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1 Introduction

The notion of calibration appeared in the foundational paper [13] in 1982,
after that key features of calibrations had been observed in some particular
cases in the previous decades (see [19] for a historical overview).

An immediate impact of calibrated currents was in connection with Pla-
teu's problem, since these objects are mass-minimizers in their homology
class and thus provide plenty of interesting and explicit examples of volume-
minimizers. In the last �fteen years, however, calibrations have appeared
surprisingly in many other geometric or physical problems, for example (see
[9], [26], [27], [28], [29]) theory of invariants, Yang-Mills �elds, String theory,
etc. Typically an essential issue in these studies is to understand regularity
properties of calibrated currents.

Already raised in [13], one of the long-standing regularity questions is
whether calibrated integral currents admit unique tangent cones. The issue
is still open, except for currents of dimension 2. Let us recall a few notions
and the state of the art, before passing to the results of the present work.

Given a m-form � on a Riemannian manifold (M; g), the comass of � is
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de�ned to be

jj�jj� := supfh�x; �xi : x 2M; �x is a unit simple m-vector at xg:

A form � of comass one is called a calibration if it is closed (d� = 0). We will
be dealing also with non-closed forms of unit comass, which will be referred
to as semi-calibrations, following the terminology in [20].

Let � be a (semi-)calibration; among the oriented m-dimensional planes
of the Grassmannians G(m;TxM), we pick those on which � agrees with the
m-dimensional volume form. Representing oriented m-dimensional planes as
unit simple m-vectors, we are thus selecting the subfamily of the so-called
m-planes calibrated by �:

G(�) := [x2Mf�x 2 G(m;TxM) : h�x; �xi = 1g:

An integral current C of dimension m is said to be �-(semi)calibrated
if, Hm-almost everywhere, its (oriented) approximate tangent planes belong
to G. Equivalently this means that the m-volume agrees with � on C, i.e.
we recover the mass of C by testing the current on the (semi)calibration,
C(�) = M(C). A simple argument (see [13]) then shows that calibrated
currents are homologically mass-minimizing, while semi-calibrated ones are
almost minimizers (or �-minimizers, using the terminology of [10]).

The interest in allowing for semi-calibrations rather than only calibra-
tions is for instance related, as described in section 6 of [28], to the possibility
of using non-closed forms to de�ne anti self-dual instantons and compactify
the corresponding moduli spaces to de�ne new geometric invariants. More-
over, a regularity theory for semi-calibrated integral cycles can be expected
to be considerably nicer than that for general almost-minimizers (see e.g.
the case of Special Legendrians in [2], [3]).

Examples of well-known calibrations are the symplectic form ! in an
almost Kähler manifold, its normalized powers 1

p!!
p, the Special Lagrangian

calibration in Calabi-Yau m-folds, the Associative calibration, and many
others.

If we drop the closedness assumption on ! in the de�nition of almost
Kähler manifold, we get what is called an almost Hermitian manifold, and !
and 1

p!!
p are then semi-calibrations. We will refer to these as almost-complex

semi-calibrations.

When dealing with a boundaryless integral current C, also called inte-
gral cycle, or simply when we localize the current to an open set in which
the boundary is zero, it turns out that calibrated currents satisfy an im-
portant monotonicity formula for the mass ratio: for any x0, the quantity
M(C Br(x0))

rm
is a weakly increasing function of r. This is a classical result

for mass-minimizers (see [11], [23] or [19]), proved for constant calibrations
in [13].
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When we turn our attention to almost-minimizers, what we get is an
almost-monotonicity formula, see [10] and [23]. Almost-monotonicity was
proved for C1 semi-calibrations in [20]: it states that the mass ratio at scale

r, i.e. the quantity
M(C Br(x0))

rm
, is given by a weakly increasing function

of r plus a perturbation term, that is in�nitesimal of r. The perturbation
term is bounded in modulus independently of x0.

Immediate consequences of (almost) monotonicity are:

(i) the density of the current is well-de�ned for every point x0 as the limit

�(x0) := lim
r!0

M(C Br(x0))

�mrm
;

where �m is the m-dimensional volume1 of the unit ball Bm.

(ii) the density is an upper semi-continuous function.

(iii) the density of a semi-calibrated integral cycle is, everywhere on the
support2, bounded by 1 from below 3.

Monotonicity further yields the existence of tangent cones: this is a �rst
step in the study of regularity of calibrated currents. The notion of tangent
cone to a current C at a point x0 is de�ned by the following procedure, called
the blow up limit, whose idea goes back to De Giorgi [8]. Dilate C around
x0 by a factor r; in normal coordinates around x0 this amounts to pushing

forward C via the map
x� x0

r
:

(Cx0;r B1)( ) :=

��
x� x0

r

�
�

C

�
(�B1

 ) = C

�
�Br(x0)

�
x� x0

r

��
 

�
:

(1)

The fact that
M(C Br(x0))

rm
is monotonically almost-decreasing as r # 0

gives that, for r � r0 (for a small enough r0), we are dealing with a family of

1Recall that an arbitrary integral current C is de�ned by assigning on an oriented
m-recti�able set C an integer-valued multiplicity function � 2 L1(C;N). For an arbitrary
integral current, the density � is well-de�ned Hm-a.e. and agrees Hm-a.e. with �. What
we get for semi-calibrated cycles is that the density � is well-de�ned everywhere, and we
can take � as the �precise representative� for the multiplicity �.

2The support of a current C is the complement of the largest open set in which the
action of the current is zero.

3This fails for arbitrary integral currents, as the example of the current of integration
on a cone (counted with multiplicity 1) shows: the density at the vertex, although well-
de�ned, depends on the opening angle of the cone (the narrower the cone is, the lower the
density is). If we take, instead of a cone, a surface with a cusp point, the density there is
0.
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cycles fCx0;r B1g in B1 that are equibounded in mass. Therefore Federer-
Fleming's compactness theorem (see e.g. [12] page 141) gives that there exist
weak limits of Cx0;r as r ! 0. Every such limit C1 is an integer multiplicity
recti�able boundaryless current which turns out to be a cone4 calibrated by
!x0 and is called a tangent cone to C at x0. The density of each tangent
cone at the vertex is the same as the density of C at x0 (see [13]).

The natural �rst question, raised already in [13], is whether Federer-
Fleming's compactness theorem can yield di�erent sequences of radii with
di�erent cones as limits, i.e. whether the tangent cone at an arbitrary point
is unique or not. The answer is positive for semi-calibrated integral cycles
of dimension 2, as proved in [20]. The uniqueness is also known for mass-
minimizing integral currents of dimension 2, thanks to [30]. In some other
cases, which also follow from either of the aforementioned [30] or [20], the
proof has been achieved using techniques of positive intersection, namely for
integral pseudo-holomorphic cycles in dimension 4 ([27], [21]) and for integral
Special Legendrian cycles in dimension 5 ([2], [3]). In [22] the uniqueness
for pseudo holomorphic integral 2-dimensional cycles is achieved in arbitrary
codimension. In [24] it is proved that if a tangent cone to a minimal integral
current has multiplicity one and has an isolated singularity, then it is unique.

In dimensions higher than two the uniqueness of tangent cones is an
open question. In this work we give a positive answer in the case of pseudo-
holomorphic integral currents (i.e. semi-calibrated by the almost complex
semi-calibration 1

p!!
p) of arbitrary dimension and codimension.

The uniqueness cannot be obtained merely as a consequence of the mono-
tonicity of the mass ratio. Indeed, the notion of being calibrated by ! can
be extended from integral currents to normal ones (then it is usually called
!-positiveness, as in [13]). Normal !-positive cycles still ful�l the same mono-
tonicity formula, but it was proved in [17] that they might have non-unique
tangent cones.

The approach presented in this work relies on an algebraic blow up tech-
nique, adapted to the almost complex setting, that shows how, for almost-
complex semi-calibration, uniqueness of tangent cones can indeed be ob-
tained for integral semi-calibrated cycles just as a consequence of almost
monotonicity and of the fact that the density is bounded by 1 from below.

An interesting aspect of this proof is that it does not require the study

of the rate of convergence of M(C Br(x0))
�mrm

to the density �(x0). The under-
standing of this �rate of decay� was instead essential in [20], [24], [30].

The technique of a �pseudo holomorphic blow up� that we present is used
in [4] for pseudo-holomorphic non-recti�able currents of dimension 2. Here
we extend that technique to higher dimensional pseudo holomorphic currents.

