The ordinary double point

A beautiful mix of algebraic and symplectic geometry



Smoothness

Varieties are generically smooth.

We expect the “generic” variety to be globally smooth.
(If it has enough deformations, so it can be deformed to be “generic”.)

E.g. consider hypersurfaces {f =0} C P.
(P some smooth ambient space, eg C"*! or P"+1))

Singular points are where f = 0 = df.
» locally f=0=0;f,i=1,...,n+1
» (n+ 2) equations in (n+ 1) unknowns

» — expect a (—1)-dimensional space of solutions.

l.e. no solutions generically ( = {f = 0} smooth) but finitely
many in a 1-parameter family.

“Expect” this for more general varieties too.



Jacobian criterion
At p € {f =0} with df|, # 0,
f(x) = f(p)+dflp(x —p)+ O(]x — p[?) ~ df|p(x —p)
and the implicit function theorem says that, locally analytically,

{f =0} ~ {xeC": df|p(x—p)=0}.

e

Tox=(7,) - P eep). V=0

Therefore {f = 0} is smooth near p.



Ordinary double points

Next least bad case: f(p) = 0 = df|, but second derivative matrix

( oF >n+1
Ox;0x; o) i

non-degenerate. Equivalently, in Taylor expansion about p,

n+1
> Qyxixi + O(Ix[*)

ij=1

the quadratic form @ is non-degenerate.

Equivalently, locally analytically, f(x) = .7} x?

We say that any variety Y (need not be a hypersurface!) has an
ordinary double point (ODP/node) at p if locally analytically a
neighbourhood of p € Y looks like 0 € { 377! x? = 0}.



Examples and 1-parameter families

Ex: Show in 2-dimensions (only!) the ODP is a quotient singularity
C2/(7)2).

Ex: Draw {y? = x?(1 — x)} € C? and {y? = x?} C C?. Show
both have ODPs at (0,0) (so are analytically equivalent there). Show
they are not Zariski locally equivalent.

Ex: Show {f = 0} C C"*! has an ODP at p € {f = 0} <= df
has a simple zero at p € C™+1.

Ex: Compute the number of ODPs (simple zeros of (f,df)) of a
generic 1-parameter family of hypersurfaces {f + tg = 0}, t € P!
(of degree d in P™*1 say).



Local picture of smoothing
Hypersurface Xy C P given locally by f = 0.
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Local model of smoothing

f:Cl —C, f(x)= Zfill x? has fibre over t given by

n+1
{f=1t} = {Zx,? = t}

i=1

Write x; = a; + ib; (i.e. CIPH =R @ iRIT), suppose t € (0,00)
(otherwise rotate real and imaginary parts by writing x; = v/t(a; + ib;))-

Then taking real and imaginary parts in Z,f'ill xl-2 = t gives
n+1 n+1
Z:(a,2 —b?) = and Z aibi=0
i=1 i=1
~— Ja> = b+t and ab=0.

So (ﬁ‘, |a]b) defines a point of TS" = T*S".



T*Sn

Ex: The above map {>_ x? =t} — T*S"is a
symplectomorphism.

Define L = S" to be the zero section b =0,
l.e. the real slice x; € R Vi of {> x? = t}
(x;i € V'tR in general case when t ¢ (0,00))

Ex: Show L is Lagrangian by using x; — X; by checking this takes
W = —Ww.

L is called the vanishing cycle of the ODP: it is what flows
to/collapses down to the origin under parallel transport of fibre
(along any path to t = 0) of the symplectic connection on the
fibres of 3" x?: C"*1 — C (away from the origin).



Symplectic connection
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Ex: Preserves w|x, — fibres X; symplectomorphic!
Family of Kahler manifolds not locally trivial, but is locally trivial
as a bundle of symplectic manifolds (Seidel).

Ex: L is what flows to 0 € C"! under this connection along a path
in base to 0 € C. Use to give another proof that L is Lagrangian.



Curvature

Symplectic connection not flat. Holonomy is a symplectomorphism
of the fibre. Curvature is 2-form with values in the hamiltonian
vector fields on the fibre.

Parallel transport around an infinitesimal square with sides
v,w € T,C is infinitesimal motion down the vector field v, on
fibre X, with hamiltonian

i.e. vpuw = dh.
So isotopic loops give hamiltonian isotopic monodromies.

