
Multiplicity-1 minmax minimal hypersurfaces in
manifolds with positive Ricci curvature

Costante Bellettini
University College London

Abstract

We address the one-parameter minmax construction for the Allen–Cahn energy
that has recently lead to a new proof of the existence of a closed minimal hypersur-
face in an arbitrary compact Riemannian manifold Nn+1 with n ≥ 2 (Guaraco’s
work [14], relying on works by Hutchinson, Tonegawa, Wickramasekera [16], [36],
[37], [40] when sending the Allen–Cahn parameter to 0). We obtain the following
result: if the Ricci curvature of N is positive then the minmax Allen–Cahn solu-
tions concentrate around a multiplicity-1 minimal hypersurface (possibly having a
singular set of dimension ≤ n − 7). This multiplicity result is new for n ≥ 3 (for
n = 2 it is also implied by the recent work [6] by Chodosh–Mantoulidis).

We exploit directly the minmax characterization of the solutions and the an-
alytic simplicity of semi-linear (elliptic and parabolic) theory in W 1,2(N). While
geometric in flavour, our argument takes advantage of the flexibility afforded by
the analytic Allen–Cahn framework, where hypersurfaces are replaced by diffused
interfaces; more precisely, they are replaced by sufficiently regular functions (from
N to R), whose weighted level sets give rise to diffused interfaces. We capitalise
on the fact that (unlike a hypersurface) a function can be deformed both in the
domain N (deforming the level sets) and in the target R (varying the values).
We induce different geometric effects on the diffused interface by using these two
types of deformations; this enables us to implement in a continuous way certain
operations, whose analogues on a hypersurface would be discontinuous.

An immediate corollary of the multiplicity-1 conclusion is that every compact
Riemannian manifold Nn+1 with n ≥ 2 and positive Ricci curvature admits a
two-sided closed minimal hypersurface, possibly with a singular set of dimension
at most n − 7. (This geometric corollary also follows from the combined results
of [19], [29], [41], [42], obtained by different ideas in an Almgren–Pitts minmax
framework.)

1 Introduction

The close link between Allen–Cahn energy and minimal hypersurfaces has its roots
in the ideas pioneered by De Giorgi in the development of Γ-convergence. The works of
Modica–Mortola [25] and Kohn–Sternberg [20], among many others, testify to the fine
suitability of the Allen–Cahn approximation method for the study of area-minimisers.
Moving away from the minimising case, the Allen-Cahn approximation has seen further
success in recent years, starting with the combined works of Guaraco, Hutchinson,
Tonegawa, Wickramasekera [14], [16], [36], [37], [40]: their outcome was a new proof
(that uses classical PDE minmax techniques) of the existence of a closed minimal
hypersurface in an arbitrary compact Riemannian manifold of dimension 3 or higher.
Moving to higher codimension problems, very recently the work of Pigati–Stern [27]
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has made another fundamental contribution: after identifying a correct energy (and
geometric framework), it carries out an approximation procedure reminiscent in many
ways of the Allen–Cahn one; this leads to a new proof (again via classical PDE minmax)
of the existence of stationary integral varifolds of codimension 2 (the natural candidates
for closed minimal submanifolds of codimension 2) in an arbitrary compact Riemannian
manifold.

The original proof of the existence of stationary integral varifolds in a compact
Riemannian manifold was obtained by Almgren [2] (in arbitrary codimension). In
codimension-1, the work of Pitts [28], together with the regularity and compactness
theory of Schoen–Simon–Yau [32] and Schoen–Simon [33], provided the information
that the varifold obtained is in fact a closed minimal hypersurface (that is, smooth ex-
cept for an expected singular set of codimension 7 or higher). In answering (positively)
the above existence question, Almgren and Pitts developed a considerable amount of
machinery, which has been extended and further developed in the past decade, leading
to impressive progress in the field, particularly for codimension-1 questions (starting
with the resolution, by Marques–Neves [22], of the long-standing Willmore conjecture).
The power so far deployed by the Almgren–Pitts minmax method is countepoised by
certain intrinsic difficulties that make it rather involved: the space of integral varifolds
on N (or variants of it), on which the minmax is carried out, lacks a linear structure
and, moreover, no Palais–Smale condition is available for the area functional on this
space. The Allen–Cahn minmax method looks, on the other hand, for saddle-type
solutions to a semi-linear elliptic problem on the Hilbert space W 1,2, and the validity
of a Palais–Smale condition permits the use of classical PDE minmax tools, leading to
convenient Morse index bounds.

A common feature in all variational minmax constructions is the fact that the
geometric objects produced are integral varifolds, and as such carry an a.e. integer-
valued multiplicity. Proving that this multiplicity is (a.e.) equal to 1 can lead to further
geometric consequences. The work of Chodosh–Mantoulidis [6] (valid more generally
for solutions with bounded Morse index, not necessarily minmax solutions) implies that
the minimal surface obtained by a one- or multi-parameter Allen-Cahn minmax is two-
sided and has multiplicity 1 when the Riemannian manifold is 3-dimensional and the
metric is bumpy or has positive Ricci curvature. Combining this with the result of [10]
on the Weyl’s law, [6] obtained the validity of the generic version of Yau’s conjecture
for 3-manifolds (on the existence of infinitely many hypersurfaces).1 The multiplicity
question is ubiquitous in the field. The work of Zhou [43] proves the multiplicity-1
conclusion for one- or multi-parameter Almgren–Pitts minmax, when the metric is
bumpy or has positive Ricci and the dimension of the manifold is between 3 and 7,
as conjectured by Marques–Neves [23, 1.2] (see also [23, Addendum]). For the recent
viscosity approach to the minmax for surfaces in arbitrary codimension, proposed by
Rivière in [30], the work of Pigati–Rivière [26] established a multiplicity-1 conclusion
for the critical points constructed.