4A current is said to be a cone with vertex p if it is invariant under homotheties centered
at p.
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These are also referred to as positive-(p; p) currents, as we will see in the next
section, where we describe more closely the setting and the result.

2 The main result

Let (M; J) be an almost complex manifold of dimension 2n+2, where J is
an almost complex structure. We will be interested in integral cycles of even
dimension (say 2p) with the property that almost all approximate tangents
are positively oriented J-invariant 2p-planes. Recall that the orientation on
M is induced by J (see e.g. [18]). Such currents are called positive-(p; p)
integral cycles. The cycle condition (absence of boundary) for a current C
means that it holds, for any compactly supported (2p�1)-form �, (@C)(�) :=
C(d�) = 0.

In the case of an integrable J a complete picture of the positive-(p; p)
integral cycles is known, [16]. In fact, positivity can be dropped, [15], [1].
In these works it is shown that such cycles are a sum of holomorphic sub-
varieties, each one counted with an integer multiplicity (a positive integer
multiplicity if we keep the positivity assumption).

Although such a complete picture might be unattainable for a non-
integrable J , the goal is to �rst formulate (not always easy) and the prove to
the extent possible results which generalize the integrable case. The unique-
ness of tangent cones is a �rst and di�cult step (where the formulation is
easy). Remark that, at the moment, even in the integrable case there is no
direct proof of the uniqueness of tangent cones: such a result can only be
deduced starting from the more di�cult characterization obtained in [16],
[15], [1]. The proof given in the present work can be considerably shortened
and simpli�ed to provide a direct and new proof of the uniqueness of tangent
cones in the integrable case.

There are geometric motivations for the extension of the aforementioned
regularity results from the complex to the almost complex setting: an exam-
ple, as explained in [21], is the understanding of the regularity properties of
pseudo-holomorphic maps between almost complex manifolds. As described
in [22], the conjectured bound on the size of the singular set of such maps
would lead to the characterization of stable-bundle, almost complex struc-
tures over almost Kähler manifolds.

Positive-(p; p) integral cycles also appear as blow-up sets for some se-
quences of stationary harmonic maps or Yang-Mills �elds (see examples in
[28], [29]) and their regularity is essential for the compacti�cation of the
corresponding moduli spaces.

A further and considerably more di�cult problem related to these geo-
metric issues would be understanding the structure of the set of points of
strictly positive density for a positive-(p; p) normal cycle (see examples in
[29], [4], [5]). It is conjectured that a result analogous to the one obtained
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for the integrable case in [25] should hold in the non-integrable case. Con-
centrating on integral cycles seems to be a reasonable step before addressing
the generic case of normal cycles.

The generalizations from the integrable to the non-integrable case turn
out to extremely di�cult and require to a large extent new ideas and tech-
niques (as it is the case in [27], [21], [22] or in the present work); indeed,
in the integrable case complex analysis can be directly brought to bear, but
such tools are no longer avaliable in the non-integrable case.

Let us now analyze how the notion of being positive-(p; p) is intimately
related to semi-calibrations. Given an almost complex manifold (M; J), it is
locally always possible to �nd a non-degenerate di�erential form ! of degree 2
compatible with J . The compatibility relies in the fact that g(�; �) := !(�; J �)
de�nes a Riemannian metric on M. The tensor h = g � i! is called a
Hermitian metric on (M; J). If d! = 0 then we have a symplectic form,
but in general closedness cannot be expected in dimension higher than 4:
an example was exhibited on S6 in [7]. The triple (M; J; g) is an almost
Hermitian manifold; when the associated form ! is closed, we get an almost
Kähler manifold. The word �almost� refers to the fact that J can be non-
integrable.

The form ! on (M; J) has pointwise unit comass for the associated metric
g(�; �) := !(�; J �). The same holds for the di�erential form 
 := 1

p!!
p, where

p is any �xed integer p 2 f1; 2; :::ng. This is nothing else but Wirtinger's
inequality, [31]. We have therefore that 
 is a semi-calibration on (M; g).
If ! is closed, then so is 
 and we get a calibration. Recall that the family
G(
) of 2p-planes calibrated by 
 is

G(
) := [x2M Gx := [x2Mf�x 2 G2p(x; TxM) : h
x; �xi = 1g:

By Wirtinger's theorem [31] Gx is made exactly of the 2p-dimensional
Jx-complex subspaces of TxM. For this reason the 2p-planes in G(
) are
exactly the positive-(p; p) vectors and thus a positive-(p; p) integral cycle is
semi-calibrated by 
.

Remark 2.1. It is worthwile stressing the fact that the property of being a
complex subspace of (TxM; Jx) is not a�ected by choosing di�erent couples
(gx; !x) and (g0x; !

0
x) compatible with Jx in TxM. Therefore a positive-

(p; p) integral cycle is semi-calibrated by 
 := 1
p!!

p in (M; g) for any choice
of hermitian metric h = g � i! compatible with J . This �exibility in the
choice of (!; g) on M will be of key importance for our proof.

The issues we will be dealing with, namely tangent cones, are local:
we will be only interested in the asymptotic behaviour of currents around
a point, so we can assume to work in a chart rather than on a manifold.

-positive normal cycles in R2n+2 satisfy the following important almost
monotonicity property for the mass-ratio at any point x0.
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Proposition 1 (Almost-monotonicity of the mass ratio, e.g. [20]).
Let R2n+2 be endowed with a Riemannian metric g and a non-degenerate
two-form ! of unit comass. Denote by 
 the semi-calibration 1

p!!
p. Let the

2p-dimensional normal cycle T be 
-positive and let x0 be an arbitrary point.
Denote by Br(x0) the geodesic ball around x0 of radius r.

For an arbitrarily chosen point x0, the mass ratio M(T Br(x0))
r2p

is an

almost-increasing function in r, i.e.
M(T Br(x0))

r2p
= R(r) + O(r) for a

function R which is monotonically non-increasing as r # 0 and a function
O(r) which is in�nitesimal.

This is proved in [20], Proposition 1. It is important to notice that the
same proof works if we assume the semi-calibration to be just Lipschitz con-
tinuous rather than C1, see the appendix of [4]. The perturbation term
O(r) is bounded, independently of x0, by C �L � r, where C is a dimensional
constant and L is the Lipschitz constant of the semi-calibration. As men-
tioned in the introduction, such an almost-monotonicity formula guarantees
the existence of tangent cones, but not the uniqueness.

In this work we prove:

Theorem 2.1. Suppose that T is a positive-(p; p) integral cycle in an almost
complex manifold. Then for any point x0 the tangent cone to T at x0 is
unique.

Recall once again Remark 2.1: there is freedom on the choice of hermitian
metric compatible with J . From the discussion in this section the theorem
can be equivalently formulated in the following way:

Theorem 2.2. Let (M; g; J) be a (2n + 2)-dimensional almost Hermitian
manifold and let ! be the associated semi-calibration, i.e. !(�; �) = g(J �; �).
Denote by 
 the semi-calibration 
 := 1

p!!
p, for a �xed p 2 f1; 2; :::; ng. Let

T be a an integral 2p-cycle semi-calibrated by 
.
Then for any x0 the tangent cone to T at x0 is unique.

At �rst sight the statements just given might seem very special, in that
they are conditioned to the fact that we are in an almost complex mani-
fold. This turns out however to be a wrong impression, as we are about to
describe. In [6] we show that, roughly speaking, given any semi-calibrated 2-
current in a Riemannian manifold, we can locally cook up an almost complex
structure that makes the current pseudo holomorphic. This allows, among
other applications, to give a way more general setting in which the argument
for the uniqueness of tangent cones that we give in the present paper can be
carried out. For the sake of clarity we now proceed, borrowing from [6], to
explain the geometric ideas behind this generalization: this will lead us to
Theorem 2.3 below.
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Let ! be a two-form on a (2n + 2)-dimensional Riemannian manifold
(M; g), where g denotes the metric, and assume that ! has unit comass and
that it is non-degenerate (i.e. !n+1 6= 0 everywhere).

