Blow ups

(over \mathbb{C})

Reminder on affine varieties / Spec

"Ring" := finitely generated unital $\mathbb{C}\text{-algebra}$

Affine schemes (varieties)/ \mathbb{C} Rings (without nilpotents) \longleftrightarrow $\mapsto \mathcal{O}(V) = \{\text{polynomials on } V\}$ V Spec $R := \{ \max \text{ ideals in } R \}$ R \leftarrow $x \in V$ \longleftrightarrow max ideal $\mathfrak{m}_x \subset R$ $x \in V$ $ev_x \colon R \to \mathbb{C}$ \longleftrightarrow affine space WSym W* \longleftrightarrow \longleftrightarrow $\mathbb{C}[x_1,\ldots,x_n]$ in coords \mathbb{C}^n $\{p_1(x) = 0 = \ldots = p_k(x)\}$ $\longleftrightarrow \mathbb{C}[x_1,\ldots,x_n]/(p_1,\ldots,p_k)$

"Reminder" on projective varieties / Proj

Replace rings by graded rings \iff rings with \mathbb{C}^* -action.

$$\iff$$
 Spec R has a \mathbb{C}^* -action \iff it is a cone.

Proj R is the lines through the origin in Spec R.

Picking (homogeneous) generators and relations, $R = \mathbb{C}[x_0, \dots, x_n] / (p_1(\underline{x}), \dots, p_k(\underline{x})),$ we have

$$\widetilde{X} := \operatorname{Spec} R = ig\{ p_1 = 0 = \cdots = p_k ig\} \subseteq \mathbb{C}^{n+1}$$

and $X := \operatorname{Proj} R$ is the set of lines in this, inside the set \mathbb{P}^n of lines in \mathbb{C}^{n+1} . In coordinates $\operatorname{Proj} R \subset \mathbb{P}^n$ is

 $\left\{ [\underline{x}] \in \mathbb{P}^n : p_i(\underline{x}) = 0 \ \forall i \right\}.$

The picture

Coordinates

The linear functions x_i downstairs pull back to give functions on the (total space of the) tautological line bundle $\mathcal{O}_X(-1)$ upstairs.

They're linear on the fibres, i.e. sections of its dual $\mathcal{O}_X(1)$.

Similarly homogeneous degree d polynomials $f_d(\underline{x})$ in the x_i pullback to functions on $\mathcal{O}_X(-1)$ which have degree d on the fibres, so they're sections of $\mathcal{O}_X(1)^{\otimes d} =: \mathcal{O}_X(d)$.

Thus the graded ring $R = \bigoplus_{d \ge 0} R_d$ is the space of sections of powers of the line bundle $L := \mathcal{O}_X(1)$. That is, $R_d = \Gamma(L^d)$.

 $\begin{array}{ccc} \text{Projective polarised schemes} & \longleftrightarrow & \text{Graded rings} \\ (X, L) & \longmapsto & \bigoplus_{d \geq 0} \Gamma(L^d) \\ \text{Proj } R := \{\max^* \text{ hom ideals in } R\} & \longleftarrow & R \end{array}$

where max^{*} means maximal amongst homogeneous ideals which are not the irrelevant maximal ideal (of the origin) $\bigoplus_{d>0} R_d$.

Blow up: local model

Consider the projection

$$\mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{P}^1, \ (x, y) \longmapsto [x : y].$$

Let X, Y be homogeneous coordinates on \mathbb{P}^1 . (So only defined up to scale. X/Y well defined function but has a pole.)

Equation of graph inside $(\mathbb{C}^2 \setminus \{0\}) \times \mathbb{P}^1$ is ("X/Y = x/y")

$$xY = Xy.$$

So closure is

$$\{xY = Xy\} \subset \mathbb{C}^2 \times \mathbb{P}^1.$$
 (*)

Over each point each point of \mathbb{P}^1 we get all points in the corresponding line. I.e. (*) is the tautological line bundle

$$\mathcal{O}_{\mathbb{P}^1}(-1) \subset \mathbb{C}^2 imes \mathbb{P}^1.$$

Other projection

$$\mathcal{O}_{\mathbb{P}^1}(-1) = \{xY = Xy\} \subset \mathbb{C}^2 \times \mathbb{P}^1.$$

Projecting to \mathbb{C}^2 instead of \mathbb{P}^1 we find gives an isomorphism away from 0 $((x, y) \neq (0, 0)$ determines [X, Y] but the whole \mathbb{P}^1 over 0.