Heuristically, and regardless of the specific framework used for the construction, the
seeked submanifold (more precisely, integral varifold) is always obtained as a limiting
object from a certain sequence; the relevance of the multiplicity-1 conclusion lies in
the fact that it very much constrains the fashion in which this limit arises. Thanks
to it, finer pieces of information that are available on the sequence can pass to the

1Yau’s conjecture was then established in full, for manifolds of dimension between 3 and 7, by Song
[35] in combination with the work of Marques–Neves [24].
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limit in a straightforward way. Higher multiplicity hypersurfaces, on the other hand,
could arise in many different ways, possibly with degeneration of certain features and
preventing the passage to the limit of certain properties. In the case of the Allen–Cahn
equation, Wang [38] provides a C1,α-sheeting result (with Allard-type estimates) under
multiplicity-1 convergence.

Our main theorem is the following multiplicity-1 result (new for n ≥ 3), which
applies to the Allen–Cahn (one-parameter) minmax construction in Guaraco’s work
[14]. The case n = 2 also follows from Chodosh–Mantoulidis’s result [6].

Theorem 1.1. Let N be a compact Riemannian manifold of dimension n+1 with n ≥ 2
and with positive Ricci curvature. Then the Allen–Cahn minmax ([14], see Section 2.1)
yields on N a multiplicity-1 smooth minimal hypersurfaceM with dim

(
M \M

)
≤ n−7.

Remark 1.2 (Additional consequences). The multiplicity-1 conclusion immediately im-
plies that M is two-sided; in fact N \ M is given by two disjoint open sets whose
common boundary is M . It also follows easily that M is connected and has Morse
index 1.

To obtain the multiplicity-1 result of Theorem 1.1 we exploit directly the minmax
characterization (rather than finite index properties). Recall that the Allen–Cahn en-
ergy Eε involves a small parameter ε > 0 and the desired minimal hypersurface appears
by taking a suitable (subsequential) limit, as ε → 0+, of varifolds naturally associ-
ated to the minmax critical points uε ∈ W 1,2(N) constructed in [14]. (Heuristically,
a diffused interface is constructed from weighted level sets of uε, following [16].) The
minimal hypersurface is obtained in the ε → 0+ limit as a stationary integral vari-
fold. Exploiting the fact that uε have Morse index at most 1, the varifold turns out to
be smooth away from a singular set of codimension 7 or higher, ultimately thanks to
Tonegawa and Wickramasekera’s works [36], [37], [40]. We will not directly analyse the
Allen–Cahn solutions uε constructed in [14], that concentrate on the minimal hyper-
surface. We will only retain the following information on these solutions: the minmax
characterisation of uε, the fact that the minmax values cε = Eε(uε) converge to the
mass of the varifold as ε→ 0+, and the smoothness properties of the varifold. We then
prove the following result (see Section 1.1 for a sketch of the argument), from which
Theorem 1.1 is easily deduced.

Theorem 1.3. Let N be a compact Riemannian manifold of dimension n+ 1, n ≥ 2,
and with positive Ricci curvature. Let M ⊂ N be any smooth minimal hypersurface
such that dim

(
M \M

)
≤ n − 7, M is stationary in N , and for every x ∈ M there

exists a geodesic ball in N centred at x in which M is stable. Then the minmax value
cε obtained by [14] (for ε < 1) satisfies

lim sup
ε→0+

cε < 2Hn(M).

Remark 1.4. The assumptions on M in Theorem 1.3 are valid for any minimal hy-
persurface whose closure is the support of a varifold produced by the minmax in [14]
(using [16], [36], [37], [40]). Then it is readily checked that Theorem 1.1 follows from
Theorem 1.3.

Remark 1.5. It is not hard to check that, under the assumptions of Theorem 1.1, the
area of the minmax hypersurface is less than or equal to that of an arbitrary two-sided
minimal hypersurface in N that has the properties listed for M in Theorem 1.3.
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Remark 1.6. While RicN ≥ 0 on N would not suffice for our multiplicity-1 conclusion,
the assumption RicN > 0 in Theorems 1.1 and 1.3 can be weakened. Denoting by
{RicN = 0} the set where the Ricci curvature is 0 in at least one direction, the curvature
hypothesis can be relaxed by assuming RicN ≥ 0 on N and, additionally, one of the
following: (i) Hn({RicN = 0}) = 0, or (ii) {RicN = 0} ⊂ ∪∞i=1Ai where Ai’s are
pairwise disjoint open sets, each having smooth mean-convex boundary, with mean
curvature pointing towards the interior of Ai. (See Remark 8.2.)

Remark 1.7. As the assumption RicN > 0 is only used at specific points in the proof
(summarised in Remark 8.2), some ideas developed here could be employed more widely.
For example, an argument in [5] is inspired by the present work, and analogues of
Theorem 1.1 and of Theorem 1.8 below are obtained in [4] for 2 ≤ n ≤ 6 when N is
endowed with a bumpy metric.

