CHERN CLASSES (of vector bundles)

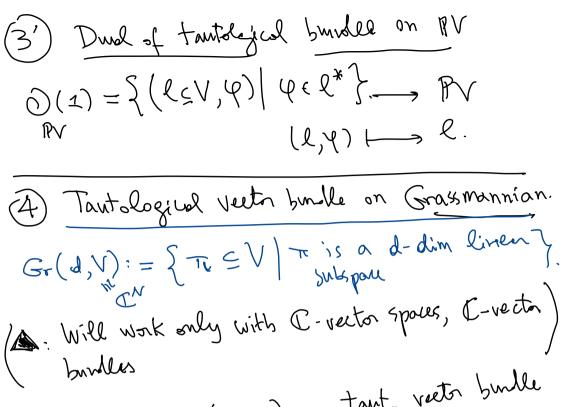
Vector bundles: families of vector Spores parametrized (milely) by

m m points of M.

1) Tangent bundles $T_m = \coprod T_p M$.

2) Trivial rector burdle: MxV 3 Tantslogical line bundle on P(V),

 $P(\lambda) := \{ l \subseteq \lambda \}.$ $O(-1):=\left\{ \left(\ell, \nu \right) \middle| \begin{array}{c} \ell \leq V \\ \nu \in \ell \end{array} \right\} \xrightarrow{p} PV$ (l,v) | s l $\hat{p}'(l) = \{ \infty \in l \} = l.$



tant. væts bulle of rank-d.

 $E \longrightarrow Gr(d, V).$

 $\left\{\left(\pi\subseteq V, v\in V\right)\middle|v\in\pi\right\}$

E* -> Cr(9') $G_{\epsilon}(1,V) = PV$

 $\frac{1}{\xi(\pi, \varphi)} \left(\frac{\pi \leq V}{\varphi \in \pi^*} \right).$ $\mathcal{E}_{Gr(1,V)} = 0 (-1),$

Defn of vector burdle /M of rank d: · A manifold E with a map p: E -> M. • On each fiber p'(m) a structure of dim-d vector space st. Ymin 7 Wigh ond y: E/u = UxCd plu V PI linear on fibers Prove that the tantological burdles on PV, Gr(d,V) are locally trivial (5) Pull-book burdles: v.bundle. E Py Mot. $\times \xrightarrow{t} \rightarrow$ $\left\{ \left(x \in X, e \in E \right) \middle| S = : f^*E \longrightarrow E$ f(x) = p(e) f(x) = f(e) f(x) = f(e)p' is a Vector bundle of the same X + Y rank as p.

Sections of vector bundles (aka "twisted functions") [(M,E) = { 5:M→E| p = idmy. o (] ? Section 3 of E/M Example: the Zero section: m > (the zero of the vector space $\vec{p}(m)$). 6: M -> E Example: has nice Sections. $E^{V} \xrightarrow{P} G_{r}(d,V)$ {(m = V, 4 = m)} Get a section of (E', P)Take $\Psi \in V^*$. $(\pi, \Psi|_{\mathfrak{m}})$ ٤٧ $C^{*}(\gamma^{\prime}_{\Lambda})$ $\pi \in \mathcal{N}$

Can use sections to test whatever a vector burdle is trivial Con Tsz is non-trivial. A section & $\Gamma(S^2, T_2)$, also a vector field on S^2 , much vanish at some point (Hairdresser thm), but $S^2 \times \mathbb{R}^2 \longrightarrow S^2$ has never-vanishing sections. D Another way to test triviality is via Chern Classes.

Classes, of vertex bundles Warning: I non-trivial vector bundles with the Some Chern classes as the trivial V. bunelle.

Find one example.

Siso classes of rank-of 7 C-vector burdles on MJ i=0,1,--,d. • $c_{o}(E) = 1 \in H^{o}(M, \mathbb{Z})$ • $c_{i}(f^{*}E) = f^{*}(c_{i}(E))$ • $c_{i}(f^{*}E) = f^{*}(c_{i}(E))$ Properties: $c(E) = \sum_{i=0}^{d} c_i(E) \in H^{*}(M)$ [Total Chem days] c(EDF) = $c(E) \cdot c(F)$ cup product in H*. Consise way for: $c_k(EDF) = \sum_{i=0}^{k} c_i(E) \cdot c(F)$. $c(O_{PV}(1)) = 1 + PD(H) (H = \{x = 0\} \subseteq PV.$ • $c(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2) \in H^2(M)$