A more professional picture

Blow up

$$\mathcal{O}_{\mathbb{P}^1}(-1) = \{xY = Xy\} \subset \mathbb{C}^2 \times \mathbb{P}^1$$

is called the blow up of \mathbb{C}^2 in the origin.

At the origin it remembers the line you came in on. Therefore separates lines at the origin.

Inverse image \mathbb{P}^1 of $0 \in \mathbb{C}^2$ (zero section of $\mathcal{O}_{\mathbb{P}^1}(-1)$) is called the **exceptional divisor** or *exceptional curve* or (-1)-*curve* E.

More generally

 $\mathcal{O}_{\mathbb{P}^{n-1}}(-1) = \{x_i Y_j = X_i y_j \ \forall i, j\} \subset \mathbb{C}^n \times \mathbb{P}^{n-1}$

is called the blow up of \mathbb{C}^n in the origin. Exceptional divisor now $E \cong \mathbb{P}^{n-1}$.

Global

Gluing this model into any complex manifold defines $BI_p X$ with exceptional divisor $E \cong \mathbb{P}(T_p M)$.

More generally given a codimension-*n* submanifold $Z \subset X$ can form $\operatorname{Bl}_Z X$ by a family version of the same construction.

Locally analytically $Z \subset X$ looks like $U \times \{0\} \subset U \times \mathbb{C}^n$. $(U \subset Z \text{ open.})$

The blow up $Bl_Z X$ is then locally $U \times Bl_0 \mathbb{C}^n$ and these glue on overlaps as U covers Z. Exceptional divisor is now

Soon we will see a quicker, more direct construction that blows up any schemes $Z \subset X$.

Exercises

Ex: Show topologically same as: remove small ball $0 \in B^{2n} \subset \mathbb{C}^n$, divide its boundary by scalar action of $S^1 \subset \mathbb{C}^*$ to collapse S^{2n-1} to \mathbb{P}^{n-1} by Hopf map.

Ex: Show topologically same as connect sum at $0 \in \mathbb{C}^n$ with $\overline{\mathbb{P}^n}$ (Note opposite orientation on \mathbb{P}^n turns normal bundle of hyperplane \mathbb{P}^{n-1} from $\mathcal{O}(1)$ to $\mathcal{O}(-1)$.)

Ex: Do real blow up of $0 \in \mathbb{R}^2$. Remove small disc $0 \in D^2 \subset \mathbb{R}^2$, divide boundary S^1 by ± 1 antipodal map. (So in and out get flipped \implies not oriented.)

Show same as gluing in a Möbius band along its boundary S^1 .

Functoriality

Fix $p \in Z \subset X$ complex manifolds.

Key property: $BI_p Z$ is the proper transform of Z in $BI_p X$,

Proper transform

Enough to prove this locally analytically for

$$\mathbf{0} \in \mathbb{C}^{m} = \{x_{m+1} = \mathbf{0} = \ldots = x_n\} \subset \mathbb{C}^{n}.$$

We want to describe $\overline{\mathbb{C}^m \setminus \{0\}} = \overline{\{x_{m+1} = 0 = \ldots = x_n\}}$ inside

$$\mathsf{Bl}_0 \mathbb{C}^n = \{ x_i X_j = x_j X_i \ \forall i, j \} \subset \mathbb{C}^n \times \mathbb{P}^{n-1}.$$

At any point of $\mathsf{Bl}_0 \mathbb{C}^n$ at least one X_i is nonzero $(X_1 \text{ say})$, so

$$x_i = \frac{x_1}{X_1} X_i$$

so $(X_{m+1} = 0 = \ldots = X_n) \implies (x_{m+1} = 0 = \ldots = x_n).$

Similarly **away from** $0 \in \mathbb{C}^n$ one x_i is nonzero (x_1 say), so

$$X_i = \frac{X_1}{x_1} x_i$$

so $(x_{m+1} = 0 = \ldots = x_n) \implies (X_{m+1} = 0 = \ldots = X_n).$

Proper transform II

So on all of $\mathsf{Bl}_0 \mathbb{C}^n$ we have

 $(X_{m+1}=0=\ldots=X_n) \implies (x_{m+1}=0=\ldots=x_n) \qquad (1)$

while on $\mathbb{C}^n \setminus \{0\} = \mathsf{Bl}_0 \mathbb{C}^n \setminus E$ we have

 $(x_{m+1}=0=\ldots=x_n) \implies (X_{m+1}=0=\ldots=X_n).$ (2)

By (2), $X_{m+1} = 0 = \ldots = X_n$ on $\mathbb{C}^m \setminus \{0\} \subset \mathsf{Bl}_0 \mathbb{C}^n$ and therefore also on $\overline{\mathbb{C}^m \setminus \{0\}} \subset \mathsf{Bl}_0 \mathbb{C}^n$.