While the Allen–Cahn and Almgren–Pitts frameworks are different in spirit (see also
Remarks 1.10 and 1.11), Theorem 1.1 could be viewed as an Allen–Cahn counterpart of
the combined results obtained in [19], [29], [41], [42] for the Almgren–Pitts minmax. In
[19] Ketover–Marques–Neves show (relying also on [41]) that, when Nn+1 is orientable
with positive Ricci curvature and 2 ≤ n ≤ 6, the minimal hypersurface is two-sided and
has multiplicity 1. This result is extended to n ≥ 7 by Ramírez-Luna in [29] (relying
on [42]). Recalling Remark 1.2, Theorem 1.1 provides an alternative route to following
existence result for two-sided minimal hypersurfaces, also obtained in [19], [29].

Theorem 1.8. In any compact Riemannian manifold of dimension n + 1 with n ≥ 2
and with positive Ricci curvature there exists a smooth two-sided minimal hypersurface
M with dim

(
M \M

)
≤ n− 7.

Remark 1.9. The curvature hypothesis in Theorem 1.8 can be weakened in one of the
ways described in Remark 1.6.

1.1 Strategy

We now outline the proof of Theorem 1.3. Given M as in Theorem 1.3, the idea
is to produce, for all sufficiently small ε, a continuous path in W 1,2(N) that joins the
constant −1 to the constant +1 and such that the Allen–Cahn energy evaluated along
the path stays below 2Hn(M) by a fixed positive amount independent of ε (determined
only by geometric properties of M ⊂ N). Since this is an admissible path for the
minmax in [14] (see also Section 2.1), the inequality in Theorem 1.3 must hold.

The construction of the path is geometric in flavour and employs classical tools
(coarea formula, semi-linear PDE theory). For simplicity, in this introduction we illus-
trate it mainly in the case 2 ≤ n ≤ 6, so that M is smooth and closed. We think of
M with multiplicity 2 as an immersed two-sided hypersurface, namely its double cover
M̃ with the standard projection. This immersion, that we denote by ι : M̃ → N , is
minimal and unstable (by the positiveness of the Ricci curvature). It is possible to find
a (sufficiently small) geodesic ball B ⊂M such that the lack of stability still holds for
deformations that do not move B (this follows by a capacity argument). We then find a
deformation of ι that is area-decreasing on some time interval [0, t0] and that does not
move B. This deformation is depicted in the top row of Figure 1. (We can choose the
initial speed of the deformation to be non-negative on M̃ , therefore the deformation
“pushes away fromM ”.) We denote by 2Hn(M)−τ the area of the immersion at time t0,
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for some τ > 0. If we cut out B from M we are left with an immersion with boundary,
namely ι|M̃\ι−1(B). We can restrict the previous deformation to ι|M̃\ι−1(B), obtaining
an area-decreasing deformation (at fixed boundary) on the time interval [0, t0]. This
time the area changes from 2Hn(M) − 2Hn(B) to 2Hn(M) − 2Hn(B) − τ . This de-
formation is depicted in middle row of Figure 1. Now we proceed to close the hole
at B continuously (bottom row of Figure 1), reaching, say in in time 1, the same im-
mersion depicted in the top-right picture of Figure 1. It is helpful to think of closing
the hole at B by inserting a weighted copy of B and letting the real-valued weight
increase continuously from 0 to 2. (Abusing language, we will talk in this introduction
of immersions also to indicate these “weighted immersions”.) The area increases from
2Hn(M)− 2Hn(B)− τ to 2Hn(M)− τ . Therefore, in going from the middle-left pic-
ture to the bottom-right picture of Figure 1, we have produced a “path of immersions”
along which the area stays stricly below 2Hn(M), at least by min{τ, 2Hn(B)}, a fixed
positive amount that only depends on the geometry of M ⊂ N .

This path of immersions is then “reproduced at the Allen–Cahn level”, i.e. replaced
by a continuous path γ : [0, t0 + 1] → W 1,2(N). Each function in the image of this
curve is a suitable “Allen–Cahn approximation” of the corresponding immersion. To
construct this, one fits one-dimensional Allen–Cahn solutions in the normal bundle to
the immersion, respecting multiplicities: at points with multiplicity 1 and 2 we will
use respectively the top and bottom profiles in Figure 3. The image of the immersion
corresponds to points where the function transitions between −1 and +1, with a double
transition for points of multiplicity 2. The operation of closing the hole at B can be
reproduced at the Allen–Cahn level thanks to the multiplicity-2 assumption on B:
in the normal direction to B, the profile of the function goes from being constantly
−1 to looking like the bottom picture in Figure 3, employing the continuous family
of profiles depicted in Figure 4 (going from the last to the first picture). Moreover,
this operation is continuous in W 1,2(N). (Working in the Allen–Cahn framework,
hypersurfaces are replaced by weighted level sets of functions and are thus naturally
diffused, so continuous weights are allowed. This ultimately permits the geometric
operation of closing the hole by increasing the weight of B continuously from 0 to 2.
The analytic ingredient behind the implementation of such a geometric operation is the
possibility to vary, as in Figure 4, the values of the function whose level sets give rise to
the diffused hypersurface. This geometric effect cannot be obtained by composing the
function with a domain deformation.2) The construction of γ is done for all sufficiently
small ε (the parameter of the Allen–Cahn energy) and, moreover, for all sufficiently
small ε the Allen–Cahn energy all along γ is a close approximation of the area of the
corresponding immersions; therefore, for all sufficiently small ε, the energies stay below
2Hn(M) by a fixed “geometric” amount ≈ min{τ, 2Hn(B)}.