 $\frac{1}{C_i: Vert_d(M)} \xrightarrow{C_i(lE)} C_i(M) \xrightarrow{Z_i} H(M, \mathbb{Z})$

Chern dosses E > C:(E)

homotopy classes £ = 3\$ of mops. $\left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right) \longmapsto f_{E}.$ $G_{\mathcal{A}}(d, \mathbb{C}^{N}) \subseteq G_{\mathcal{A}}(d, \mathbb{C}^{N+1}) \subseteq \cdots$ $G_{n}(d,\infty) = G_{n}(d,\mathbb{C}^{n}) = \bigcup_{n \to \infty} G_{n}(d,\mathbb{C}^{n})$ > E= ((x,v)) ver) 37 rubbars I nank-d v. bundleronked J. burble. $\Rightarrow G_r(d, \infty) = \{ \pi \in \mathbb{C}^{\infty} \}$ d-din $(2) H^*(G_n(d,\infty),\mathbb{Z}) \cong \mathbb{Z}[u_1,u_2,...,u_d]$

 $Vect_d(M) \cong [M, Gr(d, \infty)]$

Define Chern closses in 3 steps:

with
$$u_i \in H^{2i}(Gr(d,\infty))$$
.

$$G_i(E_i) := (-1)^i (f_E)^* (u_i) \in H^{2i}(M,2).$$

For
$$d=1$$
, $Gr(d, \infty) \cong \mathbb{CR}^{\infty}$.

 $\mathbb{CR}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{CR}^{n}$.

 $H^{1}(\mathbb{CR}^{n}, \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if i even} \\ 0 & \text{if i odd.} \end{cases}$ on a \mathbb{Z} -module.

Discussion of $H^*(G_1(d,\infty),\mathbb{Z})\cong \mathbb{Z}[u_1,u_2,...,u_d].$

As a ring, H*(CP, Z) = Z[2), XEH2.

$$= \frac{1}{\left(CR^{h}, Z \right)} = \frac{2[\omega]/n+1}{\omega}.$$

$$= \frac{1}{\left([x_{0}, \dots, x_{n}] \right)}$$

 $\mathcal{L} = PD\left(\left\{x_{0} = x_{1} - x_{2} = x_{1}\right\}\right)$

 $\mathcal{L} = PD \left(\left\{ x_0 = \dots = x_{h^2} \right\} \right)$



Prove $c(E \oplus F) = c(E) \cdot c(F)$ by using the diagram $Gr(d, \infty) \times Gr(d', \infty) \longrightarrow Gr(d+d', \infty)$ Con $CR^{\infty}d \times (CR^{\infty})^{d'} = (CR^{\infty})^{d'}$

$$(\mathbb{CP}^{\infty})^{d} \times (\mathbb{CP}^{\infty})^{d} = (\mathbb{CP}^{\infty})$$
Prove $C_{1}(L \otimes L') = C_{1}(L) + C_{1}(L')$
Using another map
$$(\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \longrightarrow \mathbb{CP}^{\infty},$$

Describe the classes $u_1, ..., u_d \in H^*(Gr(d, \infty))$ explicitly by PD on each Gr(d, N). (describe the Chern darser of the tantological), burdles on Gold, N) and PD's of cohomology docuses on Gold, N) one nice Subvoileties of Gala, N). Defined using Dezeneracy loci. $\mathcal{D}_{k} \subseteq Gnld, \mathcal{H})$ for k = 1, -, d. $\mathcal{D}_{k} := \left\{ \pi \in \mathbb{C} \mid \times_{1} \mid_{\pi}, \times_{z} \mid_{\pi}, -, \times_{d+1-k} \mid_{\pi} \right\}$ dim d via linearly dependent elements of π . $\frac{d=1}{2}, \quad \mathcal{D}_{1} = \left\{ \left| \right| \right| \right| \right| \right| \right| \right\} \right| \right\} \right\} \leq CR^{N-1}$ $PD(\mathcal{D}_{1}) = \lambda = \mathcal{U}_{1}.$ d=2 $\mathcal{D}_{\lambda}:=\{\pi\subset \mathcal{C}^{N}\mid x_{1}|_{\pi}=0\}\cong G(2,N-1)\subseteq G(2,N).$ 81:= { #C (" | x1 | #, x2 | # lin-day)

Degeneracy loci.
$$\mathcal{D}_{k} \subseteq Gr(d,N)$$
 for $k=1,-,d$.

