CHERN CLASSES OF COMPLEX VECTOR BUNGLES

1. Vector bundles

$$l(x, v) \in \mathbb{R}^3 \times \mathbb{R}^3$$
 $l \approx \in \mathbb{Z}$
is called the TANGENT BUNDLE of \mathbb{Z}

In the case of the tanjent bundle of E, for each point æ, we are given a 2-dimensional vector space T_aM.

We call. I the BASE (i.e. the space we use to parametrise)

۰.

۰. -

Finally, we've got a natural projection

$$T: T\Sigma \longrightarrow \Sigma$$

 $(a_1v) \longmapsto \infty$
such that $\forall x \in \Sigma, T(txt) = T_x \Sigma$.

1) Voc EM , TT'((204) := Foc is endowed with the structure of a vector space. For is THE FIDER over cc. 2) Vx EM, JUx CM a neighbourhood of x in M and a diffeomorphism $f_x: \pi'(U_x) \longrightarrow U_x \times \mathbb{R}^n$ such that for all y E Vac Iz: lygx IR" ____ Ty is a linear isomorphism.

Examples: . The trivial bundle X x IR" . For any manifold X, TX the tangent bundle is a vector bundle. . Consider IRP^m (or CIP^m)

$$RP^{n} : \{ D \text{ line Hnough the origin in } R^{n+1} \}$$
consider the set $C RP^{n} \times R^{n+1}$

$$E = \{ (D, v) \mid D \in RP^{n}, v \in D \}$$

$$F = a Rhe hnough RP^{n} = H is all l$$

t is a fiber bundle over IRP. It is alled the TAUTOLOGICAL BUNNLE

SECTIONS OF A VECTOR BUNDLE

• A vector field on a manifold Mis, by definition, I the choice for I any oc EIM, of I a vector in the fiber of the I tangent budle over oc.

The notion of a section of a vector bundle queralizes that of a vector field. Définition: A SECTION of a sector buncle E over X is the datum, for any xEXd an element s(x) EFx:= the fiber aver x. We say the section is is outnoors · continuous if s=X-sE . smooth I smooth

. whatever _____ is whatever

2. Complex live bundles and 1st Chem class From now on, we will concerned with the following basic question: ARE THERE NON-TRIVIAL BUNDLES? This is a provocative question, of course there are, otherwise we you du't be I bothering with a trever of vector sundles. Still, suice vector bundles are locally trivial, non-triviality of vector bundles is a global property, harder to establish.

. BUNDLES OVER CONTRACT BLE THNIFOLDS

Moposition: Any sector bundle ever a contractible space (R° on the open ball in R°) is trivial

. BUNDLES OVER ST Phoposition: , There are exactly two isomorphism classes of REAL vector bundles over S: is the trivial bundle Lo the (unique) vou orientable que . Au conflex vector bundle over St is trivial

Phoops of these two propositions are left

COMPLEX LINE BUNDLES OVER HANTFUDS We move to the first non-trivial task of the theory: dassifying line bendles. REAL LINE BUNDLES: ve leave this case as an exercise, as the jeneral approach is a sniplified version of the Complex case. From now onwads, E is a complex live bundle over X a (real) manifold. Important example : The tangent bundle 6 a COMPLEX CURVE is a complex live bundle over a 2-dim. (real) manifold.

Theorem: let X be a manifold.
For any line bundle E over X, there
exists
$$C_1(E) \in H^2(X, TZ)$$
 such
that 1) $C_1(E) = O (=) E$ is trivial
2) If Fis another line bundle over X
 $C_1(E \otimes F) = C_2(E) + C_2(F)$
 $C_1(E)$ is called to (FIRST) CHERN CLASS
of the line bundle E

We are now paint to construct
$$C_1(E)$$
.
The way we are going to do this is
by trying to understand what are

What we are joing to do is to trivialise E inductively over this . Having trivialised E over Xi, We can trivialise E over individual (i+1) - cells.

TRIVIACISATION OVER Xo
Xo is a countable union of points.

$$E_{1xo}$$
 is obsticusly trivializedle
 $E_{xo} \simeq Xo \times C$

TRIVIALISATION OVER X1 We take each 1-cell (which are intervals) and trivialise E over them (which we

can as intervals we contractible)
I a 1-cell
$$E_{II} \simeq [a,b] \times C$$

"[a,b]
(ay 1/b) $\in X_0$
The trivialisation of E over I in lay
might differ form the one we have chosen,
the difference being a linear map
 $io_i \times C$ (ay $\times C_p$
trivialisation 2 $io_i \propto C_p$
trivialisation 2 $io_i \propto C_p$
 I_j [a,b] $\times C$ is a trivialisation oble
 $i \propto in^{-2}$ $(a_i \propto C_p)$
where $g: I \longrightarrow C^*$

let
$$\beta$$
 be the complex number representing
the change of coordinate between trivialist
of E over I and X_0 at db_1 .
It suffices to take
 $g: I \longrightarrow C^*$, $g(a) = a^2$
 $g(b) = p^7$
since C^* is 1 -connected, this is
possible.
Conclusion: $E_{1\times n}$ is always trivialociable
TRIVIALISATION OVER X2.
. 2-cells are contractible, so
we can trivialise E over any such

 $2 \text{ cell } \Delta$.