We now consider γ(0) and γ(t0 + 1) (respectively the Allen–Cahn approximations
of the immersions in the middle-left and top-right picture of Figure 1). For the latter,
we use a (negative) Allen–Cahn gradient flow (to which we add a small forcing term,
infinitesimal in ε). We build a mean convex barrier (by writing a suitable Allen–Cahn
approximation of ι), that sits below γ(t0 + 1). Thanks to this, we show that the flow
deforms γ(t0 + 1) continuously into a stable Allen–Cahn solution, which has to be
the constant +1 by the Ricci-positive assumption. Along this flow, the Allen–Cahn

2In a similar spirit, when we will write an Allen–Cahn approximations of an immersion with bound-
ary, there will be no sharp transition of multiplicity at the boundary: the weight will instead continu-
ously decrease to 0 in a neighbourhood of the boundary of the hypersurface.
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energy is controlled by the initial bound ≈ 2Hn(M) − τ . The function γ(0) is ≈ +1
close to M \ B and ≈ −1 away from a tube around M \ B: we connect this function
explicitly to the constant −1, continuously in W 1,2, with approximately decreasing
Allen–Cahn energy. This is again possible thanks to the profiles in Figure 4. (A close
geometric operation is to give weight 2 toM \B and let the real-valued weight decrease
continuously to 0.) Reversing the latter path, composing it with γ and then with the
path obtained via the flow, we produce the promised continuous path in W 1,2(N) that
joins −1 to +1 and has the desired energy control.

ι : M̃ → N
(double cover of M)

ι|M̃\ι−1(B) (make a hole
at B)

push away from M
keeping B fixed

push away from M \B

close the hole at B continuously
(increasing the density from 0 to 2)

Figure 1: Cut, deform, fill in. The path of “immersions” in the second and third row
reaches the same immersion depicted in the top-right picture.

We stress that the functions γ(t), t ∈ [0, t0 + 1], that we call “Allen–Cahn ap-
proximations” of the corresponding immersions, are not solutions of an Allen–Cahn
equation, even when they are built from minimal hypersurfaces; they only realize the
“correct” energy value. In fact we do not even analyse the Allen–Cahn first variation
of γ(t). The loss of information on the first variation is compensated by the ad hoc
structure of the Allen–Cahn approximation: its level sets are by construction graphical
over the given immersed hypersurface, so that the Allen–Cahn energy is an effective
approximation of area (by the coarea formula) and the geometric information can be
translated to the Allen–Cahn level.

We digress to comment briefly on the operation of connecting γ(0) to the constant
−1. We could in fact use an Allen–Cahn flow for this step, by first slightly deforming
γ(0) into another function (with a similar profile, so that it still approximates 2|M \B|,
but with a more effective first variation) and then running the Allen-Cahn flow, that
deforms this function to the constant −1. We do not argue in this way, since we are
able to produce an explicit deformation of γ(0) to −1, which is elementary and straight-
forward, thanks to the profiles in Figure 4. We stress, however, that the deformation
that we exhibit mimics the Allen–Cahn flow, and can be viewed as a regularized ver-
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sion of the Brakke flow that starts at 2|M \ B| and vanishes instantaneously. While
the Brakke flow creates a discontinuity in space-time, at the Allen–Cahn level we gain
continuity (and the flow reaches −1 in time O(ε | log ε |)). As we mentioned above, an
intuitive geometric counterpart of the deformation connecting γ(0) to −1, is the one
that continuously decreases the weight of M \B from 2 to 0 in time O(ε | log ε |).

A remark in similar spirit can be made for the portion of path that “closes the
hole at B”. At the Allen–Cahn level we gain continuity for this operation, because the
framework allows (heuristically) to increase the weight of B from 0 to 2 continuously.
More precisely, with the parametrization that we employ (that takes time 1), if we
were to take the ε→ 0 limit for this portion of path, we would see indeed a continuous
increase of the density on B from 0 to 2 (going from the bottom-left picture to the
bottom-right picture of Figure 1). We could have alternatively parametrized this por-
tion of path by employing the same one-dimensional profiles in the normal direction
to B, however parametrized at faster speed (as in (3)), in order to mimic a reversed
Allen–Cahn flow on R: in this case this portion of path would take time O(ε | log ε |)
and if we were to take the ε→ 0 limit we would see the sudden appearance of 2|B|.

Gε0 ≈ 2|M |

make
a hole
at B

γ(0) = f
= g0 γ(t0 + 1) = gt0+1

gt0
gt

push away
from M \B

gt0+r
close hole
at B
continuously

push away from M
keeping B fixed

→ −1 → +1

Figure 2: Lowering the peak (landscape for the Allen–Cahn energy). The same labels
as in Figure 1 are used, to denote deformations that reproduce those in Figure 1.

We emphasise the following point of view on the construction of the path (con-
necting −1 to +1) that was sketched above. Consider ι : M̃ → N : we exhibit two
one-sided deformations that decrease area and that can be reproduced for the Allen–
Cahn approximations. One (from the top-left to the middle-left picture of Figure 1)
has the geometric effect of removing 2|B|. The other (from the top-left to the top-right
picture of Figure 1) is a deformation of ι as an immersion, induced by an initial velocity
compactly supported away from B. We will denote by Gε0 in Section 4 the Allen-Cahn
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approximation of ι. Then, with reference to Figure 2, and using the notation γ(0),
γ(t0 + 1) respectively for the Allen–Cahn approximations of the immersions in the
middle-left and top-right picture of Figure 1, the two deformations just described, im-
plemented at the Allen–Cahn level, correspond respectively to “going from Gε0 to γ(0)”
and “going from Gε0 to γ(t0 + 1)”. The two deformations are linearly independent, as
the former acts on a compact set containing B while the latter in the complement of
this compact set. Note that it may well be that ι is an immersion with Morse index
1 (e.g. the double cover of an equator of RP3). The area-decreasing deformation that
removes B is clearly not a deformation of ι as an immersion; it can be reproduced as
a continuous deformation at the Allen–Cahn level thanks to the fact that multiplicity
is 2 on B, so that the profile of Gε0 in the normal bundle to B looks like the bottom
one in Figure 3; this profile can be connected continuously to the constant −1 with
controlled energy, employing the deformation depicted in Figure 4.