A standard construction (see e.g. [18]) provides the existence of an almost
complex structure J compatible with ! and consequently of a Riemannian
metric gJ that is uniquely de�ned by ! and by the almost complex structure.
The construction is done pointwise on M and we brie�y recall it here. We
will be working in the tangent space to M at an arbitrary point x. De�ne
an endomorphism A : TxM! TxM by setting

!(v; w) = g(Av;w) for any v; w 2 TxM :

Then A is skew-adjoint with respect to g, i.e. g(Av;w) = �g(v;Aw).
The g-positive de�nite endomorphism �A2 = A�A = P is diagonalizable
and there exists a square root, i.e. a positive de�nite Q : TxM ! TxM
such that Q2 = P . It follows that (Q�1A)2 = �Id. Doing this for any
point x we thus obtain that J := Q�1A is an almost complex structure
on M compatible with ! in the sense that we can de�ne the Riemannian
metric gJ(�; �) := !(�; J �) on M. Remark that ! is a semi-calibration also
with respect to the metric gJ , since we are now in the situation of an almost
Hermitian manifold.

We have not yet used the fact that ! has unit comass with respect to the
metric g. By exploiting this we will draw, in the next proposition, a very
important piece of information on the relation between the two metrics g
and gJ .

Proposition 2. (i) Let v; w 2 TxM be such that the 2-plane v ^ w is
calibrated by !(x) in (TxM; g). Then g agrees with the metric gJ constructed
above when they are restricted to the 2-plane v^w. In particular v^w belongs
to the family of !(x)-calibrated planes also in (TxM; gJ).

(ii) gJ � g, i.e. the bilinear form g � gJ is positive semi-de�nite.

proof of Proposition 2. (i) The �rst important observation is the following.
Let t 2 TxM be g-orthogonal to the 2-plane v^w; then !(v; t) = !(w; t) = 0.
This can be seen by noticing that, as t varies among all possible vectors
orthogonal to v^w, the 2-planes of the form v^ t and w^ t span the tangent
space to the Grassmannian G(2; TxM) at the point v ^ w. From the fact
that ! restricted to G(2; TxM) realizes its maximum at v ^w we have that
!(v; t) = !(w; t) = 0, as desired. This fact is known as the ��rst cousin
principle�, see e.g. [14].

With this in mind it follows, by the de�nition of A, that g(Av; t) =
g(Aw; t) = 0 for any t 2 TxM that is g-orthogonal to v ^ w, therefore A
restricts to an endomorphism of the 2-plane v ^ w. Now from the fact that
v^Av is calibrated we will infer that g and gJ agree on this 2-plane. Indeed,
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the fact that v ^Av is calibrated by ! in (TxM; g) can be expressed by the
equality

g(v; v)g(Av;Av)� g(v;Av)2 = !(v;Av)2

and by construction g(v;Av) = !(v; v) = 0. Recalling that (see above for
the construction of gJ) the g-adjoint of A is �A we rewrite the calibrating
condition as

g(v; v) = g(�A2v; v):

It follows that the only possible eigenvalue for the endomorphism �A2

restricted to the 2-plane v ^w is 1. Therefore A2 = �Id (the Q constructed
above is the identity on the 2-plane v^w) and J = A on v^w. In particular
g = gJ on this 2-plane.

(ii) The fact that the comass of ! with respect to g is 1 yields that for
any vector v

g(v; v)g(Av;Av)� g(v;Av)2 � !(v;Av)2;

so arguing as in part (i) we obtain that any eigenvalue of Q2 (and thus
of Q) must belong to the interval ]0; 1]. Remark that if v is an eigenvector
of Q2 then Av is an eigenvector for the same eigenvalue. Since g(v;Av) = 0
we can choose a g-orthogonal eigenbasis of Q2 (and thus of Q) of the form
fv1; Av1; :::; vn+1; Avn+1g. For any egenvector v of Q it holds

gJ(Av;Av) = !(Av;Q�1A2v) = !(Av;�Qv) =

= !(Qv;Av) � !(v;Av) = g(Av;Av):

By letting v vary in the set of vectors forming the chosen eigenbasis we
obtain the result.

In view of this proposition, given a non-degenerate semi-calibration !

on a (2n+ 2)-dimensional Riemannian manifold (M; g), we can change the
metric in a coherent way, in the sense that any cycle T that is semi-calibrated
by ! in (M; g) will be also semi-calibrated by ! in (M; gJ). The advantage of
the new metric relies in the fact that there exists an almost complex structure
J that satis�es the compatibility conditions with ! and gJ . The classical
Wirtinger's inequality tells us that 
 := 1

p!!
p (for a �xed p 2 f1; 2; :::; ng) is a

semi-calibration in (M; gJ). More precisely, using our Proposition 2 together
with Theorem 6.11 of [13] we can see that, given a non-degenerate semi-
calibration ! on a (2n + 2)-dimensional Riemannian manifold (M; g), the
2p-form 
 := 1

p!!
p is a semi-calibration both in (M; g) and in (M; gJ) and

the set of calibrated 2p-planes in (M; g) is contained in the set of calibrated
2p-planes in (M; gJ). We thus get, from Theorem 2.2, the following
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Theorem 2.3. Let (M; g) be a (2n+2)-dimensional Riemannian manifold,
endowed with a non-degenerate two-form ! of comass 1. Denote by 
 the
semi-calibration 
 := 1

p!!
p, for a �xed p 2 f1; 2; :::; ng. Let T be a an integral

2p-cycle semi-calibrated by 
.
Then for any x0 the tangent cone to T at x0 is unique.

When5 p = 1 then Theorem 2.3 is the special case of [20] in the case when
the semi-calibration is non-degenerate. Always for p = 1, if we moreover
assume d! = 0, then the result follows from [30].

In the rest of this work we will prove the uniqueness of tangent cones in
the situation described in Theorem 2.2, where we have the three structures
!, J and g. With a suitable choice of coordinates we can identify the tangent
space Tx0M, endowed with the complex structure Jx0 , with C

n+1: then every
tangent cone T1 to T at x0 is a positive-(p; p) cone in Cn+1: such a cone is
uniquely de�ned by a holomorphic (p� 1; p� 1) integral cycle L1 in CPn.

Using the regularity theory for holomorphic integral cycles ([16], [15], [1])
we can deduce that L1 is in fact the sum of a �nite number of holomorphic
algebraic varieties6, each one taken with a constant integer multiplicity, but
we will not need this result.

We will prove �rst the following

Lemma 2.1. Let (M; g; J) be a (2n + 2)-dimensional almost Hermitian
manifold and let ! be the associated semi-calibration, i.e. !(�; �) = g(J �; �).
Denote by 
 the semi-calibration 
 := 1

p!!
p, for a �xed p 2 f1; 2; :::; ng. Let

T be a 
-semi-calibrated integral cycle and x0 an arbitrary point. Then all
tangent cones to T at x0 have a uniquely determined support.

Once this lemma is achieved, the uniqueness of tangent cones (i.e. The-
orem 2.2) follows with a few extra considerations (without making use of
the results in [16], [15], [1]) developed in Section 4, namely: (i) the space of
tangent cones to T at x0 is closed and connected in the space of 2p-integral
cycles, (ii) the density is continuous under convergence of calibrated integral
cycles sharing the same support.

As for Lemma 2.1, the key idea for its proof is the analysis implementa-
tion, in the almost complex setting in which we are working, of the classical
algebraic blow up. This was already used in [4] for positive-(1; 1) normal
cycles and is here generalized to higher dimensional pseudo-holomorphic cur-
rents. The technique clearly shows that the uniqueness in Theorem 2.2 holds

5Remark that the generalization obtained in [6] is even wider in applicability, in that
we can actually drop the assumptions of even dimensionality of the ambient manifold
and of non-degeneracy of the semi-calibration. We stick however here to Theorem 2.3 so
that we can keep the digression short, but still e�ective in order to show the �exibility of
Theorems 2.1 and 2.2.

6We are slighlty abusing language here: these are algebraic varieties that are holomor-
phic away from their possible singular set.
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just for �density reasons� (recall that the uniqueness can fail when we look
at non-recti�able currents, where the density is allowed to take any values
� 0, see [17], [4] and [5]).

3 Strategy and tools for the proof of the theorem

The �rst important remarks are contained in the following

Lemma 3.1. Let T be as in Theorem 2.2 and be T the support of T . Assume
that there exists a sequence of points xm 2 T with xm ! x0 and xm 6= x0
such that xm�x0

jxm�x0j
! y 2 S2n+1. Then there exists a tangent cone to T at x0,

say T1, such that the point y belongs to the support of T1.
On the other hand, if y 2 S2n+1 belongs to the support of a tangent cone

T1 to T at x0, then there exists a sequence xm ! x0 (with xm 6= x0) of
points xm in the support of T such that xm�x0

jxm�x0j
! y.

