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Let M be an oriented surface in R3, let ξ be the unit vector field
normal to M. Since 〈ξ, ξ〉 = 1

dξp : TpM→ Tξ(p)S
2 ' TpM

Definition

The map A = −dξ is the shape operator of M.



|〈AX ,X 〉| = curvature at p of the planar curve ∆X ∩M.

(The yellow curve in the picture)

∆X the plane normal to M at p and containing X .



Definition

Ap : TpM→ TpM

Ap is symmetric.

The eigenvalues k1, k2 of Ap are the principal curvatures of
M at p.

KG = det(A) = k1k2 is the Gauss curvature.

H = 1
2 tr(A) = k1+k2

2 is the mean curvature.

|A| =
√

k2
1 + k2

2 is the norm of the shape operator or norm

of the second fundamental form.

Gauss equation

4H2 = |A|2 + 2KG



Question

What does the mean curvature say about M?

First Variation Formula

Let Mφ
t be a smooth normal variation of M fixing the boundary,

i.e. let φ ∈ C∞0 (M) and

Mφ
t = {p + tφ(p)ξ(p) | p ∈M}, then

d

dt
Area(Mφ

t )
∣∣∣
t=0

= −2

∫
M

Hφ



First Variation Formula (HW)

d

dt
Area(Mφ

t )
∣∣∣
t=0

= −2

∫
M

Hφ, φ ∈ C∞0 (M)

Definition

M is a minimal surface ⇐⇒ M is a critical point for the area
functional ⇐⇒ H ≡ 0.



Munich Olympic Stadium (Frei Otto)





Catenoid Image by Matthias Weber

In 1741, Euler discovered that when a catenary x1 = cosh x3 is
rotated around the x3-axis, then one obtains a surface which
minimizes area among surfaces of revolution after prescribing
boundary values for the generating curves.

In 1776, Meusnier verified that the catenoid is locally a solution of
Lagrange’s equation.

Together with the plane, the catenoid is the only minimal surface of
revolution (1860 Bonnet). (HW)



Helicoid Images by Matthias Weber

Shape used by Archimedes to pump water in 250 BC.

Proved to be minimal by Meusnier in 1776.

Together with the plane, the helicoid is the only ruled minimal
surface (proved by Catalan in 1842). (HW)

The shape of a string of DNA resembles that of a helicoid.



Scherk Surfaces

Discovered in 1834 by Scherk.

Infinite genus.



Riemann minimal examples. Image by Matthias Weber

Discovered in 1860 by Riemann, these examples are invariant under
reflection in the (x1, x3)-plane and by a translation Tλ.

After appropriate scalings, they converge to catenoids as t → 0 or
to helicoids as t →∞.

The Riemann minimal examples have the property that every
horizontal plane intersects the surface in a circle or in a line.

These surfaces have genus 0.



Enneper Surface

Discovered in 1864 by Enneper.

Together with the Catenoid, it is the only minimal surface
whose Gauss map covers the sphere exactly once (1989
Osserman).



Schwarz Primitive triply-periodic surface. Images by Weber

Discovered by Schwarz in the 1880’s, it is also called the
P-surface.

Such a structure, common to any triply-periodic minimal
surface (TPMS), is also known as a crystallographic cell or
space tiling.



Costa Torus Images by Matthias Weber

Discovered in 1982 by Costa.

Finally an interesting topology!



Costa-Hoffman-Meeks surfaces. Image by M. Weber

Discovered by Hoffman and Meeks in 1983.

Adding handles to a minimal surfaces that has more than one
end.



Helicoid with a handle Images by Matthias Weber

Discovered in 1993 by Hoffman, Karcher and Wei.



Helicoid with 2 handles Images by Matthias Weber

Discovered in 2013 by Hoffman, Trazet and White



First Variation Formula

d

dt
Area(Mφ

t )
∣∣∣
t=0

= −2

∫
M

Hφ, φ ∈ C∞0 (M)

Definition

M is a minimal surface ⇐⇒ M is a critical point for the area
functional ⇐⇒ H ≡ 0.