Global monodromy 71 (base C) — Aut(X;,w) := %.



Monodromy
Monodromy around path winding once round 0 € C?

For very small loop get identity (5 ~ const) far away from ODP in
X. So monodromy transformation f~1(t) () concentrated near
vanishing cycle L. Called Dehn twist.
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Action on homology Picard-Lefschetz reflection

T Ho(Xe) — Ho(Xe)
a r— a+(a.l)[L]



Local model
Local model on

T*S" = {(a,b) e R"® (R")*: |]a] =1, (b,a) =0}

is time-7 hamiltonian flow of |b].
(Discontinuous over zero section b = 0, but continuous after t = 7.)

Equivalently, normalised geodesic flow on
75" ={(a,b) e R"®R": |[a| =1, b.a =0}
along horizontal lift of b/|b|.

n = 0 case:




Families of affine quadrics
Fix degree d polynomial p(t).
Get n-dimensional X, := { -7 ; x? = p(t)} C CZ x C,.
Fibre over t € C; is affine quadric,
> T*S"Lif p(t) # 0,
» quadric cone (with ODP) if p(t) = 0.
Get Lagrangian S"s fibred over paths in C between zeros of p.
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Example

E.g. p(t) =€ — t? gives n-dimensional quadric {>" x? + t> = ¢}
fibres by (n — 1)-dimensional quadrics.

Above construction gives the vanishing cycle L. =2 S§" of the ODP

ate — 0.
@L:gs"

e | J
—j{ \}7{{

€,

Get Dehn twist monodromy by rotating ++/€ about each other.
Ex: General case gives representation By — Aut(Xp,w).



Resolution

Ex: Blow up of {3 x? =0} € C""! is the total space of Og(—1),
with exceptional divisor Q the quadric {3 x? =0} C P".

Ex: In dimension n = 2 we get Op1(—2) = T*P* as the resolution.
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Dimension 3

In dimension n = 3 we have Q = P! x PL.
Ex: Prove this by rewriting x? + ... + x2 = ut — vw.
Reprove by embedding

P! x P!« P([(Opiypr(1,1)) = P?

by the sections u 1= x1x0, t := Y12, V i= X1¥2, W := Xp)1.

Can then blow down the full blow up Og(—1) along either ruling
to give another resolution with exceptional locus P
(Codimension two! “Small resolution”).

More concretely can blow up Xo := {ut = vw} in the Weil divisor
(u=0=v) to give XT. (Or blowing up in (1= 0= w) gives X )



Small resolution of Xy = {ut = vw}

Letting U, V denote the homogeneous coordinates on P we get
Xt = BlyyXo = {uV=vU, wV=1tU} C XoxP.

Ex: Show this is what the Proj €B,o(u, v)" construction gives.
Ex: Use this to show XV is the total space of Op1(—1)%2.
That is, we plot the graph of

u w
— == X\{0} — P!
v t
and take its closure. Away from 0 at least one of ¢, u,v,w is # 0
so we get a unique point [\ : u] € P!, so Xt — Xp is an
isomorphism. Over 0 we get exceptional fibre P*.
(Note for a general algebraic Xy with ODP there may be no

algebraic/global Weil divisor looking like (u = 0 = v) locally analytically,
so Xt may not be algebraic.)



The two small resolutions of Xy = {ut = vw}

Xt = Bl(u,v) Xo and X~ = Bl(, ) Xo are not isomorphic over Xo.

Ex: The proper transform of the plane {u=0=v} =CZ, is
again C2? in X%, whereas in X~ it is Bly C2.
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3 blow ups of Xj

So X and X~ are only birational blow ups of Xo = {ut = vw}.
(Atiyah flop).

Blowing either up in their exceptional curve P! gives the full blow
up X = B|o Xo.

X = 0q(-1)
X+ /Atiyah\: X~



Link
The link of the 3-fold ODP is S® x S2: the cone over S3 x 52 is Xo.
The cone over S? (times by S3) is the smoothing T*S3.
The cone over S3 (times by S?) is a small resolution X .

Using the Hopf fibration S3 — S? to express it as S3 x S? in a
different way gives the other small resolution X ™.