Remark 3.1. Let Ck * C1 be a sequence of �k-semi-calibrated integral
cycles (k 2 N [ f1g), where �k are semi-calibrations with respect to the
metrics gk, and assume that the �k converge uniformly to �1, gk converge
uniformly to g1 and the Ck's have equibounded masses. ThenM(Ck B)!
M(C1 B) for any open set B. This follows since computing the mass
for a semicalibrated current amounts to testing the current on the semi-
calibration, so the convergence of the masses follows from the de�nition of
weak*-convergence of currents.

Remark 3.2. Recall that, as a consequence of monotonicity, a point belongs
to the support of a semi-calibrated integral cycle if and only if its density is
� 1.

proof of Lemma 3.1. The �rst statement follows by choosing the sequence
of radii rm := jxm � x0j and by looking at the sequence Tx0;rm . Up to a
subsequence we may assume that Tx0;rm * T1. Each xm is of density � 1
for T by assumption and, for any m, the point xm�x0

jxm�x0j
is of density � 1 for

Tx0;rm . Since
xm�x0
jxm�x0j

! y, analogously to Remark 3.1 we can get

M

�
Tx0;rm BR

�
xm � x0

jxm � x0j

��
!M(T1 BR(y))

for any R > 0. By the almost monotonicity formula M(T1 BR(y)) �
�2pR

2p and so y is a point of density � 1 for T1.

Let now y 2 S2n+1. If there exists no sequence xm 6= x0 such that
xm 2 T, xm ! x0 and xm�x0

jxm�x0j
! y, then we can assume to have a

ball B2n+1
a (y) � S2n+1 such that the cone 0]B2n+1

a (y) is disjoint from
T \B2n+2

R (0), for some small R > 0. But then, for any dilation Tx0;r with
r < R we have M(Tx0;r B2n+2

a (y)) = 0. Since the mass passes to the limit

11



for convergence of semi-calibrated cycles (Remark 3.1), we deduce that y is a
point of density 0 for any limit of the family Tx0;r, therefore it cannot appear
as a point in the support of any tangent cone.

In order to achieve Lemma 2.1, it su�ces, thanks to Lemma 3.1, to
analyze limits of xm�x0

jxm�x0j
! y for xm 2 T, xm ! x0. More precisely, recalling

that each tangent cone is a holomorphic (p; p)-cone, if y 2 S2n+1 belongs
to the support of a tangent cone T1, then every point in the Hopf �ber
fei�yg�2[0;2�) is also a point whose density for T1 equals that of y. In other

words, if y is in the support of T1, so is the whole �ber fei�yg�2[0;2�). Denote
by H : S2n+1 ! CPn the standard Hopf projection. Then, in order to prove
Lemma 2.1, we actually need to show the following

Proposition 3. Let T be a positive-(p; p) integral cycle. Let fxmg be a se-

quence of points such that xm 2 T with xm ! x0, xm 6= x0 and H
�

xm�x0
jxm�x0j

�
!

y 2 CPn. Then the support of any tangent cone to T at x0 must contain the
Hopf circle H�1(y).

This proposition will be proved by employing a �pseudo holomorphic blow
up� of the semi-calibrated current T at x0, i.e. a procedure inspired by the
classical algebraic blow up and adapted to the almost complex setting. We
now shortly recall the notations and the construction, which is developed in
more detail in [4].

Since tangent cones to T at a point x0 are a local issue, we can assume
straight from the beginning to work in the unit geodesic ball, in normal
coordinates centered at x0; for this purpose it is enough to start with the
current T already dilated enough around x0. Always up to a dilation, without
loss of generality we can actually start with the following situation.

T is a 
-positive normal cycle in the ball B2n+2
2 (0), the coordinates are

normal with respect to the origin, J is the standard complex structure J0
at the origin, ! is the standard symplectic form !0 at the origin, k! �
!0kC2;� (B2n+2

2 ), kJ � J0kC2;� (B2n+2
2 ) and k
 � 
0kC2;� (B2n+2

2 ) are small
enough, where 
 = 1

p!!
p and 
0 =

1
p!!

p
0 .

How to blow up the origin. We shall be using standard coordinates
(z0; z1; :::; zn) in B

2n+2
2 (0) � Cn+1 �= R2n+2 and the following notations as

in [4]:

S := f(z0; z1; :::zn) 2 B
2n+2
1 � C

n+1 : j(z1; :::; zn)j < jz0jg;

V � CP
n; V := f[z0; z1; :::; zn] : j(z1; :::; zn)j < jz0jg:

Using homogeneous coordinates on CPn, for X = [Z1; :::; Zn+1] 2 V

12



DX is the �straight� 2-plane made of all pointsf�(Z1; :::Zn+1) : � 2 Cg:

As shown in Section 3 of [4], by constructing (via a �xed point theorem)
a pseudo-holomorphic polar foliation we can produce an appropriate C2;�-
di�eomorphism

	 : S ! 	(S) � S; (2)

which is close to the identity on S, and which (by pulling-back7 the
problem via 	) allows us to make an extra assumption on the almost complex
structure J : namely the �straight 2-planes� DX are J-pseudo holomorphic
for all X 2 V. Figure 1 in [4] visually explains the behaviour of 	.

With this extra assumption on J , we can proceed to blow up the origin
of Cn+1 as follows.

Reminder : algebraic blow up (from symplectic geometry and algebraic
geometry, see e.g. [18]). De�ne eCn+1 to be the submanifold of CPn � Cn+1

made of the pairs (`; (z0; :::zn)) such that (z0; :::zn) 2 `.
Denote by I0 the complex structure that eCn+1 inherits from CPn�Cn+1.

Let � : eCn+1 ! Cn+1 be the projection map (`; (z0; :::zn))! (z0; :::zn). This
map is holomorphic for the standard complex structures J0 on C

n+1 and I0
on eCn+1 and is a di�eomorphism between eCn+1n(CPn � f0g) and Cn+1nf0g.
Moreover the inverse image of f0g is CPn � f0g.

We will endow eCn+1 with other almost complex structures, di�erent
from I0, so eCn+1 should be thought of just as an oriented manifold and
the structure on it will be speci�ed in every instance. The transformation
��1 (called proper transform) sends the point 0 6= (z0; :::zn) 2 C

n+1 to the
point ([z0; :::zn]; (z0; :::zn)) 2 eCn+1 � CPn � Cn+1.

We will keep using the same letters � and ��1 to denote the same maps
restricted to the sets

S � B2n+2 � R
2n+2 �= C

n+1 and A := ��1(S) � eCn+1;

(i.e. A is the inverse image of S via the projection �) also when we look
at these spaces just as oriented manifolds (not complex ones). We will make
use of the notation

S� := S \B2n+2
� � R

2n+2 �= C
n+1 and A� := ��1(S�) � eCn+1;

7The idea is to consider the pull-backs via the map 	 of the current T 	(S), of the
almost complex structure J and of the metric g and then work on those new objects in
S as if they were the ones we started from. The fact that 	 is by construction pseudo
holomorphic w.r.t. the structures 	�J and J yields that the pull-back current in S is
also positive-(p; p) w.r.t. 	�J . Moreover the �straight 2-planes� DX in S are pseudo
holomorphic w.r.t. 	�J . In [4] it is shown that everything is well-de�ned.

13



i.e. A� is the inverse image of S� via the projection �.

Let g0 denote the standard metric8 on A as a subset of eCn+1 � CPn �
Cn+1 and #0 be the standard symplectic form on A, uniquely de�ned by
#0(�; �) := g0(�;�I0�).

De�ne on A n (CPn � f0g):

� the almost complex structure I := ��J , i.e. I(�) :=
�
��1

�
�
J��(�),

� the metric g(�; �) := 1
2 (g0(�; �) + g0(I�; I�)),

� the non-degenerate two-form #(�; �) := g(�;�I�).

The triple (I;g; #) makes An (CPn�f0g) an almost Hermitian manifold
and from [4] we have

Lemma 3.2. The triple (I;g; #), extended to A by setting it to be equal to
(I0; g0; #0) on V �f0g, is Lipschitz continuous on A and ful�ls

jI � I0j(�) � cdistg0(�;CP
n � f0g);

jg � g0j(�) � cdistg0(�;CP
n � f0g);

j#� #0j(�) � cdistg0(�;CP
n � f0g);

for some constant c > 0, which is o(1) of jJ � J0j.