Proposition (HW)

(Locally) Area minimizing surfaces are minimal surfaces.



Soap films are
minimal surfaces

Joseph
Plateau
(1801 -
1883)

Plateau proved that a
soap film minimises area
among nearby
surfaces. (Surface
tension is at work.)



Here is a wire that bounds more than one
soap film.



Joseph Lagrange
(1736 - 1813)

Given a boundary, does there exist an area minimizing
minimal surface spanning it?

This became known as the Plateau Problem.

Remark

Dipping a closed wire in and out of soapy water is NOT a
good way to solve Plateau problem!

In his 1902 thesis Lebesgue constructed the now called
Lebesgue integral in an effort to solve Plateau problem.



It was solved independently by

Jesse Douglas
(1897 - 1965)
Fields Medal in 1936

Tibor Rado
(1895 - 1965)



Idea for a proof of Plateau Problem

Let Γ be a curve in R3 and let F be the set of surfaces spanning Γ.
Let

AΓ := inf
M∈F

Area(M) ∈ (0,∞).

Then, if there exists a surface M in F such that Area(M) = AΓ,
then this surface solves Plateau problem.

The infimum needs not be
realized by a surface!



Digression: Isoperimetric Problem

Given a Jordan (plane simple closed) curve, let L and A denote its
length and exclosed area. Then:

L2 ≥ 4πA,

with equality if and only if the curve is a circle.

Remark

This is saying that the infimum of the ratio L2

A over all Jordan
curves is 4π and it is obtained only by the circle.

If the enclosed area is fixed, the solution minimizes the
perimeter.

If the perimeter is fixed, the solution maximizes the area.
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Potted history of the Isometric Problem

The circle encloses a greater area than a regular polygon of the
same perimeter. (Zenodorus 200–120 BC)

Contribution by Bernoulli in 1691 and Euler in 1744.

It was finally proved by Steiner in 1838. But was it really?



Isoperimetric Problem

Given a Jordan (plane simple closed) curve, let L and A denote its
length and exclosed area. Then:

L2 ≥ 4πA,

with equality if and only if the curve is a circle.

Proof (Steiner)

For any curve that IS NOT a
circle, there is a method
(given by Steiner) by which
one finds a curve that encloses
greater area. Therefore the
circle has the greatest area.

Therefore?



Proof of the Isoperimetric
Problem (Steiner)

For any curve that is not a
circle, there is a method
(given by Steiner) by which
one finds a curve that encloses
greater area. Therefore the
circle has the greatest area.

Prove that among all positive
integers, the integer 1 is the
largest (Perron)

For any integer that is not 1,
there is a method (to take
the square) by which one finds
a larger positive integer.
Therefore 1 is the largest
integer.

Remark

Steiner’s proof works as long as the infimum of the ratio is
achieved.

The proof of the Isoperimetric Problem was completed by
Weierstrass in 1879.





Plateau Problem

Given a curve in R3, does there exist an area minimizing minimal
surface spanning it?

Before Douglas and Radó, it was solved for certain families of
curves.

There are different proofs of “Plateau problem” depending on
the way it is framed.

And even within the same “framing” there are different proofs.
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Douglas and Radó’s Plateau Problem:

Let Γ ⊂ R3 be a piecewise C 1 closed Jordan curve and let D ⊂ R2

be the open unit disk. Let FΓ be the set of maps u : D̄ → R3 such
that the following holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D). (
∫∫

D ‖∇u‖
2dxdy <∞)

u : ∂D → Γ is monotone and onto.

Let AΓ := infu∈FΓ
Area(u(D)) ∈ (0,∞).

Then there exists a map w ∈ FΓ such that

Area(w(D)) = AΓ.

Remark

w(D) minimizes area among disks.