By (1) then, $\overline{\mathbb{C}^m \setminus \{0\}} \subset \mathsf{Bl}_0 \mathbb{C}^n$ is precisely $X_{m+1} = 0 = \ldots = X_n$.

This just cuts \mathbb{P}^{n-1} down to \mathbb{P}^{m-1} and leaves the same blow up equations $x_i X_j = x_j X_i$ intact, giving $\mathsf{Bl}_0 \mathbb{C}^m$ as claimed.

Upshot is we can define $Bl_p Z$ by (1) embedding Z in some ambient space X (like \mathbb{C}^N or \mathbb{P}^N) then (2) taking the proper transform $\overline{Z} := \overline{Z \setminus p}$ inside $Bl_p X$.

Singularities

So for now we can define blow up of singular varieties by embedding and proper transform.

So to blow up the node $\{xy=0\}\subset \mathbb{C}^2$ we take

$$\overline{\{xy=0\}\backslash\{0\}} \ \subset \ \mathsf{Bl}_0 \, \mathbb{C}^2.$$

Ex: As before $(xy = 0 \implies XY = 0)$ while, away from origin, $(XY = 0 \implies xy = 0)$. So proper transform is XY = 0.

"Resolution of singularities" Note (pullback of) xy = 0contains 2*E*.

Hartshorne's picture

t≠0

$$Y = 1 \implies \{x = Xy\} \subset \mathbb{C}^2_{xy} \times \mathbb{C}_X.$$

Ex: What is proper transform \overline{Y} of black curve $Y = \{y^2 = (x - 1)x^2\}$?

More singularities

More generally consider the cone (singular at 0) $\{p = 0\} \subset \mathbb{C}^n$, where p is a homogeneous polynomial.

Blowing this up (taking proper transform in $BI_0 \mathbb{C}^n$) gives

$$\mathcal{O}(-1) \longrightarrow \Big\{ \{p=0\} \subset \mathbb{P}^{n-1} \Big\}.$$

"Cylinder resolution of cone on $\{ p = 0 \} \subset \mathbb{P}^{n-1}$."

Yet more singularities

Ex: Do this for $\{x^2 + y^2 + z^2 = 0\} \subset \mathbb{C}^3$. What is the exceptional curve? What is its normal bundle or self-intersection?

For nonhomogeneous p let P denote its leading order homogeneous part. (E.g. $p = x^2 + y^3 \implies P = x^2$.)

Then blow up of $\{p = 0\}$ in 0 need not be smooth but **Ex:** its exceptional divisor is $\{P = 0\} \subset \mathbb{P}^{n-1}$.

More curve singularities

E.g. Blowing up the cusp $y^2 + x^3 = 0$ gives exceptional divisor the double point $\{Y^2 = 0\} \subset \mathbb{P}^1$.

Ex: Blow up is $Y^2 = xX^2$ and is smooth.

Often have to blow up many times to **resolve** singularity (i.e. get something smooth).

Ex: Draw $y^2 = x^4$ and its blow up. Show resolved by two blow ups.

Ex: Invent your own curve singularities and resolve them by iterated blow ups in points.

Theorem (Hironaka) Given any variety X we may iteratively blow it up in **smooth** centres ($Z_1 \subset X$, then $Z_2 \subset Bl_{Z_1}X$, then ...) so that after a finite number of steps the result is smooth.

Functions

Back to local model

Functions on \mathbb{C}^n which vanish at 0 (ideal $\mathcal{I}_0 = (x_1, \ldots, x_n) \subset \mathbb{C}[x_1, \ldots, x_n]$) pull back to give functions on Bl₀ \mathbb{C}^n which vanish on *E* (global sections of ideal sheaf \mathcal{I}_E .)