Remark 3.3. The choice of the J-pseudo holomorphic polar foliation as build-
ing block needed to implement the �pseudo holomorphic blow up� aimed ex-
actly to obtain the Lipschitz extension across CPn�f0g, which could fail on
the vertical vectors (see the proof in [4]) if we were working with an arbitrary
polar foliation (for example if we used the one made with �at J0-holomorphic
2-planes).

Set � := 1
p!#

p on A. The aim is now to translate our original problem to
the new space (A; I;g; #). For any � > 0 we can take the proper transform
of T (S nS�), since

�
��1

�
is a di�eomorphism away from the origin:

P� :=
�
��1

�
�
(T (S nS�)) :

The current P� is clearly positive-(p; p) in (A; I;g; #). What happens
when �! 0 ? Here is the answer.

8The standard metric on CPn�Cn+1 is the product of the Fubini-Study metric on CPn

and the �at metric on Cn+1.
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Lemma 3.3. (i) The current P := lim�!0 P� = lim�!0

�
��1

�
�
(T (S nS�))

is well-de�ned as the limit of currents of equibounded mass. The mass of P
(both with respect to g and to g0) is bounded by a dimensional constant C
times the mass of T .

(ii) P it is an integral cycle in A and it is semi-calibrated by �.

The proof is analog to the one in [4], but we need to take care of the fact
that the dimension of the current is higher. With the same notations as in
[4], for any � consider the dilation ��(�) :=

�
�
, sending B� to B1, and the

map

�� : A
� ! A; �� := ��1 � �� � �; (3)

which in the coordinates of CPn � Cn+1 (the ambient space in which A

is embedded) reads ��(`; z) =
�
`; z

�

�
.

proof of Lemma 3.3 (i). 1st step: it is enough to uniformly bound the
masses of P�. Each P� =

�
��1

�
�
(T (S nS�)) is �-positive by construction,

soM(P�) = P�(�), where the mass is computed here with respect to g. The
currents P� and P�0 for � > �0 coincide on A nA�. Therefore, in order to
study the limit as � ! 0, it is enough to have a sequence �k ! 0 and a
current P such that P�k * P : this guarantees that actually P� * P as
�! 0. Therefore we only need to prove a uniform bound (independent of �)
for the masses M(P�): then the compactness theorem and the remark just
made will guarantee the existence of a unique limit for P� as �! 0.

2nd step: uniform bound on the masses. We use in A standard coordi-
nates inherited from CPn�Cn+1, i.e. we have 2n horizontal variables (from
CPn) and 2n+ 2 vertical variables. We want to estimate M(P�) = P�(�) =
P�(�0) + P�(� � �0), where �0 := 1

p!#
p
0 on A. From Lemma 3.2 we get

that j� � �0j(p) < c distg0(p;CP
n � f0g) (we keep denoting the constant

by c, although it is generally di�erent that the one in Lemma 3.2; what is
important is that it is still controlled by jJ � J0j).

Recall that �0 :=
1
p!#

p
0. The domain S is a submanifold of CPn � Cn+1.

Therefore, using coordinates from CPn � Cn+1, the standard form #0 is
#CPn + #Cn+1 : here #CPn is the standard symplectic form on CPn extended
to CPn�Cn+1 (so independent of the 2n+2 �vertical variables�) and #Cn+1 is
the symplectic two-form on Cn+1, extended to CPn �Cn+1 (so independent
of the 2n �horizontal variables�).

Taking the p-th wedge power we get

�0 :=
1

p!
#
p
0 =

1

p!
(#CPn)

p +

pX
m=1

1

(p�m)!m!
(#CPn)

p�m(#Cn+1)m: (4)
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Let us begin with the �rst term on the right-hand side of (4). It is
proved in [4] (proof of Lemma 4.2) that the two-form

�
��1

��
�CPn on S

coincides with the two-form (!0)t
jzj2

, where !0 is the standard Kähler form of

Cn+1 restricted to S and the tangential part of !0 is by de�nition (!0)t :=
@
@r
y (dr ^ !0). As a consequence we have the equality

1

p!

��
��1

��
�CPn

�p
=

1

p!

((!0)t)
p

jzj2p
: (5)

Using the decomposition !0 = (!0)t + dr ^ (!0)n into its tangential and
normal parts (see [12]) we can see that

dr ^ 
0 = dr ^ ((!0)t + dr ^ (!0)n)
p = dr ^ ((!0)t)

p ;

which readily gives

(
0)t
jzj2p

=
1

p!

((!0)t)
p

jzj2p
: (6)

In9 the same way !t :=
@
@r
y (dr ^ !) so similarly as above the decompo-

sition into tangential and normal parts ! = !t + dr ^ !n yields

dr ^ 
 = dr ^ (!t + dr ^ !n)
p = dr ^ (!t)

p ;

so that

j
t � (
0)tj(z) � Cjzj; where C = C(p; n; kr!k1): (7)

Recall now the almost monotonicity formula (see [13], [20]) for the 
-
semicalibrated cycle T :

(T B1)(
)� �(0) =

Z
B1

�
~T ;


t

jzj2p

�
dkTk: (8)

In view of the fact that the integrand on the right hand side is everywhere
non-negative, we have the �niteness of the integrand on the right hand side
also when we restrict to a sector, i.e.

9Thanks to equalities (5) and (6) we get that the two-form
1

p!

��
��1

��
�CPn

�p
is exactly

the one appearing on the right hand side of the monotonicity formula in the case that T
is a 
0-calibrated cycle ([13]):

(T B1)(
0)� �(0) =

Z
B1

�
~T ;

(
0)t
jzj2p

�
dkTk:

The �niteness of the (improper) integral on the right-hand side readily gives that the
action of P� on 1

p!
(�CPn)

p is �nite independently of �. In order to face the case under
study, where T is semi-calibrated by 
, we need a perturbation of this argument.
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Z
S nB�(0)

�
~T ;


t

jzj2p

�
dkTk (9)

is the integration of a non-negative quantity and the integral is bounded
from above independently of �. Split this last integral as

Z
S nB�(0)

�
~T ;

(
0)t
jzj2p

�
dkTk+

Z
S nB�(0)

�
~T ;


t � (
0)t
jzj2p

�
dkTk: (10)

We will now show that

Z
S nB�(0)

���D~T ;
t � (
0)t

E���
jzj2p

dkTk

is bounded from above by a constant independent of �. For this purpose

use a dyadic decomposition S = [1j=0Aj , where Aj = S \
�
B 1

2j
nB 1

2j+1

�
. It

holds (by the almost monotonicity formula for T ) M(T Aj) � K
1

22pj
. On

the other hand, in the same annulus Aj , the integrand

���D~T ;
t � (
0)t

E���
jzj2p

is

bounded, thanks to (7), by C2(2p�1)(j+1) and therefore

Z
S nB�(0)

���D~T ;
t � (
0)t

E���
jzj2p

dkTk � C K22p�1
1X
j=0

1

2j
= 22pC K:

This last bound, recalling that (9) stays �nite as � ! 0 proves that the
�rst term Z

S nB�(0)

�
~T ;

(
0)t
jzj2p

�
dkTk

in (10) is also bounded in modulus from above independently of �.
Therefore we get that����P�� 1

p!
(#CPn)

p

����� = ����(T (S nB�))

�
1

p!

��
��1

��
�CPn

�p�����
is bounded independently of �, as desired.

We pass now to estimating the action of P� on the other wedge products

pX
m=1

1

m!(p�m)!
(#CPn)

p�m(#Cn+1)m

17



left from (4); the key observation is that
�
��1

��
(#Cn+1) has unit comass,

and therefore the forms
�
��1

�� �
(#CPn+1)p�m(#Cn+1)m

�
for m 2 f1; :::; pg

all have comasses bounded by
K

jzj2p�2
, where jzj is the distance from the

origin and K is a universal constant. We then argue again using a dyadic
decomposition for the estimate on jP�(���0)j, as follows.

Break up S = [1j=0Aj , where Aj = S \
�
B 1

2j
nB 1

2j+1

�
. It holds by

almost monotonicity that M(T Aj) � K
1

22pj
. On the other hand, in the

same annulus Aj , the comass of the form
�
��1

�� pX
m=1

(#CPn)
p�m(#Cn+1)m

!
is � K(p; n) 22(p�1)(j+1), for a constant K(p; n) which only depends on the
dimensions involved.