The map w is not necessarily a parametrization of a surface.
Indeed ∇w “could” be zero (branch points) somewhere.
(1970 Osserman and 1973 Gulliver)



Douglas and Radó’s Plateau Problem:

Let Γ ⊂ R3 be a piecewise C 1 closed Jordan curve and let D ⊂ R2

be the open unit disk. Let FΓ be the set of maps u : D̄ → R3 such
that the following holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D). (
∫∫

D ‖∇u‖
2dxdy <∞)

u : ∂D → Γ is monotone and onto.

Let AΓ := infu∈FΓ
Area(u(D)) ∈ (0,∞).

Then there exists a map w ∈ FΓ such that

Area(w(D)) = AΓ.

Remark

w(D) minimizes area among disks.

The map w is not necessarily a parametrization of a surface.
Indeed ∇w “could” be zero (branch points) somewhere.
(1970 Osserman and 1973 Gulliver)
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Let FΓ be the set of maps u : D̄ → R3 such that the following
holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D). (
∫∫

D ‖∇u‖
2dxdy <∞)

u : ∂D → Γ is monotone and onto.

Idea for a proof of Plateau Problem

Using the direct method in the calculus of variations introduced by
Hilbert and Zaremba around 1900:

Let uk be a sequence of maps in FΓ with

lim
k→∞

Area(uk(D)) = AΓ

With extreme care, prove that uk (or possibly a subsequence)
converges to the desired map.

We are going to follow Courant’s proof.



Let FΓ be the set of maps u : D̄ → R3 such that the following
holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D). (
∫∫

D ‖∇u‖
2dxdy <∞)

u : ∂D → Γ is monotone and onto.

Idea for a proof of Plateau Problem

Using the direct method in the calculus of variations introduced by
Hilbert and Zaremba around 1900:

Let uk be a sequence of maps in FΓ with

lim
k→∞

Area(uk(D)) = AΓ

With extreme care, prove that uk (or possibly a subsequence)
converges to the desired map.

We are going to follow Courant’s proof.



Let FΓ be the set of maps u : D̄ → R3 such that the following
holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D). (
∫∫

D ‖∇u‖
2dxdy <∞)

u : ∂D → Γ is monotone and onto.

Idea for a proof of Plateau Problem

Using the direct method in the calculus of variations introduced by
Hilbert and Zaremba around 1900:

Let uk be a sequence of maps in FΓ with

lim
k→∞
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converges to the desired map.

We are going to follow Courant’s proof.



Two red flags!

The area depends on the image but the diffeomorphism group
of the disk is not compact.

Bounding the area of the image of the map does not give
much control on the map itself.



The area depends on the image of the map but
the diffeomorphism group of the disk in NOT
compact.

Fix u : D → R3 and let φk : D → D be a non converging sequence
of diffeomorhisms. The maps

uk : D → R3, uk = u · φk ,

are all parametrizations of the SAME surface, but they do not
converge.

Example

φk(z) =
z

k(1− ‖z‖) + 1
, k ∈ N, z ∈ D ⊂ C.



Bounding the area of the image of the map does
not give much control on the map itself.

Frank Morgan, Geometric Measure Theory: A Beginners Guide



Reminder

Let u(x , y) : D → R3.

The Area of (the image of) u is

A(u) := A(u(D)) =

∫∫
D

√
‖ux‖2‖uy‖2 − 〈ux , uy 〉2dxdy

The (Dirichlet) Energy of u is

E (u) :=
1

2

∫∫
D
‖∇u‖2dxdy =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

Note that A(u) ≤ E (u).

If ‖ux‖2 = ‖uy‖2 and 〈ux , uy 〉 = 0 then A(u) = E (u).

Definition/Proposition

When ‖ux‖2 = ‖uy‖2 and 〈ux , uy 〉 = 0, the u is called an
isothermal (conformal) parametrization.

A parametrization is isothermal (conformal) if and only if it
preserves angles.
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Proposition (Lichtenstein, 1916)

Global isothermal reparametrizations exist.