 $\mathcal{D}_{k} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi}, -, \times_{d+1-k} \mid_{\pi} \\ \text{one linearly dependent elements of } \pi \right\} \right\}$
 $d=2$
 $\mathcal{D}_{2} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi} = 0 \end{array}\right\} \cong Gr(2,N-1) \in G(2,N) \\ \mathbb{Z}_{1} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{1} \\ \mathbb{Z}_{2} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{2} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{2} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{2} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{2} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \left\{ \pi \in \mathbb{C} \setminus \left\{ \begin{array}{c} \times_{1} \mid_{\pi}, \times_{2} \mid_{\pi} \text{ fin-dep} \right\} & \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \mathbb{Z}_{3} := \mathbb{Z}_{3} \\ \mathbb{Z}_{3} := \mathbb$

2,={tear| dm(t ~ <e4,e5,..,en)}] . u,

Application: Any smooth cubic Surface $Y \subseteq \mathbb{P}^3$ Contains exactly 27 lines. Reformulation: $PD(c_4(Sym E)) = 27$ where $E \longrightarrow Gn(2,4)$

V.bunlle Ho (G(24), Z) of rank 4

$$\dim(\operatorname{Gr}(2,4)) = 4.$$

Let's compute
$$c_4(Sym^2 E)$$
 in terms of the Chern chauses of E : $c(E)$, $c_2(E)$.

Suppose $E = L_1 \oplus L_2$, let's compute with this assumption.

Sym $(L_1 \oplus L_2) = L_1 \oplus L_2 \oplus (L_1 \otimes L_2) \oplus (L_1 \otimes L_2)$
 $c(Sym^2(L_1 \oplus L_2)) = (1+3x) \cdot (1+3y) \cdot (1+2x+y) \cdot (1+x+2y)$

$$= 1 + --- + 9 \times y (2 \times + y)(x + 2y)$$

$$= (2, 1) = x + y$$

$$c_{1}(l_{1}) = x$$
 $c_{1}(l_{2}) = y$
 $c_{2}(l_{2}) = y$
 $c_{3}(l_{2}) = y$
 $c_{4}(SynE) = 9xy(2x^{2} + 2y^{2} + 5xy)$

$$C_4(S_{yn}^3E) = 9_{xy}(2x^2 + 2y^2 + 5xy) =$$

= $9_{c_2(E)}(2\xi_2(E))^2 + c_2(E)).$

 $C_4(S_{yn}^3E) = 9_{xy}(2x^2 + 2y^2 + 5xy) =$

Enough (C2(E)2=1, PD(C2(E).(C,(E)))=1.

Want
$$(c_2(E))^2$$
 is PD to $c_1(E)$ $C_2(E)$. $(c_1(E))^2$ is PD to $c_2(E)$. $(c_1(E))^2$ is PD to $c_2(E)$. $(c_1(E))^2$ $= \left\{ \pi \in C' \mid \pi < \angle e_2 e_3 e_4 \right\}$
 $PD(c_1(E)) = \left\{ 2 \right\} = \left\{ \pi \in C' \mid \pi < \angle e_2 e_3 e_4 \right\}$
 $PD((c_2(E))^2) = \left\{ \pi \in C' \mid \pi < \angle e_1 e_3 e_4 \right\}$
 $PD((c_2(E))^2) = \left\{ \pi \in C' \mid \pi < \angle e_1 e_3 e_4 \right\}$
 $= \left\{ \pi = \langle e_3 e_4 \rangle \right\} = \left\{ a \text{ point of } G(2h) \right\}.$

$$PD(C_{2}(E)\cdot C_{1}(E)) = \begin{cases} \pi \leq \langle e_{1}, e_{2}, e_{4} \rangle, \\ \pi \leq \langle e_{1}, e_{2}, e_{4} \rangle, \\ \pi \leq \langle e_{2}, e_{3} \rangle, \end{cases}$$

$$= \{\pi = \langle e_{2}, e_{4} \rangle\} = [\alpha \text{ point of } G(r_{1})].$$

Let E,F be vector bundles of rank 2.

Compute $C_{+}(E \otimes F)$ in terms of the Chern classes of E,F.

let E be a conk-d vector bundle and La line burdle. Compute C2 (E02)