
POINCARÉ DUALITY NOTES

MICHAEL SINGER

1. Transverse intersection

Let M be an oriented manifold of dimension n without boundary. Let Y and Z be
closed submanifolds. If p ∈ Y ∩ Z, we say that Y and Z meet transversely at p if

(1.1) TpY + TpZ = TpM or equivalently N∗pY ∩N∗pZ = 0

Here Tp is the tangent space and N∗pY is the conormal space, that is the annihilator
of TpY inside T ∗pM . If Y and Z meet transversely at p then in a neighbourhood of
p, Y ∩ Z is a submanifold of codimension equal to the sum of the codimensions of Y
and Z (implicit function theorem).

Say that Y and Z intersect transversely if the intersect transversely for all points
p of Y ∩ Z. Then Y ∩ Z is a (possibly not connected) submanifold of M .

If Y and Z are of complementary dimensions k and n−k, and at least one of them
is compact, then transverse intersection implies that the intersection is a finite set of
points.

Transversality is a generic condition, analogous to intersection of hyperplanes in
Rn. If A and B are affine subspaces of Rn of codimensions a and b respectively then
A ∩B is ‘almost always’ an affine subspace of codimension a+ b. Similarly, if Y and
Z are two submanifolds of M then there are arbitrarily small perturbations Y ′, Z ′ of
Y and Z so that Y ′ an Z ′ intersect transversely.

2. Intersection number

Let Mn be oriented and Y k and Zn−k be closed oriented submanifolds. The
intersection number Y · Z of Y and Z is defined to be

(2.1) Y · Z
∑

p∈Y ′∩Z′

(±1)

where: Y ′ and Z ′ are small transversely intersecting perturbations of Y and Z and
p is counted positively if the orientation of TpY ⊕ TpZ agrees with that of TpM and
negatively otherwise.
Example When two oriented circles in R2 intersect in two points, one will be counted
positively and the other negatively, so the intersection number will be zero.
Remark One can make this construction even if we don’t have orientations, provided
we work mod 2.

Our submanifolds Y and Z represent homology classes in Hk(M) and Hn−k(M)
respectively and (Y,Z) 7→ Y · Z can be extended to define a Z-bilinear map

(2.2) H(M,Z)×Hn−k(M,Z)→ Z

3. Poincaré duality (in homology)

Our first statement of Poincaré duality is that if M is compact this is a perfect
pairing: for fixed Z, the functional Y 7→ Y · Z is 0 if and only if Z is a torsion
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class. Passing to real (or rational) coefficients gets rid of the torsion and we have a
nondegenerate pairing

(3.1) Hk(M,R)×Hn−k(M,R)→ R

so that each of Hk and Hn−k is identified with the dual of the other.
Simple consequences Recall the Betti numbers bk(M) = dimHk(M,R). Then
for a compact oriented manifold, bk(M) = bn−k(M) by Poincaré duality. It follows
immediately that if n = dimM is odd then the Euler characteristic

(3.2) χ(M) =

n∑
k=1

(−1)kbk(M)

equals zero.
Suppose n is even, n = 2m. Then on the middle-dimensional homology we have a

perfect pairing

(3.3) Hm(M,Z)×Hm(Z)→ Z

which will be skew if m is odd and symmetric if m is even. If m is odd, it follows
that bm(M) is even because a skew form on a real vector space can only be non-
degenerate if the dimension of that vector space is even. (This checks with the fact
that b1(Σ) = 2g for a compact Riemann surface of genus g.)

If m is even then we have a symmetric Z-bilinear form and this is an important
and subtle invariant of M . Over R, the only invariant of such a form is its signature
(number of positive and negative eigenvalues). Over Z the situation is much more
subtle.

Hasse–Minkowski gives that if Q is a non-degenerate Z-bilinear form then

• If Q is indefinite then

Q = diag(±1, . . . ,±1)

or

Q = rH ⊕ sE8

where

H =

[
0 1
1 0

]
and

E8 =



2 0 0 −1 0 0 0 0
0 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
−1 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

• If Q is definite there are only finitely many possibilities (including the standard
from ±1) for each fixed rank.

Note that H arises as the intersection form on H2(S2 × S2) and the combination
3H ⊕ 2E8 arises as the intersection form on H2(K3).

