
Blow ups

(over C)



Reminder on affine varieties / Spec

“Ring” := finitely generated unital C-algebra

Affine schemes (varieties)
/
C ←→ Rings (without nilpotents)

V p−→ O(V ) = {polynomials on V }
Spec R := {max ideals in R} ←−p R

x ∈ V ←→ max ideal mx ⊂ R
x ∈ V ←→ evx : R → C

affine space W ←→ Sym W ∗

in coords Cn ←→ C[x1, . . . , xn]
{p1(x) = 0 = . . . = pk(x)} ←→ C[x1, . . . , xn]/(p1, . . . , pk)



“Reminder” on projective varieties / Proj

Replace rings by graded rings ⇐⇒ rings with C∗-action.

⇐⇒ Spec R has a C∗-action ⇐⇒ it is a cone.

Proj R is the lines through the origin in Spec R.

Picking (homogeneous) generators and relations,
R = C[x0, . . . , xn]/

(
p1(x), . . . , pk(x)

)
, we have

X̃ := Spec R =
{
p1 = 0 = · · · = pk

}
⊆ Cn+1

and X := Proj R is the set of lines in this, inside the set Pn of lines
in Cn+1. In coordinates Proj R ⊂ Pn is{

[x ] ∈ Pn : pi (x) = 0 ∀i
}
.



The picture



Coordinates

The linear functions xi downstairs pull back to give functions on
the (total space of the) tautological line bundle OX (−1) upstairs.

They’re linear on the fibres, i.e. sections of its dual OX (1).

Similarly homogeneous degree d polynomials fd(x) in the xi
pullback to functions on OX (−1) which have degree d on the
fibres, so they’re sections of OX (1)⊗d =: OX (d).

Thus the graded ring R =
⊕

d≥0 Rd is the space of sections of

powers of the line bundle L := OX (1). That is, Rd = Γ(Ld).

Projective polarised schemes ←→ Graded rings
(X , L) p−→

⊕
d≥0 Γ(Ld)

Proj R := {max∗ hom ideals in R} ←−p R

where max∗ means maximal amongst homogeneous ideals which
are not the irrelevant maximal ideal (of the origin)

⊕
d>0 Rd .



Blow up: local model
Consider the projection

C2\{0} −→ P1,

(x , y) p−→ [x : y ].

Let X ,Y be homogeneous coordinates on P1. (So only defined up to

scale. X/Y well defined function but has a pole.)

Equation of graph inside
(
C2\{0}

)
× P1 is (“X/Y = x/y”)

xY = Xy .

So closure is {
xY = Xy

}
⊂ C2 × P1. (∗)

Over each point each point of P1 we get all points in the
corresponding line. I.e. (∗) is the tautological line bundle

OP1(−1) ⊂ C2 × P1.



Other projection

OP1(−1) =
{
xY = Xy

}
⊂ C2 × P1.

Projecting to C2 instead of P1 we find gives an isomorphism away
from 0 ((x , y) 6= (0, 0) determines [X ,Y ]) but the whole P1 over 0.



A more professional picture

Y = 1 =⇒
{x = Xy} ⊂ C2

xy × CX .



Blow up

OP1(−1) =
{
xY = Xy

}
⊂ C2 × P1

is called the blow up of C2 in the origin.

At the origin it remembers the line you came in on. Therefore
separates lines at the origin.

Inverse image P1 of 0 ∈ C2 (zero section of OP1(−1)) is called the
exceptional divisor or exceptional curve or (−1)-curve E .

More generally

OPn−1(−1) =
{
xiYj = Xiyj ∀i , j

}
⊂ Cn × Pn−1

is called the blow up of Cn in the origin.
Exceptional divisor now E ∼= Pn−1.



Global

Gluing this model into any complex manifold defines Blp X with
exceptional divisor E ∼= P(TpM).

More generally given a codimension-n submanifold Z ⊂ X can
form BlZ X by a family version of the same construction.

