MORSE THEORY (EXERCISE SHEET)

1. Differential topology

Exercise 1 (Index of a critical point). Let $M = M^d$ be a smooth manifold and let $f: M \longrightarrow \mathbb{R}$ a smooth function. Assume that $c \in M$ is a critical point i.e. df(c) = 0. If $\varphi: \mathbb{R}^d \longrightarrow M$ is an arbitrary chart around c, show that the signature of the Hessian of f at c doesn't depend on the choice of φ

If the Hessian of f at c is non-degenerate and its signature is (p,q), we say that the index of c is p.

Exercise 2. Let $M = M^d$ be a smooth manifold and let $f : M \longrightarrow \mathbb{R}$ a smooth function. Assume that $[a,b] \subset \operatorname{Im}(f)$ and that all $x \in [a,b]$ are regular values of f. Show that

$$f^{-1}([a,b]) \simeq_{diffeo} M_a \times [a,b]$$

where $M_a = f^{-1}(\{a\})$.

Exercise 3. Let Σ be a compact surface and assume that there exists $f: \Sigma \longrightarrow \mathbb{R}$ a smooth function which has at most two critical points. Show that Σ is diffeomorphic to the 2-sphere S^2 .

Exercise 4. Let $f: M \longrightarrow \mathbb{R}$ be a Morse function of a compact manifold M. Show that f has finitely many critical points.

Exercise 5. (1) Show that a smooth function on the 2-torus has at least three critical points.

(2) Find a smooth function on the 2-torus with exactly three critical points (it's a difficult question, finding an example of such a function on the internet and understanding how it is constructed would be a very good way of answering it).

Exercise 6. Find an explicit Morse function on the 3-torus.

2. Morse homology

Exercise 7. Compute the Morse homology of the sphere S^2 using the standard height function.

Exercise 8. Compute the Morse homology of the 2-torus $\mathbb{R}^2/\mathbb{Z}^2$ using the function $(x,y) \mapsto \cos(x) + \sin(y)$.

Exercise 9. Using the fact that Morse homology is equal to singular homology, show that a Morse function on the 2-torus must have at least 4 critical points.

Exercise 10. Using the fact that Morse homology is equal to singular homology, find the best possible bound on the number of critical points of a Morse function on \mathbb{T}^3 .