. In order to turn this trivialisation into a trivialisation are X_2 , we need to make the trivialisation over $\partial \Delta = S^2 \subset X_1$ agree with that over X_2 .

The change of coordinates from one trivialisetted to the other I is of the form Jour

 $S^{1}_{x} C$ ($\alpha_{1} \sigma$)

trivialisation over Δ_{t} trivialisation over X_{t} with x = g(x)

The trivialization over Δ can be modified only as to continuously defound $x \mapsto g(\infty)$.

This path is C^* can be made trivial iff $[g] = 0 \in TT_1(C^*) \cong \mathbb{Z}$ FOR EVERY 2-CELL A, WE HAVE BEFINED $G(\Delta) \in \mathbb{Z}$

AN OBSTRUCTION TO EXTENDING THE TRIVIALISATION TO THE 2-SKELETON

TRIVIALISATION OVER X: I>3 a trivialisation on a i-cell Δi that on its boundary $\partial \Delta i$ apres with a trivialisation over Xi1, it is enough to continuously defour a map : $q: \partial \Delta i = S^{i-2} \longrightarrow C^*$

to the constant map 1. Since Sⁱ⁻¹, i>3 is 1-connected, this is always possible. We have thus established the following claim.

IF WE HAVE MANAGED TO TRIVIALIZE E OVER X2, THE E IS TRIVIAL OVER X

We conclude with an analysis of the 2 co-chain C_1 . <u>Fact 1</u>: if $C_1 \equiv O$ then E_{1X_2} is trivialisable <u>Fact 2</u>: C_1 is a cocycle (Hint: each 1-cell contributes positively and negatively when one computeds C_1

on the boundary of a 3-cell) Fact 3: A change in the trivialization of X1 modifies C1 by a co-boundary, and any co-boundary can be thus realised This way we get • $C_1(E)$ defines au element in $H^2(X, \mathbb{Z})$ • E istrivial (=) G(E) = 0

Rg: this trivialisation method can also be used to show that VCEHKXX ZE a line bundle such that

 $c_1(E) = C$ · if E2 and E2 are two line bundles over X such that $C_1(E_1) = C_2(E_2)$ then E1 ~ E2

3. Chun classes for complex vector bundles

The first Chem class that we have just defined is just one of a sequence of cohomology classes of the base

- . FIRST CHERN CLASS OF A CX VECTOR BUNDLE
 - Let E be a complex sector build over a space X. By definition, its 1^{st} Chem class is $G(E) := G(\det E)$

where det(E) is the determinant budle of E ofE (The determinant of a bundle is the line bundle the local I sections of which are volume forms on fibers of E)

Theorem / befinition
Let X be a manifold. For any complex
vector bundle Eover (X, there have
cohomology classes

$$Ci(E) \in H^{2i}(X,Z)$$
 i > 0
satisfying the following axisms
1) If Y is curother manifold and
 $f: Y \longrightarrow X$ a continuous map
then $\forall E$ ex vect. bundle
 $Cl(f^*E) = f^*(Cl(E))$
2) $\forall E, F$ vector bundles over X
 $Cn(E \oplus F) = \sum_{ij=n}^{\infty} Ci(E) \cdot Cj(F)$

3) $C_i(E) = 0$ if i > rank(E)4) If E is the fautological bundle over \mathbb{CP}^1 $c_1(E)$ generates $H^2(\mathbb{CP}^1, \mathbb{Z})$

Of course of thus defines apres with the first Chem class defined in the previous parapaph.

SKETCH OF THE CONSTRUCTION OF CHERN CLASSES

X a compact manifold.

1] A construction of bundles over X

$$Gr(k,m) := \{k \text{-planes in } C^n \}$$

 $TGr(k,m) := toutological bundle over
 $Gk(k,m)$
Let $f: X \longrightarrow Gr(k,m)$ a smooth map
 $E := \int_{\infty}^{\infty} TGr(k,m) \text{ defines}$
a $k \text{-bundle over X}$.$

Fact 1: if
$$f_1, f_2: X \longrightarrow Gr(k, n)$$

are homotopic, $f_1^*(TGr(k, n))$
and $f_2^*(TGr(k, n))$ are homotopic.

2] Arbitrary bundles Fix k20 Im = m(X)>0 such that every k-budle over Xis isomorphic to $f^{*}(T Ge(k, m))$ for some $f: X \longrightarrow Ge(k, m)$ 3 Cohomology of Gr(k,m) Recall that $H^{\bullet}(X,\mathbb{Z}) = \bigoplus_{i=0}^{\infty} H'(X,\mathbb{Z})$ is a graded ming for the cap-product. FACT: $H^{\circ}(Gr(k,m), \mathbb{Z})$ is generated by k cohomology classes $[\alpha :] \in H^{2i}(Gr(k,m), \mathbb{Z})$

▰

nem classes are well-de jured one has to check all the following things: • Any E_{cx} vector bundle is isomorphic to the pull-back of the tautodojical bundle over GL(k,m) for a wap $f: X \longrightarrow GL(k,m)$ for some $m \ge 0$ • Any two such maps are hemotopic o The definition doem't depend on the value of m.

We do not prove these facts here (ref Milnon - Stasheff)