The function γ(0) (that will be denoted by f = g0 in Section 7) can be connected
to the constant −1 and the function γ(t0 + 1) can be connected to the constant +1,
as described in the sketch given earlier. We thus have a “recovery path” for the value
2Hn(M): this path connects −1 to +1 (passing through Gε0) and the maximum of
the Allen–Cahn energy along this path is ≈ 2Hn(M). What we achieve is to deform
this path in the sorroundings of Gε0, exploiting the information that we have gained on
the landscape, specifically we deform the portion between γ(0) and γ(t0 + 1). From
γ(0) we use a deformation that reproduces the one in the middle row of Figure 1. By
doing this we reach a function gt0 (notation as in Section 7). Now we close the hole
continuously, replicating the deformation in the bottom row of Figure 1, reaching the
function γ(t0 + 1) (that will be denoted by gt0+1 in Section 7). We have thus found a
path γ : [0, t0+1]→W 1,2(N), from γ(0) to γ(t0+1), that lowers the peak, compared to
the initial “recovery path”. This follows thanks to the fact that the Allen–Cahn energy
is a close approximation of the area of the corresponding immersion, so we inherit the
estimates that we had for the path of immersions that joins the middle-left picture to
the bottom-right picture of Figure 1.

This shows that the landscape around Gε0 is reminiscent of one where the Morse
index is ≥ 2. However Gε0 is not a stationary point for the Allen–Cahn energy. In
fact, we never need to compute the Allen–Cahn first or second variation along these
deformations, it suffices to know that the Allen–Cahn energy at γ(0) and γ(t0 + 1) is
strictly less than its value at Gε0 (by a fixed amount independent of ε). Knowledge of
the first variation is only needed for Gε0 in order to prove that a negative gradient flow
connects γ(t0 + 1) to +1, for which we employ Gε0 as a barrier.

Remark 1.10. It is natural to ask whether the path from −1 to +1 produced in the
earlier sketch can be imitated (e.g. in an Almgren–Pitts framework) by a one-parameter
family of boundaries in N . For the portion γ : [0, t0 + 1] → W 1,2(N), rather than
increasing the weight of B from 0 to 2 (which cannot be done in the class of boundaries)
one can argue by doubling M \ B and inserting a small cylindrical neck at B, then
pushing this hypersurface away from M without moving the neck (and decreasing the
area), then closing the neck. (An operation of this type is analysed in [19]. To avoid
confusion, we point out that for our path γ, the nodal sets {γt = 0}t∈[t0,t0+1] are not
cylindrical necks.) It is conceivable that one could then use mean-curvature-flow to
drift away from M until extinction time and thus imitate, by using boundaries, the
portion of path from γ(t0 + 1) to +1. The use of a flow for this purpose does not
appear to have been investigated in the literature. (Gradient flows may be easier to

8



use in the Allen–Cahn framework, since the parabolic problem is semilinear, has long-
time existence and singularities do not appear. This may be particularly true when
n ≥ 7 with singularities present in the geometric initial condition, see Remarks 1.11
and 1.12.) For the portion of path that goes from γ(0) to the constant −1, the spirit of
the Allen–Cahn deformation is again very different than a deformation of boundaries
(compare with [19], [41]), since its geometric analogues are either a continuous weight-
decrease from 2 to 0 or a Brakke flow that instantaneously makes M \ B disappear.
The Allen–Cahn framework allows a very straightforward way to produce this portion
of path. (Some extra challenges have to be overcome in [19], for example the catenoid
estimate.)

For n ≥ 7, we still employ the idea illustrated in low dimensions. Its implemen-
tation, however, is rendered somewhat harder by the presence of the singular set:
standard tubular neighbourhoods and Fermi coordinates for M (that are essential to
fit one-dimensional Allen–Cahn profiles in the normal bundle to M) are not available.
While the geometric ideas remain the same as in the low-dimensional case, we need
to additionally study certain analytic properties. Denote by dM : N → [0,∞) the
distance function to M . The value dM (x) is always realized by a geodesic (possibly
more than one) from x to a smooth point of M . This allows to analyse the cut-locus of
dM (restricting to {dM < inj(N)}), following [21], and obtain n-rectifiability properties
for it. This leads (for the moment) to the existence of a suitable replacement for Fermi
coordinates, which becomes the usual one on any compact subset of M̃ . Denote by
ι : M̃ → N the immersion given by the standard projection from the double cover
of M . We choose K ⊂ M̃ compact (sufficiently large) and a geodesic ball B ⊂ ι(K)
(sufficiently small) so that ι : M̃ → N admits a deformation as an immersion that
decreases area and only moves K \ ι−1(B). (This is analogous to what we did in the
lower dimensional case, except that this time we additionally need a deformation that
does not move M close to the singular set.) The set K will play the role that was of
M̃ in the low-dimensional case. Around ι(K) we define Allen–Cahn approximations
of suitable immersions by fitting one-dimensional Allen–Cahn profiles in the normal
bundle. Away from ι(K), we use the level sets of dM to complete the definition of
the desired Allen–Cahn approximations and create (as in the low-dimensional case) a
continuous path γ : [0, t0 + 1] → W 1,2(N) with controlled energy. Exploiting further
the n-rectifiability of the cut-locus, we analyse the singular part of ∆dM and (using
also the Ricci-positive condition) we obtain that, restricting to {dM < inj(N)}, the
distributional Laplacian of dM is a positive Radon measure. This translates into a
mean convexity property for the Allen–Cahn approximation Gε0 of ι : M̃ → N . With
a (slightly non-standard) smoothing operation, we obtain from Gε0 a smooth barrier m
that is still mean-convex for the negative Allen–Cahn gradient flow (as for 2 ≤ n ≤ 6,
we add an infinitesimal forcing term). By employing m we produce the part of the
path that connects γ(t0 + 1) to the constant +1.