Locally analytically Z ⊂ X looks like U × {0} ⊂ U × Cn.
(U ⊂ Z open.)

The blow up BlZ X is then locally U × Bl0Cn and these glue on
overlaps as U covers Z . Exceptional divisor is now

E ∼= P(NZX )

��

� � // BlZ X

��
Z �
� // X .

Soon we will see a quicker, more direct construction that blows up
any schemes Z ⊂ X .



Exercises

Ex: Show topologically same as: remove small ball 0 ∈ B2n ⊂ Cn,
divide its boundary by scalar action of S1 ⊂ C∗ to collapse S2n−1

to Pn−1 by Hopf map.

Ex: Show topologically same as connect sum at 0 ∈ Cn with Pn

(Note opposite orientation on Pn turns normal bundle of hyperplane Pn−1

from O(1) to O(−1).)

Ex: Do real blow up of 0 ∈ R2. Remove small disc 0 ∈ D2 ⊂ R2,
divide boundary S1 by ±1 antipodal map. (So in and out get flipped

=⇒ not oriented.)
Show same as gluing in a Möbius band along its boundary S1.



Functoriality
Fix p ∈ Z ⊂ X complex manifolds.

Key property: Blp Z is the proper transform of Z in Blp X ,

Blp Z = Z\{p} ⊂ Blp X .

      

“Blow up remembers
direction Z comes into p”



Proper transform
Enough to prove this locally analytically for

0 ∈ Cm = {xm+1 = 0 = . . . = xn} ⊂ Cn.

We want to describe Cm\{0} = {xm+1 = 0 = . . . = xn} inside

Bl0Cn = {xiXj = xjXi ∀i , j} ⊂ Cn × Pn−1.

At any point of Bl0Cn at least one Xi is nonzero (X1 say), so

xi =
x1
X1

Xi

so (Xm+1 = 0 = . . . = Xn) =⇒ (xm+1 = 0 = . . . = xn).

Similarly away from 0 ∈ Cn one xi is nonzero (x1 say), so

Xi =
X1

x1
xi ,

so (xm+1 = 0 = . . . = xn) =⇒ (Xm+1 = 0 = . . . = Xn).



Proper transform II

So on all of Bl0Cn we have

(Xm+1 = 0 = . . . = Xn) =⇒ (xm+1 = 0 = . . . = xn) (1)

while on Cn\{0} = Bl0Cn\E we have

(xm+1 = 0 = . . . = xn) =⇒ (Xm+1 = 0 = . . . = Xn). (2)

By (2), Xm+1 = 0 = . . . = Xn on Cm\{0} ⊂ Bl0Cn and therefore
also on Cm\{0} ⊂ Bl0Cn.

By (1) then, Cm\{0} ⊂ Bl0Cn is precisely Xm+1 = 0 = . . . = Xn.

This just cuts Pn−1 down to Pm−1 and leaves the same blow up
equations xiXj = xjXi intact, giving Bl0Cm as claimed.

Upshot is we can define Blp Z by (1) embedding Z in some
ambient space X (like CN or PN) then (2) taking the proper
transform Z := Z\p inside Blp X .



Singularities

So for now we can define blow up of singular varieties by
embedding and proper transform.

So to blow up the node {xy = 0} ⊂ C2 we take

{xy = 0}\{0} ⊂ Bl0C2.

Ex: As before (xy = 0 =⇒ XY = 0) while, away from origin,
(XY = 0 =⇒ xy = 0). So proper transform is XY = 0.

      

“Resolution of singularities”
Note (pullback of) xy = 0
contains 2E .



Hartshorne’s picture

Y = 1 =⇒ {x = Xy} ⊂ C2
xy × CX .

Ex: What is proper transform Y of black curve
Y = {y2 = (x − 1)x2}?



More singularities
More generally consider the cone (singular at 0) {p = 0} ⊂ Cn,
where p is a homogeneous polynomial.

