-form on M7 algebraically equiv-
alent to the model at each point and such that ϕ, ∗ϕ are both closed. (Theorem of
Fernandez and Gray)

6. Metrics with holonomy G2,Spin(7) have zero Ricci curvature.

3 Geometry in special holonomy manifolds

Submanifolds
A subset X ⊂ Grp(R

n) is calibrated by a p-form a ∈ Λp if for any p-dimensional
subspace Π ⊂ R7 the restriction of a is ≤ the volume form with equality if α ∈ X.
If M is an n-manifold and α is a closed p-form on M which is algebraically equivalent
to a at each point we get the notion of a calibrated submanifold. These are minimal
submanifolds (in the compact case, absolutely area minimising in their homology class).

In (C3, ω,Θ) the set of complex lines is calibrated by ω, similarly for planes and ω2.
Complex curves and surfaces in Kähler manifolds are calibrated.

Special Lagrangian 3-planes Π ⊂ C3 are defined by the conditions that ω and ρ̃
restrict to zero. They are calibrated by ρ. We get the notion of Special Lagrangian
submanifolds in Calabi-Yau threefold. More generally we can rotate the holomorphic
form by a phase eiθ so for each θ we get a class of SLagθ submanifolds..
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In R7, ϕ a 4-dimensional subspace Π is coassociative if ϕ|Π = 0. They are cali-
brated by ∗ϕ. A 3-dimensional subspace is associative if its orthogonal complement is
co-associative. The group G2 acts transitively on the set of associative/co-associative
subspaces. We get the notions of associative and co-associative submanifolds in a man-
ifold (M,ϕ) of holonomy G2.

In CY 3×R, SLag0×point and complex curve×R are associative while SLagπ/2×R
and Complex surface× point are co-associative.

In (R8,Ω) a 4-plane Π is Cayley if for any normal vector v the contraction ivΩ
vanishes on Π. These are calibrated by Ω and we get the notion of Cayley submanifolds.

All of these submanifolds have elliptic deformation theories.

Gauge Theory

On a manifold M8 with torsion free G2 structure Ω we have Λ2 = Λ2
21 + Λ2

7. A
connection on a bundle E → M is called a Spin(7)-instanton if the component F7 of its
curvature is zero. Tihis is an elliptic equation moduo gauge equivalence. The quadratic
form

α 7→ α2 ∧ Ω

has opposite signs on Λ2
7 and Lambda221. It follows from Chern-Weil theory that such

a connection minimises the L2 norm of the curvature over all connections on E. In
the case when M is a Calabi-Yau 4-fold, Hermitian Yang-Mills connections on stable
holomorphic bundles are Spin(7)-instantons.

Similarly, on a manifold M7 with torsion free G2 structure ϕ we have Λ2 = Λ2
14 +Λ2
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and we define G2-instantons in the same way. This is also an elliptic equation, when
suitably formulated. On CY 3 × R the pull-back of Hermitian-Yang Mills connections
on CY 3 are G2-instantons.

4 Moduli theory of exceptional holonomy structures

.
The decomposition of Λ4 as a Spin(7) representation is

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35.

Here Λ4
1 is spanned by Ω and Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35 is the tangent space to the GL(8,R) orbit
of Ω.

The map v 7→ iv(Ω) defines an irreducible component Λ3
8 ⊂ Λ3.
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It follows that an infinitesimal deformation of a torsion free Spin(7) structure Ω on
a manifold M8 is given by a closed form σ in Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35.
The Lie derivative of Ω along a vector field v is divΩ. The map v 7→ iv(Ω defines an

irreducible component Λ3
8 ⊂ Λ3.

So we expect that the tangent space to the moduli space M of torsion-free Spin(7)-
structures to be

TM =
closed forms σ ∈ Ω4

1 ⊕ Ω4
7 ⊕ Ω4

35

Im d : Ω3
8 → Ω4

.

The component d : Ω3
8 → Ω4

1 ⊕Ω4
7 can be identified with the Dirac operator and this

implies that its cokernel is RΩ. The space Λ4
35 is the set of anti-self dual forms Λ4

−. It
follows that

TM = R⊕H4
−

where H4
− is the space of closed anti-self dual 4-forms, which forms a maximal negative

subspace for the cup product form on H4.
It can be shown that the map Ω → [Ω] ∈ H4(M) embeds M locally as a submanifold

of H4 of dimension 1 + b4−.
Similarly in the G2- case the cohomology class of ϕ gives a local equivalence between

the moduli space and H3.

5 Constructions

All known constructions of compact manifolds of exceptional holonomy involve singular
perturbation techniques.

Resolving orbifolds(Joyce, Joyce-Karigiannis)

A prototype is the Kummer construction for K3 surfaces (real dimension 4). In
a complex geometry description we start with a complex torus X and consider the
involution x 7→ −x. This has 16 fixed points. The quotient M0 of the torus by the
involution has 16 singular points, with neighbourhoods modelled on C2/± 1. We get a
smooth complex surfaceM by blowing up the singular points, soM contains 16 2-spheres
of self-intersection -2.

The Calabi-Yau metrics on M depend on a choice of Kahler class, which specifies the
area of each −2 sphere. Consider the case when these are all equal to a small number ϵ.
The Calabi-Yau metric can be contained by a gluing construction using

� The flat metric on M0;

� The Eguchi-Hanson metric on Y = T ∗S2, which is hyperkahler and asymptotic to
C2/± 1.

In the simplest case of the higher dimensional situation, Joyce consider flat 7-
dimension orbifold M0 with singular set locally equivalent to T 3 ×C2/ ± 1, then glues
in T 3 × Y .
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Twisted connected sums (Kovalev, Corti et al)

There is another prototype with K3 surfaces. Let S1, S2 be rational elliptic surfaces
containing isomorphic smooth elliptic curves D1, D2. Form a singular surface M0 by
identifying D1 and D2. It can be shown that M0 has a smoothing Mt.

For small t the Calabi-Yau metric onMt can be described as follows. The complement
S1 \ D1 has a Tian-Yau hyperkahler metric which is complete and asymptotic to the
cylinder T 3 ×R. Similarly for S2 \D2. The metric on Mt is obtained by gluing these
two asymptotically cylindrical metrics with a very long neck (length ∼ − log |t|).

In higher dimensions, we take a pair of complex 3-folds Z1, Z2 and anti-canonical divi-
sors D1, D2 with trivial normal bundles. Then Zi\Di have Tian-Yau metrics, asymptotic
to Di × S1 ×R.

Now take the products S1× (Zi \Di) and glue the cylindrical ends but interchanging
the S1 factors. This requires a more subtle matching condition on the divisors Di.
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