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1 references

The talk was based on Lorenzo Foscolo’s excellent notes from the last year:

www.homepages.ucl.ac.uk/~ucaheps/topics/Gauge_theory.pdf

Other great references are Simon Donaldson’s LSGNT lectures:

www.lsgnt-cdt.ac.uk/assets/8h00svqzffcqd97tf8oxcokv199scmjb.pdf

and lectures from the MSRI introductory workshop on gauge theory (scroll
down to ‘Show schedule, notes, and videos’)

www.msri.org/workshops/973

2 list of topics discussed

2.1 Maxwell’s equations and topology

1. Maxwell’s equations in differential forms language

2. Vector potential, gauge invariance

3. Vector potential up to gauge invariance on a compact manifold

4. Aharonov–Bohm effect

2.2 Connections and curvature

1. Vector bundle; local trivialization; transition functions

2. Connection (covariant derivative) on a vector bundle

3. Local form of a connection; change of local representative

4. Gauge transformation; gauge group action on the space of connections

5. Parallel transport; example on the sphere

6. Curvature two-form as commutator, curvature as infinitesimal parallel
transport

7. Flat connections

8. G-bundles; connections preserving G-bundles

9. Electromagnetism as a U(1) gauge theory

10. Charge in electromagnetism

11. Example: solution on the two-sphere

12. Generalization of charge: Chern classes
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2.3 Yang–Mills theory

1. Harmonic forms as minima of the energy functional

2. Yang–Mills functional

3. Yang–Mills equations

4. Moduli space of Yang–Mills connections

5. Self-duality in dimension four

6. Instantons as minima of the Yang–Mills functional

7. Instantons on the four-space

8. Conformal invariance

9. Uhlenbeck compactness theorem; gauge fixing

2.4 Topology of four-manifolds

1. Intersection form of four-manifolds

2. Donaldson’s diagonalization theorem

3. Idea of proof

3 problems

Problem 3.1 (Maxwell’s equations).

1. A vector field on R3 can be identified with a differential one-form using
the Euclidean metric. Express the div and curl operators from vector
calculus in terms of the exterior differential d and the Hodge star.

2. The electric and magnetic fields E and B are time-dependent vector
fields on R3. Thinking of them as time-dependent one-forms, define
the two-form F = E ∧ dt + B on R4, where we think of R4 as R × R3

with t being the first coordinate. Show that Maxwell’s equations in the
absence of external currents (and without physical constants)

∇ · E = 0, ∇× E = −∂tB,

∇ · B = 0, ∇× B = ∂tE,

are equivalent to
dF = 0, d ∗ F = 0,

where ∗ is the Hodge star on R4 induced by the Minkowski metric.

3. Maxwell’s equations are invariant under the transformation E 7→ B
and B 7→ −E. This is known as the electromagnetic duality. Observe that
this corresponds to fact that the equations for F are invariant udner the
Hodge star operator acting on two-forms on R4.

Problem 3.2 (Aharonov–Bohm effect). Construct a flat U(1) connection on
the complement of a line in R3 with nontrivial holonomy.

Problem 3.3 (Bundles on spheres).
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1. Use parallel transport to show that if E → B × [0, 1] is a G-bundle then
the restrictions of E to B × {0} and B × {1} are isomorphic. Conclude
that a G- bundle over a contractible space is trivial.

2. Prove that any G-bundle on Sn can be constructed from gluing two
trivial bundles over hemispheres using a transition function Sn−1 → G.
Prove that this construction identifies the set of G-bundles on Sn up to
isomorphism with the homotopy group πn−1(G).

3. Classify complex and real vector bundles on S2. Show that all of them
can be constructed by taking the direct sum of a complex line bundle
and trivial bundle.

4. Show that SU(2) bundles on S4 are classified by an integer. (This
integer is the second Chern class and, in fact, the same is true for all
closed four-manifolds.)

5. Show that there is a unique nontrivial SU(2) bundle on S5 and construct
it using the fact that S5 = SU(3)/SU(2).

Problem 3.4 (Cauchy–Riemann operators). Let M be a complex manifold
and let E → M be a U(n) vector bundle, i.e. a complex vector bundle with a
Hermitian metric.

1. A Cauchy–Riemann operator is a linear operator ∂E : Γ(M, E) → Ω0,1(M, E)
satisfying the Leibniz rule

∂E( f s) = ∂ f ⊗ s + f ∂Es

for a function f : M → C and section s ∈ Γ(E). Show that if E is
a holomorphic vector bundle, i.e. it has trivializations for which the
transition functions are holomorphic, then it has a canonical Cauchy–
Riemann operator in the above sense, defined by taking the standard
derivatives ∂/∂z̄i with respect to local holomorphic coordinates on M
in local holomorphic trivializations. Show that it satisfies

∂
2
E = 0.

2. For every U(n) connection ∇ on E let ∇1,0 and ∇0,1 be the operators
obtained by projecting ∇ on the spaces of (1, 0) and (0, 1) form under
the decomposition

Ω1(M, E) = Ω1,0(M, E)⊕ Ω0,1(M, E).