Ex: This is all of them: $\Gamma(\mathcal{I}_E) = \mathcal{I}_0$. More generally $\Gamma(\mathcal{I}_E^k) = \mathcal{I}_0^k$. (Hint: compare short exact sequences $0 \to \mathcal{I}_E \to \mathcal{O}_{\mathsf{Bl}_0 \mathbb{C}^n} \to \mathcal{O}_E \to 0$ and $0 \to \mathcal{I}_0 \to \mathcal{O}_{\mathbb{C}^n} \to \mathcal{O}_0 \to 0$.)

Sections of line bundles

"Recall" the line bundle-divisor correspondence $E \longleftrightarrow (\mathcal{O}(E), s_E)$. Sections of \mathcal{I}_E are the same as sections of the line bundle $\mathcal{O}(-E) := \mathcal{O}(E)^*$:

$$\Gamma(\mathcal{I}_E) \xrightarrow[]{\cdot/s_E} \Gamma(\mathcal{O}(-E)).$$

Combining the two we get an isomorphism

 $\Gamma(\mathcal{O}_{\mathsf{Bl}_0\mathbb{C}^n}(-kE)) \cong \mathcal{I}_0^k.$

(This is "familiar" from the Proj lecture. $\mathcal{O}(-kE)$ is the pullback from \mathbb{P}^{n-1} of $\mathcal{O}_{\mathbb{P}^{n-1}}(k)$ and $\Gamma(\mathcal{O}_{\mathbb{P}^{n-1}}(k)) = \langle X_1^k, X_1^{k-1}X_2, \ldots, X_n^k \rangle$. Therefore sections of its pullback are the product of these with the functions $\mathbb{C}[x_1, \ldots, x_n]$ on the fibres. The result is isomorphic to $\langle x_1^k, x_1^{k-1}x_2, \ldots, x_n^k \rangle \mathbb{C}[x_1, \ldots, x_n] = (x_1, \ldots, x_n)^k = \mathcal{I}_0^k$.)

Proj construction

But sections of (all powers of an ample) line bundle $\mathcal{O}(-E)$ on Bl₀ \mathbb{C}^n determine Bl₀ \mathbb{C}^n by the Proj construction, so

$$\mathsf{Bl}_0 \mathbb{C}^n = \operatorname{Proj} \bigoplus_{k \ge 0} \Gamma(\mathcal{O}_{\mathsf{Bl}_0 \mathbb{C}^n}(-kE)) = \operatorname{Proj} \bigoplus_{k \ge 0} \mathcal{I}_0^k.$$

So this gives a global general way to define a blow up

$$\operatorname{Bl}_Z X := \operatorname{Proj} \bigoplus_{k \ge 0} \mathcal{I}_Z^k$$

(Really a relative version of Proj from the last lecture, over base X.)

(Since $\mathcal{I}_Z/\mathcal{I}_Z^2 = N_Z^*$ we see \mathcal{I}_Z^k giving sections $\operatorname{Sym}^k N_Z^*$ of $\mathcal{O}_{\mathbb{P}(N_Z)}(k)$ on fibres of exceptional divisor $\mathbb{P}(N_Z) \to Z$.)

Let's unpack this formal definition in a simple example.

Example

Take $Z \subset X$ to be $\{0\} \subset \mathbb{C}^2$. What is $\operatorname{Proj} \bigoplus_{k \ge 0} \mathcal{I}_Z^k$? \mathcal{I}_Z is generated by x, y over $\mathbb{C}[x, y]$; call these generators X, Y. Then \mathcal{I}_Z^k is $\langle X^k, YX^{k-1}, \dots, Y^k \rangle \mathbb{C}[x, y]$. Therefore $\bigoplus_{k \ge 0} \mathcal{I}_Z^k$ is generated by x, y (degree 0) and X, Y(degree 1) subject to the only relation xY = Xy,

$$\bigoplus_{k\geq 0} \mathcal{I}_Z^k = \mathbb{C}[x, y][X, Y]/(xY - Xy).$$

So we can read off Proj $\bigoplus_{k\geq 0} \mathcal{I}_Z^k$ to be

 ${xY = Xy} \subset \mathbb{C}^2 \times \mathbb{P}^1,$

the blow up we started with.

Another example

Take
$$Z \subset X$$
 to be $\{0\} \subset \{y^2 = x^3\}$ (all in \mathbb{C}^2).