Blowing this up (taking proper transform in Bl0 Cn) gives

O(−1) −→
{
{p = 0} ⊂ Pn−1

}
.

“Cylinder resolution of cone on {p = 0} ⊂ Pn−1.”



Yet more singularities

Ex: Do this for {x2 + y2 + z2 = 0} ⊂ C3. What is the exceptional
curve? What is its normal bundle or self-intersection?

For nonhomogeneous p let P denote its leading order
homogeneous part. (E.g. p = x2 + y3 =⇒ P = x2.)

Then blow up of {p = 0} in 0 need not be smooth but
Ex: its exceptional divisor is {P = 0} ⊂ Pn−1.



More curve singularities

E.g. Blowing up the cusp y2 + x3 = 0 gives exceptional divisor the
double point {Y 2 = 0} ⊂ P1.

      

Ex: Blow up is Y 2 = xX 2

and is smooth.



Resolution of singularities

Often have to blow up many times to resolve singularity (i.e. get

something smooth).

Ex: Draw y2 = x4 and its blow up. Show resolved by two blow ups.

Ex: Invent your own curve singularities and resolve them by
iterated blow ups in points.

Theorem (Hironaka) Given any variety X we may iteratively blow
it up in smooth centres (Z1 ⊂ X , then Z2 ⊂ BlZ1 X , then . . . ) so
that after a finite number of steps the result is smooth.



Functions

Back to local model

E ∼= Pn−1

��

� � // Bl0Cn

��
{0} � � // Cn.

Functions on Cn which vanish at 0
(ideal I0 = (x1, . . . , xn) ⊂ C[x1, . . . , xn])
pull back to give functions on Bl0Cn which vanish on E
(global sections of ideal sheaf IE .)

Ex: This is all of them: Γ(IE ) = I0. More generally Γ(IkE ) = Ik0 .
(Hint: compare short exact sequences 0→ IE → OBl0 Cn → OE → 0 and

0→ I0 → OCn → O0 → 0.)



Sections of line bundles

“Recall” the line bundle-divisor correspondence E ←→ (O(E ), sE ).
Sections of IE are the same as sections of the line bundle
O(−E ) := O(E )∗:

Γ(IE )
·/sE−−−→←−−−
·sE

Γ(O(−E )).

Combining the two we get an isomorphism

Γ(OBl0 Cn(−kE )) ∼= Ik0 .

(This is “familiar” from the Proj lecture. O(−kE ) is the pullback from

Pn−1 of OPn−1(k) and Γ
(
OPn−1(k)

)
=
〈
X k
1 , X

k−1
1 X2, . . . , X

k
n

〉
. Therefore

sections of its pullback are the product of these with the functions

C[x1, . . . , xn] on the fibres. The result is isomorphic to〈
xk1 , x

k−1
1 x2, . . . , x

k
n

〉
C[x1, . . . , xn] = (x1, . . . , xn)k = Ik0 .)



Proj construction

But sections of (all powers of an ample) line bundle O(−E ) on
Bl0Cn determine Bl0Cn by the Proj construction, so

Bl0Cn = Proj
⊕
k≥0

Γ(OBl0 Cn(−kE )) = Proj
⊕
k≥0

Ik0 .

So this gives a global general way to define a blow up

BlZ X := Proj
⊕
k≥0

IkZ .

(Really a relative version of Proj from the last lecture, over base X .)

(Since IZ/I2Z = N∗
Z we see IkZ giving sections SymkN∗

Z of OP(NZ )(k) on

fibres of exceptional divisor P(NZ )→ Z .)

Let’s unpack this formal definition in a simple example.



Example

Take Z ⊂ X to be {0} ⊂ C2. What is Proj
⊕

k≥0 IkZ?

IZ is generated by x , y over C[x , y ]; call these generators X ,Y .

Then IkZ is
〈
X k , YX k−1, . . . ,Y k

〉
C[x , y ].