The cone over the S fibre of S3 x S2 — P! x P! is the full
resolution X.
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Mirror symmetry

Mirror symmetry for Calabi-Yau 3-folds with ODPs tends to give
other Calabi-Yau 3-folds with ODPs.

. MS .
smoothing <— small resolution
Lagrangian S3 <— exceptional P*
Dehn twist about S3 «— spherical twist about Op1

S_?




Another local model
Ex: Let X be the blow up C3 in {xy =0 = z}.
Show it has one ODP.
Instead blowing up one branch {x = 0 = z} then blowing up the
proper transform of the other branch {y =0 = z} gives X*.

Reversing the order gives X ™.




Application: Hironaka's example...

Blow up 2 curves intersecting transversally at 2 points p, g.
Do the X operation at p but the X~ operation at g.




...Is analytic, not projective

C\N 0\‘\’b " //77//7
.

b\/ C,~0 u;g
/

In lower ribbon a, ~ C; (over p) and C; ~ aq + bg (over q).

In upper ribbon a, + b, ~ G, (over p) and G, ~ a, (over q).

Subtracting, in the union of the two we get C; — C; ~ b, ~ —byg.
=> non-Kahler, non-projective.



Hironaka-style exercise

Ex: Do similar with the blow up of a smooth 3-fold in the
following curve, treating the two branches differently.

What do you get?



Another model: matrices

The space of 2 x 2 matrices (i
ODP:

3) of rank < 1 is the 3-fold

{ad — bc =0} = Xo.

Such matrices can be written v ® f, v € C2, f € (C?)*.

Ex: Show this makes Xp into the GIT quotient of C? @ (C2)* by
the C* action with weight 1 on C? (and so weight —1 on (C?)*).

Ex: Change linearisation to produce X* by remembering [v] € P!
(Here X* will be O(—1) ® (C?)* — P(C?).)

Or X~ by remembering [f] € (P*)*.

(Here X~ will be O(—1) ® C? — P(C?)*.)

To get X by remembering ([v], [f]) € P* x (P1)* we have to

quotient C° by two copies of C* acting with weights (1,1,0,0, —1)
and (0,0,1,1, —1).



Global version

Given a map of rank 2 vector bundles ¢p: E — F on a 4-fold Y we
get a divisor Xp C Y where det ¢ € T(A?E* ® A?F) vanishes.

Generically smooth, ODPs where ¢ = 0.
(For appropriately generic ¢. Graph of ¢: Y — Hom(E, F) should be
transverse to the rank 0 and 1 loci in this bundle.)

Ex: Show how to define “P(ker ¢) — Y as zeros inside
P(E) == Xo of composition

O(-1) — 7E = 7*F.
Show fibre of P(ker ¢) — Y is empty over Y\ Xp, a point over
Xo\{ODPs}, and P* fibre over ODPs. Identify it locally with X .
Ex: Replace ker ¢ with ker ¢* to get P(coker ¢)* as X ™.



Exercises

Ex: Show double cover X — Y of a smooth Y, branched over a
divisor D C Y is smooth if D is smooth, and has ODPs at any
ODPs of D.

How do the resolutions match up?

Ex: If X — P! and Y — P! are Lefschetz pencils

(generically smooth maps, but finite number of fibres have ODPs where
local model of map is (x;)4mX — S7IMX 2)

show X xp1 Y — P! is a Lefschetz pencil if and only if the two
discriminant loci in P! are disjoint.

Now move two points of the discriminant locus in P! together.
Show the fibre product acquires an ODP.
What is the vanishing cycle?



Simultaneous resolution

Consider C3 to be a family of affine quadrics over C; by
(x,y,2z) = t := x> 4+ y? + z2. Central fibre t = 0 is surface ODP.

Ex: Why is there no simultaneous resolution of this family?
(l.e. Y — C3 which on each fibre Y; — {x*> + y> + 2> =t} is an
isomorphism if t # 0 and the resolution if t = 0.)

Ex: Now pull back the family to the t — t? double cover of Cy.
(“Basechange by t +— t2".)

Show there is a simultaneous resolution now.

What does this tell you about the monodromy?

2 2 2 2
Ex: If you're stuck, first replace C3 XEE L C by C 2= C

and do the exercise now.