In the first case, n = 4, Donaldson proved in the early 1980s, using instanton
moduli spaces, that if M is smooth, compact, oriented and simply connected, then
if the intersection form is definite, it must be standard. On the other hand, at
about the same time, Freedman proved that all intersection forms are realised by
topological (compact, oriented, simply connected) 4-manifolds. This discrepancy led
to the discovery (or perhaps invention) of fake R4’s: smooth manifolds which are
homemorphic but not diffeomorphic to R4.
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4. De Rham cohomology and Poincaré duality

On our oriented n-manifold M , consider the de Rham complex Ω∗(M). This is a
differential graded complex. Ωk is the space of smooth differential forms of degree k
on M . Wedge product gives the algebra structure:

(α, β) 7→ α ∧ β, β ∧ α = (−1)jkα ∧ β
if α is of degree j and β is of degree k. Exterior derivative d increases form degree by
1 and satisfied d2 = 0. The ‘graded Leibniz rule’ is

d(α ∧ β) = dα ∧ β + (−1)jα ∧ dβ

if α is of degree j.
Because d2 = 0, define

(4.1) Hk(M) = ker(d : Ωk(M)→ Ωk+1(M))/dΩk−1(M)

sometimes called the de Rham cohomology to distinguish it from other favourite
definitions you may know.

Differential forms are designed to be integrated over oriented submanifolds. That
is, for oriented Y of dimension k, we have a linear functional

Ωk(M)→ R, α 7→
∫
Y

α.

This works even if Y has a boundary and then∫
Y

dγ =

∫
bY

γ

where bY denotes the (oriented) boundary of Y (Stokes Theorem). If Y has no
boundary then the above formula shows that integration over Y descends to give a
well-defined functional on Hk(M).

The wedge product combines with integration to give the bilinear map

(α, β) 7→
∫
M

α ∧ β

which is identically zero unless α and β are of complementary degree. This is defined
initially as a pairing on Ω∗(M) but also descends to de Rham cohomology, giving a
pairing

(4.2) Hk(M,R)×Hn−k(M,R)→ R.
Our second statement of Poincaré duality is that this pairing is non-degenerate, iden-
tifying Hk and Hn−k naturally as duals of each other.

5. The Poincaré dual of a submanifold

Our non-degenerate pairing (4.2) has the consequence that if f : Hk(M,R) → R
is any linear map, then it is representable by a unique class ηf ∈ Hn−k(M,R), so

(5.1) f(α) =

∫
M

α ∧ ηf .

In particular, integration over a closed oriented submanifold Y k (or more generally
smooth k-cycle) defines uniquely a class ηy ∈ Hn−k(M) often called the Poincaré
dual of Y :

(5.2)

∫
Y

α =

∫
M

α ∧ ηY .

The two versions of Poincaré duality are ‘the same’ in the sense that, with the
above notation,

(5.3) Y · Z = ±
∫
ηY ∧ ηZ ;
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(transvers) intersection of submanifolds (or cycles) corresponds to wedge product of
the Poincaré dual classes in cohomology.

6. Currents—a unifying idea

In Rn, a distribution u is a continuous linear functional on the space C∞c (Rn) of
smooth functions of compact support. I shall not give the definition of the topology
on C∞c (Rn), you can find this in standard books such as Hörmander, volume 1 or de
Rham’s ‘Variétés differentiables’. Denote the space of distributions by C−∞(Rn).

If f is continuous (or even just L1) then it defines a distribution through the rule

φ 7→
∫
f(x)φ(x) dx

for any φ ∈ C∞c (Rn). The other classic example is the Dirac δ, which is just evaluation
at the origin,

δ0 : φ 7→ φ(0).

Similarly, a current on an oriented manifold M is a continuous linear functional on
the space of compactly supported form Ω∗c(M). We say that a current T is homoge-
neous of dimension k if

T [α] = 0

unless α ∈ Ωk
c (M). The space of such currents will be denoted Ω−∞,k(M).

Closed oriented submanifolds (and indeed smooth chains) of dimension k as well
as smooth (or not so smooth) differential forms of degree n− k both give examples of
currents of dimension k. Indeed if Y is our usual closed submanifold of dimension k,

(6.1) α 7→
∫
Y

α

and is continuous. (If this functional were not continuous in α, we might conclude we
had the wrong definition of continuity!) Similarly, if φ ∈ Ωn−k

c (M), then

(6.2) α 7→
∫
φ ∧ α

is a continuous linear functional. Note that the coefficients of φ do not need to be
smooth for this integral to be well-defined. Indeed, a more-or-less equivalent way to
think of currents is as differential forms whose coefficients are distributions rather
than smooth functions.