Remark 1.11. The continuity of the path from γ(0) to γ(t0 + 1), its energy bounds,
and the mean-convexity of Gε0, ultimately rest on the fact that almost every level set of
the distance function dM is almost everywhere smooth, with mean curvature pointing
away from M . These properties only require classical arguments. The almost every-
where information is sufficient for our purposes, because in the Allen–Cahn framework
hypersurfaces are “diffused”. For contrast, in the case of boundaries of Caccioppoli sets,
all level sets of dM have to be analysed, compare [29, Proposition 2.2].
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Remark 1.12. The almost everywhere properties at the previous remark are sufficient to
set up a mean convex Allen–Cahn flow starting at Gε0. For n ≥ 7 this initial condition is
built from a singular hypersurface. We expect that the ε→ 0 limit of these Allen-Cahn
flows gives rise to an ancient (mean-convex) mean curvature flow with initial condition
(at time −∞) given by the singular minimal immersion ι : M̃ → N .

1.2 Structure of the paper (and remarks for n ≤ 6)

Except for properties of the distance function borrowed from [21] (in Section 3 we
point out the relevant modifications needed to handle the singular set), the proof is
self-contained.

After the preliminary Section 2, we begin the proof of Theorem 1.3, which we
write for n ≥ 7, assuming the existence of a (non-empty) singular set M \ M of
dimension ≤ n − 7. While the underlying ideas are the same for all dimensions, the
proof becomes considerably shorter and more straightforward in the absence of singular
set, in particular when n ≤ 6. In detail, Sections 3 and 4, in which we study the
distance function to M and its level sets, can be omitted when M = M and one can
use standard facts about tubular neighbourhoods of smooth closed hypersurfaces. In
Section 5 we identify a large unstable region 2|K \B| and in Section 6 the immersions
that will be relevant for the construction of the path. The compact set K that we need
to work with in Sections 5 and 6 can be replaced simply by M̃ when M = M , and in
this case the definitions of the Allen–Cahn approximations of the relevant immersions
given in Section 7 become simpler. In Section 7.5 we construct a barrier m by suitably
mollifying a Lipschitz function Gε0, which is defined from the level sets of dM and is
an Allen–Cahn approximation of ι : M̃ → N . This convolution procedure (described
in Appendix A) ensures smoothness and mean-convexity of m, which is important for
our arguments. If M = M , Gε0 is already smooth and mean-convex and no smoothing
is needed, so Appendix A and part of Section 7.5 can be omitted. In Section 8 we
complete the proof of Theorem 1.3, and subsequently of Theorems 1.1 and 1.8.
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interesting discussion related to some aspects of this work.

2 Preliminaries

We give a brief summmary of [14], then introduce the one-dimensional Allen–Cahn
profiles that will be needed for our proof.
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2.1 Reminders: Allen–Cahn minmax approximation scheme

We recall the minmax construction in [14]. For ε ∈ (0, 1) consider the functional

Eε(u) =
1

2σ

∫
N

ε
|∇u|2

2
+
W (u)

ε

on the Hilbert space W 1,2(N). Here W is a C3 “double well” potential, with exactly
three critical points, two non-degenerate minima at ±1 and a local maximum at 0, with
(exactly) two zeroes of W ′′ (one between −1 and 0, one between 0 and 1) and with
quadratic growth to ∞ at ±∞; the normalisation constant σ is σ =

∫ 1
−1

√
W (t)/2 dt.

A standard choice of potential is W (x) = (1−x2)2

2 , suitably modified (to have quadratic
growth) outside [−2, 2]. Consider continuous paths in W 1,2(N) that start at the con-
stant −1 and end at the constant +1: this is the class of admissible paths. A “wall” (or
“mountain pass”) condition is ensured and yields the existence of a minmax solution uε
to Eε′(uε) = 0. Moreover, upper and lower energy bounds are established, uniformly in
ε. (We recall that Eε′(u) = − ε∆u+ W ′(u)

ε , where ∆ is the Laplace-Beltrami operator,
so the Euler-Lagrange equation Eε′(u) = 0 is elliptic semi-linear.)

In order to produce a stationary varifold, one considers wε = Φ(uε) as in [16], with
Φ(s) =

∫ s
0

√
W (t)/2 dt, and defines the n-varifolds

V ε(A) =
1

σ

∫ ∞
−∞

V{wε=t}(A)dt.

The analysis in [16] (which only requires the stationarity of uε and no assumption on
their second variation), together with the upper and lower bounds for Eε(uε), gives that
V ε converges subsequentially, as ε→ 0, to an integral n-varifold V 6= 0 with vanishing
first variation.