Therefore summing on all j's we can bound�����P�
 

pX
m=1

(#CPn)
p�m(#Cn+1)m

!����� =
=

�����(T S)

 �
��1

�� pX
m=1

(#CPn)
p�m(#Cn+1)m

!!����� �
� K(p; n)

1X
j=0

22(p�1)(j+1) 1

22pj
= K(p; n)

1X
j=0

22p�2�2j <1;

therefore

�����P�
 

pX
m=1

#CPn)
p�m(#Cn+1)m

!����� is also equibounded indepen-

dently of �.

So far we have thus shown that jP�(�0)j is bounded independently �. To
conclude the proof of part (i) of Lemma 3.3 (see the beginning of step 2),
we must still prove that jP�(� � �0)j stays �nite as � ! 0. Thanks to the
Lipschitz control on #� #0, which also yields j���0j(�) � cdistg0(�;CP

n �

f0g), the form
�
��1

��
(� � �0) in S has comass �

K

jzj2p�1
, where jzj is

the distance from the origin. Arguing with a dyadic decomposition as done
above, we �nd that also jP�(���0)j is bounded independently of �.

We have thus obtained that M(P�) are uniformly bounded as �! 0 and
therefore there exists a current P in A such that P� * P .

proof of Lemma 3.3 (ii). 1st step: choice of the sequence. Since P�k * P

for a well-de�ned current P , independently of the sequence �k ! 0, we will
now choose a particular f�kg to prove that @P�k * 0. This will thus show
that P has zero boundary.
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Denote by hT; jzj = ri the slice of T with the sphere @Br. Choose �k so
to ensure

� (i) T�k * T1 in S for a certain cone T1,

� (ii) M(hT�k ; jzj = 1i) are equibounded by 4K,

or, equivalently, M (hT; jzj = �ki) � 4K�2p�1k .

This is just like step 1 of Lemma 4.3 in [4].

2nd step. Let us think of the currents P and P� :=
�
��1

�
�
(T (S nS�))

as currents in the open set A in the manifold eCn+1. Given the sequence
�k ! 0, we want to observe the boundaries @P�k . By step 1 we assume that
T0;�k * T1 for a certain cone. Then the boundaries @P�k satisfy, as k !1,
by the de�nition (3) of ��k :

(��k)�(@P�k) = �
�
��1

�
�
hT0;�k ; jzj = 1i* �

�
��1

�
�
hT1; jzj = 1i: (11)

Recall that we are viewing P�k as currents in the open set A, so also
T (S nS�) should be thought of as a current in the open set S: this is why
the only boundary comes from the slice of T with jzj = �k.

Moreover, always by the choice of the sequence �k made in the 1st step, we
have that (��k)�(@P�k) have equibounded masses, since so do the @(T0;�k)'s
and ��1 is a di�eomorphism on @B1.

The current T1 has a special form: it is a positive-(p; p)-cone, so the
(2p � 1)-current hT1; jzj = 1i has an associated (2p � 1)-vector �eld that
always contains the direction tangent to the Hopf �bers10 of S2n+1.

3rd step. We want to show that P is a cycle in A, i.e. that @P�k * 0 as
k !1. The boundary in the limit could possibly appear on CPn�f0g and
we can exclude that as follows.

Let � be a (2p� 1)-form of comass one with compact support in A and
let us prove that @P�k(�) ! 0. Since A is a submanifold in CPn � Cn+1,
we can extend � to be a form in CPn�Cn+1. Let us write, using horizontal
coordinates ftjg

2n
j=1 on CP

n and vertical ones fsjg
2n+2
j=1 for Cn+1,

� = �h + �v1 + �v2 + :::�v(2p�1);

where �h is a form only in the dtj 's, and each �v` (for ` = 1; 2; :::; (2p�1))
contains wedge products of (2p�1�`) of the dtj 's and ` of the dsj 's. Rewrite,
viewing P�k as currents in CPn � Cn+1,

10Recall that the Hopf �bration is de�ned by the projection H : S2n+1 � C
n+1 ! CP

n,
H(z0; :::; zn) = [z0; :::; zn]. The Hopf �bers H�1(p) for p 2 CP

n are maximal circles in
S2n+1, namely the links of complex lines of Cn+1 with the sphere.
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@P�k(�) = [(��k)�(@P�k)]
�
��1�k )

��
�
:

The map ��1�k is expressed in our coordinates by (t1; :::; t2n; s1; :::s2n+2)!
(t1; :::; t2n; �ks1; :::�ks2n+2), therefore

(��1�k )
�� = �kh + �kv1 + �kv2 + :::�kv(2p�1);

where the decomposition is as above and with k�khk
� � k�hk

� and
k�kv`k

� . (�k)
`k�vk

�. The signs � and . mean respectively equality and
inequality of the comasses up to a dimensional constant, so independently
of the index k of the sequence.

As k ! 1 it holds �kh ! �1h in some C`-norm, where k�1h k
� . 1 and

�1h is a form in the dtj 's
11. We can write

���[(��k)�(@P�k)] (�
k
h)
��� � ���[(��k)�(@P�k)] (�

k
h � �1h )

���+ j[(��k)�(@P�k)] (�
1
h )j

and both terms on the r.h.s. go to 0. The �rst, since M((��k)�(@P�k))
are equibounded and k�kh � �1h k1 ! 0; the second because we can use
(11) and

�
��1

�
�
@(T1) has zero action on a form that only has the dtj 's

components, as remarked in step 1.

Moreover ���[(��k)�(@P�k)] (�
k
v`)
���! 0

for any ` 2 f1; 2; :::(2p � 1)g, because the currents (��k)�(@P�k) =
�
�
��1

�
�
hT0;�k ; jzj = 1i have equibounded masses by the choice of �k, while

the comasses k�kv`k
� . (�k)

`k�vk
� go to 0.

Therefore no boundary appears in the limit and P is an integral cycle in
A. The fact that it is semi-calibrated by � follows easily by the fact that so
are the currents P�, as remarked just before Lemma 3.3.

Summarizing, Lemmas 3.2 and 3.3 provide the analytic tools for the
implementation of the pseudo holomorphic blow up. Thus we are now able
to take the proper transform of an integral cycle T semi-calibrated by 
 in
S � B2n+2

1 and get an integral cycle P in A that is semi-calibrated by �,
where the semicalibration � is Lipschitz (and actually smooth away from
CPn � f0g). Therefore the almost monotonicity formula holds true for P in
A.

11More precisely �1h coincides with the restriction of �h to CPn � f0g, extended to
CP

n � C
n+1 independently of the sj-variables.
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4 Proof of the result

With the assumptions in Proposition 3 we have to observe a sequence
(�rk)�T as rk ! 0. Recall that we have assumed, see (2), that the �straight�
2-planes DX are pseudo-holomorphic for J .

Take any converging sequence T0;rk := (�rk)�T ! T1 for rk ! 0. Take
the proper transform of each T0;rk and denote it by Pk. Remark that Pk is a
�k-semi-calibrated cycle, for a semicalibration �k that is smooth away from
CPn�f0g and Lipschitz-continuous, with j�k��0j < ckdistg0(�;CP

n�f0g)
and the constants ck go to 0 as k !1 (lemma 3.2).

From Lemma 3.3, the masses of Pk are uniformly bounded in k, since so
are the masses of T0;rk (by almost monotonicity).

So by compactness, up to a subsequence that we do not relabel, we can
assume Pk * P1 for a normal cycle P1.

Lemma 4.1. P1 is a �0-semi-calibrated cycle; more precisely it is the proper
transform of T1.

proof of Lemma 4.1. �0-positiveness follows straight from the�k-positiveness
of Pk and j�k ��0j < ckdistg0(�;CP

n � f0g), ck ! 0.
The proper transform is a di�eomorphism away from the origin, thus

P1 (A nA�) = lim
k

�
��1

�
�
T0;rk (S nS�) =

�
��1

�
�
T1 (S nS�);

so in order to conclude that P1 is the proper transform of
�
��1

�
�
T1 we

only need to show P1 = lim�!0 P1 (A nA�), i.e. that M(P1 A�) ! 0
as �! 0.

