18 October 2024

Poincave dvality
Poincave dvality
§1. Pough idea: M' neufels, Y', 2""=M transverse (all compact, orando swoth)
At only
$$p \in YA2$$
, we have $T_{p} V \otimes T_{p} 2 \equiv T_{p}M$.
Def. Thersection number
 $V : Z = \sum_{p \in VA2} sign(p)$, $sign(p) = \begin{cases} -1 & d & T_{p} \otimes T_{p} = T_{p}M$.
This descende to a bilinear paining in howedges:
 $i : H_{K}(M) \otimes H_{n-k}(M) \longrightarrow Z$ [Note we'll always near
 $[V] \otimes T_{p} = M \otimes T_{p} = M \otimes T_{p} \otimes T_{p} = T_{p}M$.
(Ruch Given $\alpha \in H_{2}(M')$, take $C \longrightarrow E$ with $c(E) = \alpha$. A generic swooth sector
 $s: M = E$ will have $S'(0) \subset M$ a surface Z with $[Z] = d(E) = c(E) = \alpha$.)
Q: What can we say aleast this paining?
This (Pencaré duality) is is nontogenerate: P i(x, B)=0 VB that $\alpha = 0$.
[Emprise if $n = 2k$ then $H_{k}(M) \otimes H_{k}(M) \longrightarrow Z$.
 $is \int Signetize of k even
 $is \int Signetize of M = Side (H_{k}(M), i)$ is an interiant of M .
When $n = 4$, significe $dol(k) = 0$ is a body in interiant.
 M such is negative of $M = Side (Freedman)$.
§2. de Pharm cohomologies
 A is a section of $N^{-1} = M = 0$.
 $K = Comm on M$ is a section of $N^{-1} = M = 0$.
 $K = Common N = Sa section of $N^{-1} = M = 0$.
 $T_{m} = Signet = Si^{-1} M = 0$.
 $K = M = Signet = Si^{-1} M = 0$.
 $K = M = Signet = N = 0$.
 $K = M = Signet = N = 0$.
 $K = M = 0$.
 $K =$$$$$$

Poincaré lemma
$$H_{dR}^{\mu}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R}^{n} \ \mathbb{R}^{2} \\ 0 \ \mathbb{R}^{2} \end{cases}$$
 Fronk Induct on \mathbb{N}^{n} By assumption all closed k-forms (\mathbb{R}^{2})
on \mathbb{R}^{n} are exact, so look at we $S^{\pm}(\mathbb{R}^{n+1})$.
We can write $w = \alpha_{\pm} + dt \wedge Bt$ $(t=x_{n+1})$
We construct $\eta_{\pm} \in S^{\pm^{-1}}(\mathbb{R}^{n})$ with $\dot{\eta}_{\pm} = Bt : \eta_{\pm} = \int_{R}^{t} ds$.
Then $d\eta_{\pm} = d_{\mathbb{R}^{n}}\eta_{\pm} + dt \wedge \eta_{\pm}$
 $= d_{\mathbb{R}^{n}}\eta_{\pm} + dt \wedge \beta$
so $w - d\eta_{\pm} = a_{\pm} - d_{\mathbb{R}^{n}}\eta_{\pm}$.
If w is closed then $d(a_{\pm} - d_{\mathbb{R}^{n}}\eta_{\pm}) = 0$
 $=) \frac{d}{dt}(a_{\pm} - d_{\mathbb{R}^{n}}\eta_{\pm}) = 0$ (no $dt - tern()$)
 $=) a_{\pm} - d_{\mathbb{R}^{n}}\eta_{\pm} defines a closed k-form on \mathbb{R}^{n} ,
independent of t .
By induction $\exists S \in S^{E^{-1}}(\mathbb{R}^{n})$ with $d_{\mathbb{R}^{n}}S = a_{\pm} - d_{\mathbb{R}^{n}}\eta_{\pm}$
and then $d(\eta_{\pm} + S) = w$, so w is exact. B$

Variant construction:
$$S_{c}^{k}(M) = compactly supported k-froms on M.$$

 $M = compactly supported colonuology H_{c}^{k}(M) := ker(\partial)/im(\partial).$
 E_{X} . ker $(d: S_{c}^{D}(\mathbb{R}^{n}) \to S_{c}^{1}(\mathbb{R}^{n})) = 0$, since constant + compact support = 0 .
 $= S_{c} H_{c}^{D}(\mathbb{R}^{n}) = 0.$
 $= S_{c} H_{c}^{D}(\mathbb{R}^{n}) = 0.$

Conclude that
$$H_{c}(\mathbb{R}) \cong \mathbb{R}$$
.

Poincaré lemma, part 2:
$$H_{c}^{k}(\mathbb{R}^{n}) \stackrel{!}{=} \stackrel{!}{\underset{i=1}{\sum}} \mathbb{R}$$
 k=n
O otherwise.