Thanks to the fact that the Morse index of uε is ≤ 1 for all ε, [14] reduces the
problem locally in N to one that concerns stable Allen–Cahn solutions, as in [36]. For
these, the regularity theory of [40] and [37] applies and gives that spt ‖V ‖ is smoothly
embedded away from a possible singular set of dimension ≤ n− 7, i.e. V is the varifold
of integration over a finite set of minimal hypersurfaces, each counted with integer
multiplicity: V =

∑K
j=1 qj |Mj |, with qj ∈ N andMj minimal and smooth with dim(Mj\

Mj) ≤ n − 7 (|Mj | denotes the multiplicity-1 varifold of integration on Mj). In the
case n ≤ 6 all the Mj ’s are closed (and smooth). (In the case RicN > 0 there is only
one connected component, K = 1, see Remark 8.1.)

We point out that, denoting by εi the sequence extracted to guarantee the varifold
convergence, Eεi(uεi) → ‖V ‖(N) in this construction, in other words the Allen–Cahn
energy of uεi converges to the mass

∑K
j=1 qjHn(Mj) of V .

2.2 1-dimensional profiles

Let H(r) denote the monotonically increasing solution to u′′−W ′(u) = 0 such that
limr→±∞H(r) = ±1, with H(0) = 0. (For the standard potential (1−x2)2

2 we have
H(r) = tanh (r).) Then also H(−r) and H(±r + z) solve u′′ − W ′(u) = 0 (for any
z ∈ R). The rescaled function Hε(r) = H

(
r
ε

)
solves εu′′ − W ′(u)

ε = 0.

Truncations. The arguments developed here will involve the construction of suitable
Allen–Cahn approximations of certain immersions. For that purpose, we will make use
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of approximate versions of Hε. While this introcuces small errors in the corresponding
ODEs, it has the advantage that the approximate solutions are constant (±1) away
from an interval of the form [−6 ε | log ε |, 6 ε | log ε |]. An Allen–Cahn approximation of
a hypersurface in N requires to fit the 1-dimensional profiles in the normal direction to
the hypersurface and we need to stay inside a tubular neighbourhood, so it is effective
to have one-dimensional profiles that become constant before we reach the boundary
of the tubular neighbourhood.

The cutoff for the heteroclininc H is done as follows (this truncation is also used in
[6] and [39]): for Λ = 3| log ε | define

H(r) = χ(Λ−1r)H(r)± (1− χ(Λ−1r)),

where ± is chosen respectively on r > 0, r < 0 and χ is a smooth bump function that is
+1 on (−1, 1) and has support equal to [−2, 2]. With this definition, H = H on (−Λ,Λ),
H = −1 on (−∞,−2Λ], H = +1 on [2Λ,∞). Moreover H satisfies (as we check below)
‖H′′ −W ′(H)‖C2(R) ≤ C ε3, for C > 0 independent of ε. Note that H′′ −W ′(H) = 0
away from (−2Λ,−Λ) ∪ (Λ, 2Λ), so it suffices to compute on (−2Λ,−Λ) ∪ (Λ, 2Λ):

H′′(r) = Λ−2χ′′(Λ−1r)(H(r)∓ 1) + 2Λ−1χ′(Λ−1r)H′(r) + χ(Λ−1r)H′′(r).

We have ‖H(r)∓1‖C0 ≤ c εα and ‖H′(r)‖C3 ≤ c εα for some α ≥ 6, and c > 0 depending
only on W . This can be done by explicit check for the standard potential (e.g. when
r > 0 we must estimate 1 − tanh(r) = 2e−2r

1+e−2r for r > −3 log ε) and is true whenever
W is quadratic around the minima by comparison. Therefore on (−2Λ,−Λ) ∪ (Λ, 2Λ)

we get ‖H′′‖C2 ≤ c̃ ε3 for ε < 1/2 and c̃ > 0 depending only on W . Similarly, on
(−2Λ,−Λ) ∪ (Λ, 2Λ) one checks that ‖H′‖C2 ≤ c̃ ε3 for ε < 1/2 and c̃ > 0 depending
only on W . Moreover, since W ′(H) = H′′ and H−H = (1− χ(Λ−1t))(H∓ 1), we find
on (−2Λ,−Λ) ∪ (Λ, 2Λ)

‖W ′(H)‖C2 ≤ ‖W ′(H)‖C0 + ‖W ′′‖C0‖H−H‖C0 + 3‖W ′′‖C1(‖H′‖C1 + ‖H′‖2C0) ≤ cε3.

In conclusion ‖H′′ −W ′(H)‖C2(R) ≤ Cε3 for some C > 0 (depending on W ).
Notation: For ε < 1 we rescale these truncated solutions and let Hε

(·) = H
( ·
ε

)
.

Computation of the Allen-Cahn energy of Hε. To compute the energy of Hε, fol-
lowing [17], we have, for any q : R→ R,∫

(a,b)

ε

2
|q′|2 +

W (q)

ε
=

∫ b

a

1

2

(√
εq′ − 1√

ε

√
2W (q)

)2

+ q′
√

2W (q).

The first term vanishes when q = Hε. Let G denote a primitive of
√

2W (t). For the
second term, noting that the integrand is G(q)′, we get G(q(b))−G(q(a)). In particular,∫
R
ε
2 |H

′
ε|2 + W (Hε)

ε = G(1)−G(−1) = 2σ. Using the fact that Hε(−2 εΛ) = −1+O(ε2),
we get for q = Hε∫ −2 εΛ

−∞

ε

2
|q′|2 +

W (q)

ε
= G(−1 +O(ε2))−G(−1) = O(ε4) > 0
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and similarly
∫∞

2 εΛ
ε
2 |q
′|2 + W (q)

ε = O(ε4) > 0. Therefore∫ 2 εΛ

−2 εΛ

ε

2
|H′ε|2 +

W (Hε)

ε
= 2σ −O(ε4).