Recall that #0 = #CPn + #Cn+1 ; we want to estimate M(P1 A�) =
(P1 A�)(�0) = limk!1(Pk A�)(�0). Write

(Pk A�)(�0) =
1

p!
(Pk A�)((#CPn)

p)+

+(Pk A�)

 
pX

m=1

1

m!(p�m)!
(#CPn)

p�m(#Cn+1)m

!
:

(12)

The second term on the r.h.s. is bounded as follows:

(Pk A�)

 
pX

m=1

(#CPn)
p�m(#Cn+1)m

!
=

= (��)�(Pk A�)

 
(��1r )�

 
pX

m=1

(#CPn)
p�m(#Cn+1)m

!!
:
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The current (��)�(Pk A�) is the proper transform of T0;�rk , therefore
M ((��)�(Pk A�)) � K independently of k; the form in brackets has comass
bounded by �2. Altogether

(Pk A�)

 
pX

m=1

(#CPn)
p�m(#Cn+1)m

!
� C(p; n)�2:

To bound the �rst term on the r.h.s. of (12), let P be the proper trans-
form of T ; using (�r)

�(#CPn)
p = (#CPn)

p we can write

(Pk A�)((#CPn)
p)) = (P Ark�)(#CPn)

p �M (P Ark�) �M (P A�)

so it goes to 0 as � ! 0 (uniformly in k). Summarizing we get that
(Pk A�)(�0) is o(1) of �! 0 uniformly in k; therefore so is M(P1 A�) =
limk!1(Pk A�)(�0) and we can write P1 = lim�!0 P1 (A nA�).

For a positive-(p; p) integral cycle in R2n+2, as we have already men-
tioned, each tangent cone is determined by a (p� 1; p� 1) integral cycle L1

in CPn that is calibrated by (�CPn )
p�1

(p�1)! , the normalized power of the Kähler
form.

The previous lemma tells us that, for a sequence rk ! 0 such that T0;rk *
T1, the proper transforms Pk :=

�
��1

�
�
T0;rk converge to

�
��1

�
�
T1, i.e. to

the current L1� JD2K. Indeed, the fact that a cone T1 is radially invariant
translates into the fact that its proper transform is invariant under the action
of �� for any � > 0.

proof of Proposition 3. Let T0;rk * T1, a possible tangent cone. Let L1
be the holomorphic (p� 1; p� 1)-integral cycle in CPn that identi�es T1.

If y0 is a point in the support of L1, then there exists a sequence of

points 0 6= yj ! 0 such that H
�

yj
jyj j

�
! y0 (where H is the Hopf projection)

and radii �j such that each ball B�j (yj) contains a set Cj of strictly positive
H2p-measure, Cj is contained in the support of T0;rk and the balls B�j (yj)
are disjoint.

If we take a di�erent sequence T0;Rk *
~T1, we still �nd a sequence of

points as before, since
yj
jyj j

is not changed under radial dilations. Take the

proper transforms ~Pk of T0;Rk . The density is preserved almost everywhere
under the push-forward via a di�eomorphism. For each ~Pk we �nd that, by
upper semi-continuity of the density, y0 is a point of density � 1 for ~Pk (for
all k). Therefore y0 is of density � 1 for the limit of the currents ~Pk, i.e.
for ~P1 =

�
��1

�
�
~T1: this follows from the monotonicity formula, with an

argument as in Remark 3.1.
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This proves that any point in the support of L1 is also in the support of
~L1, the holomorphic (p� 1; p� 1)-integral cycle in CPn that identi�es ~T1.
Since ~T1 is an arbitrary tangent cone this concludes the proposition and
therefore Lemma 2.1 is proved, i.e. all tangent cones must have the same
support.

Now that the support of any tangent cone is uniquely determined,
we have to make sure that any two links L1 and ~L1 (obtained by a blow
up with di�erent sequences rk and Rk) have multiplicities that agree a.e.

The following lemma should be known, but we recall it for sake of com-
pleteness.

Lemma 4.2. Let C be a semicalibrated cycle of dimension m in Rn (or in
an arbitrary Riemannian manifold). For any x0 the set of tangent cones to
C at x0 is a closed and connected subset (for the �at distance, which metrizes
the weak*-topology on currents of equibounded mass and boundary mass, see
[12]).

proof of Lemma 4.2. Let � be the set of all possible tangent cones at x0.
Given a sequence fTkg

1
k=1 in � assume that Tk * T . We want to show that

T 2 �. The assumption Tk 2 � means that there exists a sequence rkj ! 0
such that as j !1 we have Cx0;r

k
j
* Tk. With a diagonal argument we get

T 2 �.
Now, to prove connectedness, assume by contradiction that � = �1[�2,

where �1 and �2 are closed and disjoint. Then there exist (in the space of
currents) A1 and A2 open disjoint neighbourhoods respectively of �1 and
�2. The family of currents Cxo;r (r � 0) is continuous and should therefore
accumulate (as r ! 0) also somewhere outside A1 and A2, contradiction.

The following lemma will be applied to a sequence of possible tangent
cones at a chosen point.

Lemma 4.3. Let Cn and C be integral cycles of dimension k calibrated by a
k-form ! (in an arbitrary Riemannin manifold). Assume that Cn * C and
that the support C is the same for all Cn and C and it is compact. Let �n(x)
denote the density at x for Cn and �(x) analogously the density at x for C
(dealing with calibrated cycles, each �n or � is well-de�ned everywhere).

Then for every x 2 C it holds �(x) = limn!1 �n(x).

proof of Lemma 4.3. We will achieve the proof in three steps.

Claim (i) for every x 2 C it holds �(x) � lim supn!1 �n(x).

This follows from the monotonicity formula. Indeed, let Br(x) be the ball
around x with radius r. By Remark 3.1, the weak convergence Cn * C yields
M(Cn Br(x))!M(C Br(x)). By monotonicity we haveM(Cn Br(x)) �
�k�n(x)r

k, thus it must hold, for all r > 0,
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M(C Br(x)) � �k(lim sup
n!1

�n(x))r
k:

Since �(x) = limr!0
M(C Br(x))

�kr
k we can conclude claim (i).

Claim (ii) There exists L > 0 such that �n; � � L everywhere on C.

For each �xed Cn (resp. C), the density �n (resp. �) is a bounded func-
tion: this follows from the facts that the mass is locally �nite, the mono-
tonicity formula holds and the density is upper semi-continuous. So, in order
to prove claim (ii), assume by contradiction that here exist points pn 2 C
such that �n(pn) " +1 as n ! 1. Up to a subsequence that we do not
relabel we can assume pn ! p for a point p in C. Choose a ball BR(p) and
let m > 0 be chosen so that M(C BR(p)) = �k �m � R2. Choose n0 large
enough so that for all n � n0 it holds (i) �n(pn) � 3m and (ii) jpn� pj <

R
10 .

Then consider the balls B 9R
10

(pn): they are contained in BR(p).

By the monotonicity formula applied at pn for Cn, we get

M(Cn B 9R
10

(pn)) � �k(3m)
92R2

102

and therefore

M(Cn BR(p)) � �k(3m)
92R2

102
:

By Remark 3.1 we must have M(Cn BR(p)) ! M(C BR(p)), so we
can write

M(C BR(p)) � �k(3m)
92R2

102
:

Since 3�92

102
> 1 we contradicted the assumption that M(C BR(p)) =

�kmR
2.

Claim (iii) for every x 2 C it holds �(x) = limn!1 �n(x).

It su�ces to show, for an arbitrary x, that

�(x) = lim sup
n!1

�n(x): (13)

Once this is achieved, choose a subsequence nk such that lim infn!1 �n(x) =
limnk!1 �nk(x) and apply (13) to the sequence of currents Cnk to show that
�(x) = limnk!1 �nk(x) = lim infn!1 �n(x).

Again the main ingredient for (13) is the monotonicity formula, which
for an arbitrary x 2 C states
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1

Rk
M(Cn BR(x)) = �n(x) +

Z
BR(x)

j~Cy ^ @rj
2

jy � xjk
�n(y)dH

k(y) C

1

Rk
M(C BR(x)) = �(x) +

Z
BR(x)

j~Cy ^ @rj
2

jy � xjk
�(y)dHk(y) C;

(14)

where the unit simple k-vector ~Cy represents the approximate tangent
to C at y with the orientation given on Cn and @r is the radial unit vector

(with respect to the point x). Therefore the function
j ~Cy^@rj2

jy�xjk
is independent

of n (since the underlying C is always the same and �~Cy both yield the same

value for j~Cy ^ @rj).