⇓

AΓ := inf
u∈FΓ

Area(u) = Aiso
Γ := inf

u∈F iso
Γ

Area(u),

where FΓ the set of maps u : D̄ → R3 such that:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D).

u : ∂D → Γ is monotone and onto.

And u ∈ F iso
Γ if u ∈ FΓ and it is an isothermal parametrization.

Proof

AΓ ≤ Aiso
Γ because FΓ ⊃ F iso

Γ .

AΓ ≥ Aiso
Γ because given u ∈ FΓ there exists u∗ ∈ F iso

Γ with
u∗(D) = u(D) =⇒ A(u∗) = A(u).



Proposition

Let FΓ be the set of maps u : D̄ → R3 such that the following
holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D).

u : ∂D → Γ is monotone and onto.

And u ∈ F iso
Γ if u ∈ FΓ and it is an isothermal parametrization.

Let

AΓ := inf
u∈FΓ

A(u), Aiso
Γ := inf

u∈F iso
Γ

A(u)(= E (u)), EΓ := inf
u∈FΓ

E (u)

Then

AΓ = Aiso
Γ = EΓ (Proof:AΓ = Aiso

Γ ≥ EΓ ≥ AΓ).

A(u) = Area(u) =
∫∫

D

√
‖ux‖2‖uy‖2 − 〈ux , uy 〉2dxdy .

E (u) = Energy(u) = 1
2

∫∫
D ‖ux‖

2 + ‖uy‖2dxdy .

Recall that A(u) ≤ E (u).



Since
AΓ = EΓ,

to solve Plateau Problem, it suffices to solve a new problem.

New problem: Plateau/Dirichlet Problem

Let Γ ⊂ R3 be a piecewise C 1 closed Jordan curve and let D ⊂ R2

be the open unit disk. Let FΓ be the set of maps u : D̄ → R3 such
that the following holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D).

u : ∂D → Γ is monotone and onto.

Let

EΓ := inf
u∈FΓ

E(u)

(
E (u) =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

)
.

Prove that there exists a map w ∈ FΓ such that

E(w) = EΓ.



Plateau/Dirichlet Problem

Let

EΓ := inf
u∈FΓ

E(u)

(
E (u) =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

)
.

Prove that there exists a map w ∈ FΓ such that

E(w) = EΓ.

Bounding the area of the image of the map does
not give much control on the map itself.

This is NO LONGER a red flag because we are not dealing with
area anymore.



The group of conformal (angle preserving) maps
from the disk to the disk is also NOT compact
and the Dirichlet energy is INVARIANT under
conformal maps.

Fix u : D → R3 be isothermal and let φk : D → D be a non
converging sequence of conformal maps. The maps

uk : D → R3, uk = u · φk ,

have the SAME Dirichlet energy, but they do not converge.

Example

φk(z) = e iθ
zk − z

1− z̄kz
= e0

k−1
k − z

1− k−1
k z

, k ∈ N, z ∈ D ⊂ C.



Let FΓ be the set of maps u : D̄ → R3 such that:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D).

u : ∂D → Γ is monotone and onto.

And let u ∈ F∗Γ if

u ∈ FΓ.

u(1, 0) = p1, u(−1, 0) = p2 and u(0, 1) = p3, where p1, p2

and p3 are three distinct points in Γ.

Since the group of conformal maps from D to D acts
triply-transitively on ∂D then the following holds.

EΓ := inf
u∈FΓ

E(u) = E∗Γ := inf
u∈F∗

Γ

E(u),



EΓ := inf
u∈FΓ

E(u) = E∗Γ := inf
u∈F∗

Γ

E(u),

Proposition

Let u ∈ F∗Γ and let φ : D → D be a conformal map.

u · φ ∈ F∗Γ ⇐⇒ φ = id .

No more red flags!



Plateau/Dirichlet Problem v2

Let Γ ⊂ R3 be a piecewise C 1 closed Jordan curve and let D ⊂ R2

be the open unit disk. Let F∗Γ be the set of maps u : D̄ → R3 such
that the following holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D).

u : ∂D → Γ is monotone and onto.

u(1, 0) = p1, u(−1, 0) = p2 and u(0, 1) = p3, where p1, p2

and p3 are three distinct points in Γ.