Therefore
⊕

k≥0 IkZ is generated by x , y (degree 0) and X ,Y
(degree 1) subject to the only relation xY = Xy ,⊕

k≥0

IkZ = C[x , y ][X ,Y ]/(xY − Xy).

So we can read off Proj
⊕

k≥0 IkZ to be

{xY = Xy} ⊂ C2 × P1,

the blow up we started with.



Another example
Take Z ⊂ X to be {0} ⊂ {y2 = x3} (all in C2).

IZ has generators X := x , Y := y over C[x , y ]/(y2 − x3) subject
to the relations xY = Xy and Y 2 = xX 2. Therefore⊕

k≥0

IkZ =
C[x , y ]

(y2 − x3)

[X ,Y ]

(xY − Xy ,Y 2 − xX 2)
.

So we can read off Proj
⊕

k≥0 IkZ . We times by P1, impose

xY = Xy so it only appears at the origin, then impose Y 2 = xX 2

so over the origin we only get the double point Y 2 = 0.

Notice X 6= 0 so can set it to 1. Proj becomes Spec of ring with
X = 1. Thus can discard x = Y 2 and then y = xY = Y 3 to give

Spec C[Y ] = C.

So blow up of cusp {y2 = x3} is C mapping to cusp by
Y 7→ (Y 2,Y 3). (Cf. an exercise from Spec lecture.)



Exercise: Castelnuevo Criterion

From last time: S projective ⇐⇒ has a (ample) line bundle L→ S
such that S = Proj

⊕
k≥0 Γ(Lk) (Pullback of O(1) under S ↪→ PN .)

Smooth projective surface S ⊃ E ∼= P1 with self-intersection −1
(normal bundle NE = OP1(−1)).

Define d := deg L|E =
∫
E c1(L) – i.e. L|E ∼= OP1(d).

Ex: Show L(dE ) is trivial on E and its sections contract E but
nothing else.

I.e. S → Proj
⊕

k≥0 Γ(Lk(kdE )) blows E down to a point p;
opposite of blow up at p.



Exercise: weighted blow ups

These use weighted projective spaces.

E.g. consider C∗ y C2 with weights (1, 2) (I.e. λ ∈ C∗ acts as

λ(x , y) = (λx , λ2y)) and form (the space of orbits y = ax2)

P(1, 2) :=
(
C2\{0}

)
/C∗ = Proj C[X ,Y ]

where degX = 1, degY = 2 (a = Y /X 2).

Corresponding (1, 2)-weighted blow up of {0 ∈ C2} remembers
which orbit we come in on (instead of which line):

{X 2y = x2Y } ⊂ P(1, 2)× C2.

Ex: Write as a Proj.
Relate it to usual blow up of C2 in ideal (x2, y) of fat point.
Show it’s a blow down of Bl[1:0] Bl0C2.



Picture: weighted blow ups

      

Ex: What happens
to straight lines?



Exercise: 3-fold ordinary double point

Ex: Let X := {xy = zw} ⊂ C4.
Blow up {x = 0 = z}; what do you get?
Do by proper transform and by Proj.

What’s the exceptional locus?

Describe in terms of graph of map X\{0} → P1 given by x
z = w

y .

Repeat for {x = 0 = w} and graph of x
w = z

y .

Ex: For Z ⊂ X define kZ ⊂ X to be subscheme with ideal sheaf
IkZ := IkZ ⊂ OX .
Show BlkZ X ∼= BlZ X (but with a different line bundle on it).



Exercise: all regular birational maps are blow-ups

Suppose π : X → Y is a regular map which is an isomorphism on a
Zariski open subset of Y .
Suppose X is projective and Y is normal.
We want to show π is a blow up.

Ex: Pick ample line bundle L on X and N � 0.
Show π∗L

N = M ⊗ IZ for some line bundle M → Y and ideal
sheaf IZ ⊂ OY . (Hint: show M := (π∗L

N)∗∗ is locally free of rank 1.)
Show BlZ Y = X .