Let � be the �nite measure
j~Cy ^ @rj

2

jy � xjk
� Hk(y) (C \BR(x)). By claim

(ii) we can apply Fatou's lemma to L� �n and L� � to getZ
lim sup

n
�n(y)d�(y) � lim sup

n

Z
�n(y)d�(y);

which together with claim (i) yieldsZ
�(y)d�(y) � lim sup

n

Z
�n(y)d�(y):

We can now use this last inequality together with claim (i) and the fact
thatM(Cn BR(x))!M(C BR(x)) to pass to the limit in (14) as n!1:
we get that necessarily we have the equality �(x) = lim supn!1 �n(x).

proof of Theorem 2.2. Let � be the family of possible tangent cones to
T at x0. The elements of � are integral (p � 1; p � 1)-cycles (in CPn, the

projective space of Cn+1 � TxM) calibrated by (�CPn )
p�1

(p�1)! and by Lemma 2.1
they all have the same support.

First we are going to prove that there exists a subset �d � � that is
countable and dense in �, i.e. � is separable. This is achieved as follows.

All currents in � are supported on the same recti�able set C and they
can only di�er by the choice of the density function. We can represent C n ~C,
where ~C is a H2p-null set, as the image of a Borel subset K of R2p via a
Lipschitz map taking values in CPn and with Lipschitz constant 1

2 � L � 2.

To obtain this representation, recall (see [19]) that C n ~C is a countable union
of disjoint pieces, each piece being the image, via a Lipschitz map with
constant close to 1, of a compact subset of R2p. We can freely change by
translation the position of these countably many compact subset of R2p and
make them disjoint, so by denoting their union with K we get the desired
representation for C n ~C.
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For each current in � the density on the recti�able set C is an L1 function
on
�
C;H2p

�
. Using the previous representation of C, we can record these

densities as L1 functions on R2p that are zero outside of K. The family �
therefore yields a family fgaga2� of such L1(R2p) functions. Every such L1

function on R2p is associated to a current supported on C.
The family fgag is compact in L1: indeed the L1-convergence for a se-

quence in fgag yields the (weak*) convergence for the corresponding cur-
rents. So fgag is closed with respect to the L1-norm, because � is closed
with respect to the weak*-topology. Moreover fgag is bounded in L1 becauseR
R2p

gadL
2p is comparable (up to a factor 2, recall the condition on L) to the

mass of the corresponding current which is �xed for all elements of �.
We conclude that, as a compact subspace of the separable normed space

L1(R2p), fgag is also separable. The corresponding countable set of currents
is the desired �d.

Except on a H2p-null set ~C0, all points of C n ~C0 have integer densities for
all currents in �d.

Let now x 2 C n ~C0 and observe the function F from �d to R assigning
to every current P 2 �d the value F (P ) := �P (x), where �P is the density
of P . By Lemma 4.3 the function F is continuous on the metric space �d,
but since it is also integer-valued it must be locally constant on �d.

�d is dense in �, so for every current P 0 2 � the value �P 0(x) is also
locally constant by Lemma 4.3. Since � is connected, �P 0(x) must then be
globally constant for P 0 2 �. The point x 2 C n ~C0 was arbitrary, therefore
all currents in � have a �xed density at all points except on the null set ~C0

and this makes them equal as currents. A posteriori also the density on ~C0

is �xed.
We have therefore obtained that � is made of one single element and we

can conlcude the uniqueness Theorem 2.2 for tangent cones.
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References

[1] Alexander, H. Holomorphic chains and the support hypothesis conjecture
J. Amer. Math. Soc. 10 (1997), no. 1, 123�138.

[2] Bellettini, Costante and Rivière, Tristan The regularity of Special Leg-
endrian integral cycles, Ann. Sc. Norm. Sup. Pisa Cl. Sci. XI 1 (2012),
61-142.

[3] Bellettini, Costante Almost complex structures and calibrated integral
cycles in contact 5-manifolds, to appear in Adv. Calc. Var.

26



[4] Bellettini, Costante Tangent cones to positive-(1; 1) De Rham currents,
preprint 2012.

[5] Bellettini, Costante Tangent cones to positive-(1; 1) De Rham currents,
C. R. Math. Acad. Sci. Paris 349 (2011), 1025-1029.

[6] Bellettini, Costante Semi-calibrated 2-currents are pseudo holomorphic,
with applications, preprint 2013.

[7] R. Bryant Submanifolds and special structures on the octonians, J. Dif-
ferential Geom. 17 (1982), 185-232.

[8] De Giorgi, Ennio Nuovi teoremi relativi alle misure (r�1)-dimensionali
in uno spazio ad r dimensioni (Italian) Ricerche Mat. 4 (1955), 95-113.

[9] S.K. Donaldson and R.P. Thomas Gauge Theory in higher dimensions,
in "The geometric Universe", Oxford Univ. Press, 1998, 31-47.

[10] Duzaar, Frank and Ste�en, Klaus � minimizing currents, Manuscripta
Math. 80, (1993), 4, 403-447.

[11] Federer, Herbert Geometric measure theory, Die Grundlehren der math-
ematischen Wissenschaften, Band 153, Springer-Verlag New York Inc.,
New York, 1969, xiv+676.

[12] M. Giaquinta, G. Modica and J. Sou£ek Cartesian currents in the calcu-
lus of variations I, Ergeb. Math. Grenzgeb. (3) vol. 37, Springer-Verlag,
Berlin, 1998, xxiv+711.

[13] Harvey, Reese and Lawson, H. Blaine Jr. Calibrated geometries, Acta
Math.,148, 47�157,1982.

[14] Harvey, Reese and Lawson, H. Blaine Jr. An introduction to potential
theory in calibrated geometry, American Journal of Mathematics, 131,
2009, 4, 893�944.

[15] Harvey, Reese; Shi�man, Bernard A characterization of holomorphic
chains Ann. of Math. (2) 99 (1974), 553�587.

[16] King, James R. The currents de�ned by analytic varieties Acta Math.
127 (1971), no. 3-4, 185�220.

[17] Kiselman, Christer O. Tangents of plurisubharmonic functions Interna-
tional Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988),
157-167, Springer, Berlin

[18] McDu�, Dusa and Salamon Dietmar Introduction to symplectic topol-
ogy, Oxford Mathematical Monographs, 2, The Clarendon Press Oxford
University Press, New York, 1998, x+486.

27



[19] Morgan, Frank, Geometric measure theory, Fourth edition, A beginner's
guide, Elsevier/Academic Press, Amsterdam, 2009, viii+249.

[20] Pumberger, David and Rivière, Tristan Uniqueness of tangent cones for
semi-calibrated 2-cycles, Duke Math. J., 152 (2010), no. 3, 441�480.

[21] Rivière, Tristan; Tian, Gang The singular set of J-holomorphic maps
into projective algebraic varieties, J. Reine Angew. Math. 570 (2004),
47�87. 58J45

[22] Rivière, Tristan and Tian, Gang The singular set of 1-1 integral cur-
rents, Ann. of Math. (2), Annals of Mathematics. Second Series, 169,
2009, 3, 741-794.

[23] Simon, Leon Lectures on geometric measure theory, Proceedings of the
Centre for Mathematical Analysis, Australian National University, 3,
Australian National University Centre for Mathematical Analysis, Can-
berra, 1983, vii+272.

[24] Simon, Leon Asymptotics for a class of nonlinear evolution equations,
with applications to geometric problems, Ann. of Math. (2), Annals of
Mathematics. Second Series, 118 (1983), 3, 525-571.

[25] Siu, Yum Tong Analyticity of sets associated to Lelong numbers and the
extension of closed positive currents Invent. Math. 27 (1974) 53-156.

[26] Strominger, Andrew and Yau, Shing-Tung and Zaslow, EricMirror sym-
metry is T-duality, Nuclear Phys. B 479 (1996), 243-259.

[27] Taubes, Cli�ord Henry, "SW) Gr: from the Seiberg-Witten equations
to pseudo-holomorphic curves". Seiberg Witten and Gromov invariants
for symplectic 4-manifolds. , 1�102, First Int. Press Lect. Ser., 2, Int.
Press, Somerville, MA, 2000.

[28] G. Tian Gauge theory and calibrated geometry. I, Ann. of Math. (2),
151 (2000) 1, 193�268.

[29] Tian, Gang Elliptic Yang-Mills equation, Proc. Natl. Acad. Sci. USA,
Proceedings of the National Academy of Sciences of the United States
of America, 99, (2002), 24, 15281-15286.

[30] White, Brian Tangent cones to two-dimensional area-minimizing inte-
gral currents are unique, Duke Math. J., 50, 1983, 1, 143�160.

[31] Wirtinger, W. Eine Determinantenidentität und ihre Anwendung auf
analytische Gebilde in Euklidischer und Hermitescher Massbestimmung,
Monatsh. Math. Phys. 44, 1936 1, 343-365.

28