 \mathcal{I}_Z has generators X := x, Y := y over $\mathbb{C}[x, y]/(y^2 - x^3)$ subject to the relations xY = Xy and $Y^2 = xX^2$. Therefore

$$\bigoplus_{k\geq 0} \mathcal{I}_Z^k = \frac{\mathbb{C}[x,y]}{(y^2-x^3)} \frac{[X,Y]}{(xY-Xy,Y^2-xX^2)}.$$

So we can read off Proj $\bigoplus_{k\geq 0} \mathcal{I}_Z^k$. We times by \mathbb{P}^1 , impose xY = Xy so it only appears at the origin, then impose $Y^2 = xX^2$ so over the origin we only get the double point $Y^2 = 0$.

Notice $X \neq 0$ so can set it to 1. Proj becomes Spec of ring with X = 1. Thus can discard $x = Y^2$ and then $y = xY = Y^3$ to give

Spec $\mathbb{C}[Y] = \mathbb{C}$.

So blow up of cusp $\{y^2 = x^3\}$ is \mathbb{C} mapping to cusp by $Y \mapsto (Y^2, Y^3)$. (Cf. an exercise from Spec lecture.)

Exercise: Castelnuevo Criterion

From last time: S projective \iff has a (ample) line bundle $L \to S$ such that $S = \operatorname{Proj} \bigoplus_{k \ge 0} \Gamma(L^k)$ (Pullback of $\mathcal{O}(1)$ under $S \hookrightarrow \mathbb{P}^N$.)

Smooth projective surface $S \supset E \cong \mathbb{P}^1$ with self-intersection -1 (normal bundle $N_E = \mathcal{O}_{\mathbb{P}^1}(-1)$).

Define $d := \deg L|_E = \int_E c_1(L) - \text{i.e. } L|_E \cong \mathcal{O}_{\mathbb{P}^1}(d).$

Ex: Show L(dE) is trivial on E and its sections contract E but nothing else.

I.e. $S \to \operatorname{Proj} \bigoplus_{k \ge 0} \Gamma(L^k(kdE))$ blows E down to a point p; opposite of blow up at p.

Exercise: weighted blow ups

These use weighted projective spaces.

E.g. consider $\mathbb{C}^* \curvearrowright \mathbb{C}^2$ with weights (1,2) (I.e. $\lambda \in \mathbb{C}^*$ acts as $\lambda(x, y) = (\lambda x, \lambda^2 y)$) and form (the space of orbits $y = ax^2$)

 $\mathbb{P}(1,2) := (\mathbb{C}^2 \setminus \{0\}) / \mathbb{C}^* = \operatorname{Proj} \mathbb{C}[X,Y]$

where deg X = 1, deg Y = 2 ($a = Y/X^2$).

Corresponding (1,2)-weighted blow up of $\{0 \in \mathbb{C}^2\}$ remembers which orbit we come in on (instead of which line):

$$\{X^2y=x^2Y\} \subset \mathbb{P}(1,2)\times\mathbb{C}^2.$$

Ex: Write as a Proj.

Relate it to usual blow up of \mathbb{C}^2 in ideal (x^2, y) of fat point. Show it's a blow down of $Bl_{[1:0]} Bl_0 \mathbb{C}^2$.

Picture: weighted blow ups

Exercise: 3-fold ordinary double point

Ex: Let $X := \{xy = zw\} \subset \mathbb{C}^4$. Blow up $\{x = 0 = z\}$; what do you get? Do by proper transform and by Proj.

What's the exceptional locus?

Describe in terms of graph of map $X \setminus \{0\} \to \mathbb{P}^1$ given by $\frac{x}{z} = \frac{w}{y}$. Repeat for $\{x = 0 = w\}$ and graph of $\frac{x}{w} = \frac{z}{y}$.

Ex: For $Z \subset X$ define $kZ \subset X$ to be subscheme with ideal sheaf $\mathcal{I}_{kZ} := \mathcal{I}_Z^k \subset \mathcal{O}_X$. Show $\mathsf{BI}_{kZ} X \cong \mathsf{BI}_Z X$ (but with a different line bundle on it). Exercise: all regular birational maps are blow-ups

Suppose $\pi: X \to Y$ is a regular map which is an isomorphism on a Zariski open subset of Y. Suppose X is projective and Y is *normal*. We want to show π **is a blow up**.

Ex: Pick ample line bundle L on X and $N \gg 0$. Show $\pi_*L^N = M \otimes \mathcal{I}_Z$ for some line bundle $M \to Y$ and ideal sheaf $\mathcal{I}_Z \subset \mathcal{O}_Y$. (Hint: show $M := (\pi_*L^N)^{**}$ is locally free of rank 1.) Show $\mathsf{Bl}_Z Y = X$.