We chose to grade currents by dimension. In de Rham’s book he also uses degree,
with the formula degree = n− dim. On

Distributions in Rn can be differentiated and also multiplied by smooth functions.
(You cannot in general multiply distributions, though you can in some circumstances
if you know about the so-called wave-front set, which measures the singularities of
distributions. For example, in R you can’t multiply δ(x) by itself, but in R2 with
coordinates (x, y) you can multiply δ(x) (integration over the y-axis) by δ(y) (inte-
gration over the x-axis). The result is δ0, evaluation at 0.) These operations are
extended by ‘testing’ against a smooth function of compact support:

(6.3) ∂ju[φ] = −u[∂jφ], fu[φ] = u[fφ]

where ∂j = ∂/∂xj , u is a distribution, f is a smooth function and φ ∈ C∞c (Rn) is a
test function. The point is that if u is smooth, in the sense that

u[φ] =

∫
u(x)φ(x) dx

then (6.3) are evidently correct formulae, but they continue to make sense even if u
is a more general distribution like the Dirac δ.
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7. Homology of currents

The sign is annoying in (6.3) and becomes even more confusing when we replace a
partial derivative by exterior derivative! For this reason, define the boundary bT of a
current T using the same principle,

(7.1) bT [α] = T [dα]

This decreases dimension by one (and accordingly increases degree by one). If T is
a current of dimension given by integration over a k-chain, then bT is the oriented
boundary of this chain and (7.1) is Stokes theorem again. If T is given by integration
against a smooth form β of degree n− k, then bβ = ±dβ.

It follows from (7.1) that b2 = 0 and so we have a complex (Ω−∞,∗,b) of which we
can take the homology. Define these groups to be

(7.2) H−∞,k(M) = ker(b : Ω−∞,k → Ω−∞,k−1)/bΩ−∞,k+1

We have duality with the usual de Rham complex built in from the ground here
in the sense that (if M is compact and oriented) we have the picture

(7.3)

· · · Ωk(M) Ωk+1(M) · · ·

· · · Ω−∞,k(M) Ω−∞,k+1(M) · · ·

d

b

where the vertical arrows denote (topologically) dual spaces. You have to be careful1

about deducing that the cohomology of the top row is dual to that of the second row,
but this can be done, giving

(7.4) Hk(M) is dual to H−∞,k(M).

This would give Poincaré duality if we knew thatH−∞,k(M) is isomorphic toHn−k(M).
This is not obvious a priori because currents are so much more general than smooth
forms. However, it is in fact true, as follows by regularization of currents.

8. Regularization of distributions in Rn

Let τ(x) be a smooth function with compact support in the unit ball, symmetric
(τ(−x) = τ(x)) and total mass equal to 1:∫

τ(x) dx = 1.

Let τε = ε−nτ(x/ε) so τε is symmetric, has total mass one and is supported in |x| < ε.
If f is smooth it is easy to see that∫

τε(x)f(x) dx→ f(0)

as ε → 0, so τε(x) should be thought of as a smooth approximation to the Dirac
distribution δ0.

If f is continuous or perhaps only L1 on Rn, then the convolution

(8.1) fε = τε ∗ f

that is,

(8.2) fε(x) =

∫
τε(x− y)f(y) dy

1This is to do whether the ranges of these operators are closed or not. If the cohomology groups
are finite dimensional there is no problem. This issue also arises when you try to prove Serre duality

by the same method (paper of Serre, 1955)
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is C∞ and fε → f in the topology of convergence with all derivatives on compact sets
as ε → 0. The smoothness follows essentially by differentiation under the integral
sign: derivatives with respect to x fall on τε, which is smooth.

If φ is any test function (smooth function with compact support) then

(8.3)

∫
uε(x)φ(x) dx =

∫
τε(x− y)f(y)φ(x) dx =

∫
u(x)φε(x)

since τ is symmetric. In this form we can define uε for any distribution by the formula

(8.4) uε[φ] = u[φε].

The remarkable thing about this is that uε is smooth: since φε =
∫
τε(x− y)φ(y) dy,

the distribution uε is given by integration of φ against the function

y 7→ u[τε(· − y)]

which will be smooth in y. It can also be shown that uε → u as ε→ 0 (in the topology
of distributions, which we haven’t discussed) and that the support of uε is contained
in the ε-neighbourhood of the support of u.

We shall now generalize this to regularization of currents. The idea is the same,
but for the purposes of topology, we want to know that if a current is closed then its
regularization is in the same homology class.

9. Homotopy formulae

Suppose that ft is a 1-parameter family of diffeomorphisms of M (t ∈ [0, 1]), arising
as the flow of some vector field X. By Cartan’s formula,

(9.1) LXα = d(ιXα) + ιXdα

for any form α on M . On the left,

LXα =
d

dt
f∗t (α)

∣∣∣∣
t=0

is the Lie derivative of α with respect to X. Observe that if dα = 0 this gives

LXα = d(ιXα)

so that the infinitesimal variation of α is exact. By integration we obtain a homotopy
formula relating f∗1 (α) to f∗0 (α) = α.