This There is a perfect pairing
$$H_{dz}^{k}(M) \otimes H_{c}^{n-k}(M) \longrightarrow \mathbb{R}$$

[&] $\otimes \mathbb{E}[p] \longrightarrow \int \alpha A B.$
Equivalently: there is an isomorphism
 $PD: H_{dz}^{k}(M) \cong (H_{c}^{n-k}(M))^{*}$

$$[\alpha] \longmapsto \int_{M} \partial n - .$$

$$Pf \text{ stetch } \{ \text{ let } \mathcal{U} = S^{U_i} \} \text{ be a good cover of } M_i \text{ induct on } |\mathcal{U}|.$$

$$(|\mathcal{U}| = 1 \text{ weans } M \Rightarrow \mathbb{R}^{h_i} : \text{ the } \text{ Binearé lemma.})$$

$$\text{Write } U = U_i \cup ... \cup U_{m-1}, \quad V = U_m \text{ and consider the } Mayer-Vietoris sequence for $M = U \cup V:$

$$\dots \longrightarrow H^{k-1}(\mathcal{U} \cap V) \longrightarrow H^k(\mathcal{M}) \longrightarrow H^k(\mathcal{U}) \oplus H^k(V) \longrightarrow H^k(\mathcal{U} \cap V) \longrightarrow \dots$$

$$\int PO \qquad [PD \qquad]PD \oplus PD \qquad]PD \qquad]PD$$

$$\dots \leftarrow H^{n-k+1}(\mathcal{U} \cap V)^* \leftarrow H^{n-k}(\mathcal{M})^* \leftarrow H^{n-k}(\mathcal{U})^* \oplus H^{n-k}(V)^* \leftarrow H^{n-k}(\mathcal{U} \cap V)^{*k} =.$$
and the PD weps for $U \cap V, \quad U, \quad V$ are isomorphisms, so we apply the five lemma to conclude the same for $M.$$$

We compose
$$\int : H_k(M) \longrightarrow H_{k}^k(M)^*$$
, $[X] \longmapsto \int_X$

to get a linear map
$$\gamma: H_k(M) \longrightarrow H_c^{n-k}(M)$$

[x] $\longrightarrow [\chi]_{X}$

such that
$$\int_X \alpha = \int \alpha \wedge \eta_X \quad \text{for all } [\alpha] \in H^k_{\mathrm{JR}}(X).$$

Two (Pancaré duality, again)
The wap
$$\eta: H_k(M) \rightarrow H_c^{mn}(M)$$
 is an isomorphism.
Q: can use construct the wap η explicitly?
Ex: let $X^{n-1} \subset M^n$. Then X has a tradition vegetimetric of
 $N(X) \cong X \times [-1, 1]_c$
Define a 1-form η_X on M by
 $(\eta_n)_k(Y) = \int O, p \notin N(X)$.
 $(\chi_n)_k(Y) = \int O, p \notin N(X)$

Y

Suppose that
$$X^{k}$$
, $Y^{n-k} \subset M^{n}$ next transversely.
We have closed forms $\eta_{X} \in S_{c}^{k}(M)$, $\eta_{Y} \in S_{c}^{n-k}(M)$
usth $[\eta_{X}]$ and $[\eta_{Y}]$ Princare dual to X and Y.
The wedge product $\eta_{X} \wedge \eta_{Y}$ is only nonzero on
 $N(X \wedge Y)$: near any point $p \in X \wedge Y$, we have local
coordinates $X = \{x_{K+1} = x_{K+1} = \dots = x_{n} = O\}$
 $Y = \{x_{1} = x_{2} = \dots = x_{k} = O\}$
with $\eta_{X} = \{x_{(X_{K+1}, \dots, X_{k}) dx_{1} \wedge \dots dx_{k} (\int_{\mathbb{R}^{n}} dx_{i} = 1)$
 $\eta_{Y} = \varphi_{Y}(x_{k-1}, \dots, x_{k}) dx_{k+1} \wedge \dots dx_{k}$.
 $(\int_{\mathbb{R}^{n}} dx_{i} = 1)$
 $\Pi_{Y} = \varphi_{Y}(x_{k-1}, \dots, x_{k}) dx_{k+1} \wedge \dots dx_{k}$.
 $(\int_{\mathbb{R}^{n}} dx_{i} = 1)$
Then $\int_{\mathbb{R}^{n}} \eta_{X} \wedge \eta_{Y} = \begin{cases} 1 & f \\ -1 & f \\ Tp_{X} \otimes Tp_{Y} = -Tp_{M} \end{cases}$
is the sign of the intersection $X \wedge Y$ at p .
Sum over p , and we have
 $ThM \quad X \cdot Y = \int_{\mathbb{R}^{n}} \eta_{X} \wedge \eta_{Y}$.
The other words, Poincare duality dentifies the
weekge product on $H_{aR}^{*}(M)$ with the intersection
 $product$ on $H_{ak}(M)$.