Let

E∗Γ := inf
u∈F∗

Γ

E(u)

(
E (u) =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

)
.

Prove that there exists a map w ∈ F∗Γ such that

E(w) = E∗Γ .



Plateau/Dirichlet Problem v2

Let

E∗Γ := inf
u∈F∗

Γ

E(u)

(
E (u) =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

)
.

Prove that there exists a map w ∈ F∗Γ such that

E(w) = E∗Γ .

Idea for a proof of the Plateau/Dirichlet Problem

Let uk be a sequence of maps in F∗Γ with

lim
k→∞

E (uk) = E∗Γ

With extreme care, prove that uk (or possibly a subsequence)
converges to the desired map.



The proof of Plateau/Dirichlet Problem v2

Ingredient # 1 (Courant)

Let F∗Γ (K ) ⊂ F∗Γ be the set of maps u : D̄ → R3 such that the
following holds:

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D) and E (u) ≤ K .

u : ∂D → Γ is monotone and onto.

u(1, 0) = p1, u(−1, 0) = p2 and u(0, 1) = p3, where p1, p2

and p3 are three distinct points in Γ.

Then F∗Γ (K ) is equicontinuous on ∂D and by the Arzelá-Ascoli
Theorem, F∗Γ (K ) is compact in the topology of uniform
convergence on ∂D.

Read

The parametrizations of Γ converge. But we still don’t know what
happens in the interior.



The proof of Plateau/Dirichlet Problem v2

Ingredient # 2 (Dirichlet Problem)

Let w ∈ C 0(D̄) ∩W 1,2(D), then there is a unique solution

u ∈ C 0(D̄) ∩W 1,2(D) ∩ C∞(D)

to the problem
∆u = 0, u|∂D = w |∂D .

In fact u minimizes the Dirichlet energy in the space of maps that
are equal to w on ∂D, in particular E (u) ≤ E (w).

Read

We can work with harmonic (∆u = 0) maps.



E∗Γ := inf
u∈F∗

Γ

E(u)

(
E (u) =

1

2

∫∫
D
‖ux‖2 + ‖uy‖2dxdy

)
.

Prove that there exists a map w ∈ F∗Γ such that E(w) = E∗Γ .

Proof of the Plateau/Dirichlet Problem

Let wk be a sequence of maps in F∗Γ with
limk→∞ E (wk) = E∗Γ ( =⇒ E (wk) ≤ 2E∗Γ)

Using Ingredient # 2, let uk ∈ F∗Γ be the harmonic map with
uk |∂D = wk |∂D . In particular, E (uk) ≤ E (wk) ≤ 2E∗Γ .

Using Ingredient # 1, the family of maps uk |∂D : ∂D → Γ is
equicontinuous, that is, up to a subsequence, uk |∂D converges
uniformly to γ : ∂D → Γ and γ is monotone and onto.



In sum, uk ∈ F∗Γ is a sequence of harmonic maps with

lim
k→∞

E (uk) = E∗Γ := inf
u∈F∗

Γ

E(u)

and uk |∂D converges uniformly to γ : ∂D → Γ, with γ
monotone and onto.

Because uk is harmonic, so is (uj − uk) and the maximum
principle gives that

sup
D
|uj − uk | = max

∂D
|uj − uk |(→ 0).

Therefore uk converges uniformly to u∞ : D → R3 with
u∞|∂D = γ.

Since (uj − uk) is harmonic, similar estimates hold for its
derivatives and thus uk converges uniformly to the desired
map!

Q.E.D.
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Open problem:

Given a closed wire, how many minimal surfaces spanning such
wire are there?

Open problem:

What is the shape of a minimal surface?



Open Problem:

Consider two curves on parallel planes.

How many minimal surfaces are there spanning such curves?

What is the shape of such a minimal surface?