By the fundamental theorem of calculus

(9.2) f∗α− α =

∫ 1

0

d

dt
f∗t α dt,

where we’ve written f = f1 for the time-1 flow of X. Using Cartan’s formula with α
replaced by f∗t α

(9.3) f∗α− α = dF ∗ α+ F ∗ dα

where the operator F is defined by

(9.4) F ∗β =

∫ 1

0

ιXf
∗
t (β) dt

for any form β on M . The notation F ∗ is perhaps a bit fanciful: it is supposed to
convey that it is some integrated version of pull-back by ft, roughly speaking.

In particular if dα = 0 then [α] = [f∗(α)] in de Rham cohomology. It is reasonable
that a cohomology class should not change under a diffeomorphism that is connected
to the identity.

To relate this to regularization, let sy(x) = x + y for fixed y ∈ Rn and write
αy = s∗yα. Let S∗y be the corresponding homotopy operator so

(9.5) s∗yα− α = dS∗yα+ S∗ydα
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for every fixed y. Finally multiply both sides by τε(y) and integrate with respect to
y. Set

(9.6) R∗εα =

∫
s∗yατε(y) dy

and

(9.7) A∗εγ =

∫
S∗yγ τε(y) dy.

Since the total mass of τε is 1 we obtain

(9.8) R∗εα− α = dA∗εα+A∗εdα.

A key point about this formula is that R∗ε commutes with d (since this is true of s∗y
for each fixed y, and we are then taking a linear combination of these, admittedly
an infinite one, by integration against τε(y)). And also the operators only increase
support by a ε, so if α has compact support, the same will be true of R∗εα and A∗εα.
Because of this, we have the corresponding formulae for currents by defining

(9.9) RεT [α] = T [R∗εα], AεT [α] = T [A∗εα]

we automatically have

(9.10) RεT − T = bAεT +AεbT

(Note that we need to know the stated fact about R∗ε and A∗ε mapping forms with
compact support to forms with compact support in order that (9.9) be well-defined.)

It is somewhat tricky, but possible, to transfer and patch this Rn formula to an
arbitrary manifold. Once one has (9.10) on a manifold M , it is immediate that
H−∞,k(M) is isomorphic to Hn−k(M). Indeed, if T is a current of dimension k with
bT = 0 then

(9.11) T = RεT + bAεT,

showing that the smooth current RεT represents the same homology class as T . Since
RεT is a smooth form of degree n − k, the result follows. Subject to all the other
unproved statements, this would complete the approach to Poincaré duality via the
(co)homology of currents.

10. Other approaches to Poincaré duality

In the book of Bott and Tu, ‘Differential forms in algebraic topology’ they use a
(finite) good cover of M , the Mayer–Vietoris sequence and the Poincaré lemma for
both cohomology and cohomology with compact supports.

• A good cover of M is cover by open sets Uj with the property that all non-
empty intersections are diffeomorphic to Rn. A compact manifold always has
a finite good cover, opening up the possibility of an induction on the number
of sets in a good cover.
• If M = U ∪ V , then the Mayer–Vietoris sequence is a long exact sequence

relating H∗(M) to H∗(U), H∗(V ) and H∗(U ∩ V ). There are two versions
one for H∗ and one for H∗c , cohomology with compact supports. Both are
needed.

Poincaré Lemma

• H0(Rn) = R, Hj(Rn) = 0 if j > 0;
• Hn

c (Rn) = R, Hj(Rn) = 0 if j < n.

The Poincaré is very important! It says there is no ‘local’ cohomology: so the de
Rham cohomology groups are capturing global topological properties of a space.

You are invited to consider this proof in more detail on the Exercise sheet.
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Hodge Theory If you choose a riemannian metric g on M then there is the Hodge
∗-operator

∗ : Ωk(M) −→ Ωn−k(M).

This is an algebraic operator and ∗2 = (−1)k(n−k) on Ωk. Moreover α∧∗α = |α|2(∗1)
where the pointwise length-squared of α is defined by the riemannian metric g on M
and ∗1 is a fancy way of writing the volume-form on M determined by the metric.

Let δ = ∗d∗. This is a first-order differential operator Ωk(M)→ Ωk−1(M). Hodge
theory says that if M is compact, then in each de Rham class, there is a unique
harmonic representative, that is a form which satisfies

dα = 0, δα = 0.

(One should think of this as the representative in the cohomology class having smallest
L2 norm. But that is another topic!)

Using our harmonic representatives, we can prove that the pairing between Hk(M)
and Hn−k(M) is non-degenerate trivially, as follows: given a non-zero class in Hk(M),
let α be its harmonic representative. We need to know that there is β ∈ Hn−k(M)
which pairs non-trivially with α. But ∗α fits the bill. Indeed, δα = 0 implies that
d(∗α) = 0, so ∗α does represent a class in Hn−k(M). And moreover∫

α ∧ ∗α =

∫
|α|2(∗1) > 0

since α 6= 0. Thus the pairing is non-degenerate.
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