Show that ∇0,1 is a Cauchy–Riemann operator and the square of this
operator is F0,2

∇ , the (0, 2) part of the curvature two-form. Moreover,
show that every Cauchy–Riemann operator is of the form ∇0,1 for a
unique U(n) connection ∇.

3. Conclude that if E is a holomorphic vector bundle, then for every
Hermitian metric on E there is a unique Chern connection: a U(n)
connection ∇ on E such that ∇0,1 = ∂E, where ∂E is the canonical
Cauchy–Riemann operator. In particular, it satisfies F0,2

∇ = 0.

4. The converse of the above is also true: if ∇ is a U(n) connection such
that F0,2

∇ = 0, then there exists a holomorphic vector bundle structure
on E such that ∇ is the corresponding Chern connection. You can
find the proof, for example, in the book Geometry of Four-Manifolds by
Donaldson and Kronheimer.
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Problem 3.5 (Flat connections). Let E → M be a G-bundle. We say that a
connection A on E is flat if FA = 0.

1. Let M be the moduli space of flat connections on E up to gauge
transformations. Construct a map M → Hom(π1(M), G)/G, where G
acts on the space of homomorphism by conjugation, in the following
way. Fix a point x ∈ M and a flat connection A. For every loop
γ : S1 → M based at x, we can consider the holonomy of A around this
loop as an element of G, if we fix a trivialization of Ex and think of G
as a subgroup of GL(Ex) in some local trivialization of E. You need to
show that this gives a well-defined map as above.

2. Show that the map M → Hom(π1(M), G) is a bijection by construct-
ing a flat connection from a representation π1(M) → G. To do this,
consider the universal cover π : M̃ → M, which has an action of π1(M),
and form the associated bundle E = (M̃ × Ex)/π1(M), where we use
the representation to act by π1(M) on Ex.

3. Let M be the torus, i.e. V/Λ for a vector space V and lattice Λ ⊂ V.
For G = U(1), identify the moduli space of flat connections on M with
M∗ = V∗/Λ∗, the dual torus.

Problem 3.6 (Abelian Yang–Mills equations). Let M be a compact Rieman-
nian manifold and L → M a U(1) bundle, i.e. a complex line bundle with a
Hermitian metric. The Yang–Mills equations for a connection A on L are

d∗FA = 0.

(In this case, dA = d because U(1) is abelian and the action of A on End(L)
valued forms is by taking commutators, so in this case it is trivial.)

1. Fix a connection A0. Any other connection A is of the form A0 + a
for a ∈ Ω1(M, iR). Show that FA = FA0 + da so that the Yang–Mills
equations are equivalent to

d∗da = η

for a fixed two-form η.

2. Use the Hodge decomposition theorem to show that this equation
always has a solution and any other solution is obtained by adding to
a a closed 1-form.

3. A gauge transforation of L is of the form u : M → U(1). Show that
u(A) = A − u−1du. Show that any closed 1-form with integer periods,
i.e. whose integral over all closed loops are integer, can be written as
u−1du for some u.

4. Conclude that the space of Yang–Mills connection on L up to gauge
transformations can be identified with the torus H1(M, R)/H1(M, Z).

Problem 3.7 (Covariant exterior derivative). Given a connection A on a vector
bundle E, we can extend

dA = ∇A : Γ(M, E) → Ω1(M, E)

to an operator
dA : Ωk(M, E) → Ωk+1(M, E)

by the same Leibniz rule that we use to define the usual exterior derivative.
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1. Prove the Bianchi identity dAFA = 0.

2. Show that d2
A is the algebraic operator obtained by taking the wedge

product with the curvature FA.

3. Conclude that for every flat connection A there are twisted de Rham
cohomology groups Hk

A(M) defined by taking the cohomology of the
chain complex (Ω•(M, E), dA).

Problem 3.8 (Chern–Weil theory).

1. Let G be a compact Lie group and g its Lie algebra. An invariant poly-
nomial is a polynomial p : g → R which is invariant under the adjoint
action of G on g. For G = U(n) show that all invariant polynomials are
functions of the elementary polynomials pk defined by the relation

det (itξ + I) = ∑ pk(ξ)tk for ξ ∈ u(n).

Compute p1 and p2.

2. Let E → M be a U(n) bundle. Use the Bianchi identity dAFA = 0 to
show that for every U(n) connection the 2k form pk(FA) is closed. Here
pk(FA) denotes the form obtained by applying pk to the curvature form
FA ∈ Ω2(M, u(E)) where we combine multiplication in u(n) with the
wedge product on even forms; u(E) is the bundle of skew-Hermitian
endomorphisms of E.

3. Show that the de Rham cohomology class of pk(FA) does not depend
on the choice of the connection. In both this and previous exercise you
might find it helpful to consider the case of p1 first. The cohomology
class of pk(F), up to constant, is the k-th Chern class of E.

4. Do the same exercise for G = SO(n) to define Pontryagin classes
and the Euler class. You might find the following books helpful:
Characteristic Classes by Milnor and Stasheff, and Geometry of Differential
Forms by Morita.

Problem 3.9. More exercises in Lorenzo Foscolo’s notes!
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