Recalling the definition of Hε, we have that

Hε −Hε
= (1− χ(εΛ−1t))(Hε ± 1)

which is controlled by O(ε2) in C2-norm. Therefore

2σ −O(ε2) ≤
∫ 2 εΛ

−2 εΛ

ε

2
|(Hε

)′|2 +
W (Hε

)

ε
≤ 2σ +O(ε2). (1)

−2 εΛ 2 εΛ−4 εΛ 4 εΛ

+1

≡ −1 ≡ −1

−2 εΛ 2 εΛ

≡ +1

≡ −1

Figure 3: The (smooth) functions Hε (top) and Ψ = Ψ0 (bottom), with Λ = 3| log ε |.

Families of profiles. Define the function Ψ : R→ R

Ψ(r) =

{
Hε

(r + 2 εΛ) r ≤ 0

Hε
(−r + 2 εΛ) r > 0

. (2)

This function is smooth thanks to the fact that all derivatives of Hε vanish at ±2 εΛ.
Define the following evolution for t ∈ [0,∞):

Ψt(r) :=

{
Hε

(r + 2 εΛ− t) r ≤ 0

Hε
(−r + 2 εΛ− t) r > 0

. (3)

Note that Ψ0 = Ψ and Ψt ≡ −1 for t ≥ 4 εΛ. For t ∈ (0, 4 εΛ) the function Ψt is equal
to −1 for |r| ≥ 4 εΛ − t. The functions Ψt form a family of even, Lipschitz functions
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Figure 4: The profiles ψt, depicted for t ∈ (0, 4 εΛ), see (3).

and Eε(Ψt) is decreasing in t. Indeed, the energy contribution of the “tails” (±1) is zero
(so the energy is finite) and we have Eε(Ψt) = Eε(Ψ)− 1

2σ

∫ t
−t ε

|Ψ′|2
2 + W (Ψ)

ε .
Note that Ψ and Ψt depend on ε, however we do not explicit this dependence for

notational convenience. The profiles Ψt, and profiles of the type Hε
(· − t), will be used

within our construction to produce Allen–Cahn approximations of relevant immersions
(possibly with boundary), having multiplicity 1 or 2 on their image.

3 Distance function to M

Let N be a Riemannian manifold of dimension n+ 1 with n ≥ 2 and with positive
Ricci curvature RicN > 0. Let M ⊂ N be a smooth minimal hypersurface such that
dim

(
M \M

)
≤ n−7, M is stationary in N , andM is locally stable in N , i.e. for every

point inM there exists a geodesic ball centred at the point in whichM is stable. These
properties are true for the ε→ 0 varifold limit of finite-index Allen–Cahn solutions on
N , thanks to the analysis in [14], [16], [36], [37], [40]. The stationarity condition implies
the existence of tangent cones at every point inM . A consequence of the deep sheeting
theorem in [33], [40] is that any point of M at which one tangent cone is supported on
a hyperplane has to be a smooth point.

Let distN denote the (unsigned) Riemannian distance on N ; we will be interested
in the function dM : N → [0,∞), dM (·) = distN (·,M). Since N is complete, for every
x the value dM (x) is realized by at least one geodesic from x to M (Hopf–Rinow). We
recall a few facts that are true of the distance to an arbitrary closed set, see [21, Section
3]3. The function dM is Lipschitz on N (with constant 1) and locally semi-concave on

3If the closed set is known to be a C1,1 submanifold, then the existence of a tubular neighbourhood
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N \M , so that its gradient is BVloc on N \M (equivalently, the distributional Hessian
of dM on N \M is a Radon measure). We denote by SdM the subset of N \M where
dM fails to be differentiable; SdM coincides with the set of points in p ∈ N \M for
which there exist at least two geodesics from p to M whose length realizes dM (p). The
function dM is C1 on N \ (M ∪SdM ) and SdM is countably n-rectifiable (this uses [1]).
However, rectifiability is not necessarily true of its closure unless extra hypotheses on
the closed set are available; for example, SdM would be countably n-rectifiable (even
in the Ck−2 sense) if M were a Ck submanifold with k ≥ 3, thanks to [21, Section 4].
While this statement does not apply immediately in our case due to the presence of
the singular set M \M , the proof in [21, Section 4] can still be carried out without any
change by virtue of the following observation, which can also be found in [13], [42].

Lemma 3.1. Let x ∈ N \M . For any geodesic from x to M (whose length realizes
dM (x)), we have that the endpoint y on M actually belongs to M .

Proof. Let γ be any geodesic from x to M , let y be its endpoint on M and fix a point
z ∈ N that lies in the image of γ and such that distN (z, y) < inj(N). Consider the
(open) geodesic ball B(z) ⊂ N centred at z with radius distN (z, y). ThenM∩B(z) = ∅
(otherwise there would be a shorter curve than γ joining x to M) and y ∈M ∩ ∂B(z).
Since the monotonicity formula holds at all points ofM (M is stationary in N), we can
blow up at y to obtain tangent cones. Then every tangent cone to M at y has to be
supported in a (closed) half space (the complement of the open half space obtained by
blowing up B(z) at y). By [34, Ch. 7 Theorem 4.5, Remark 4.6] every tangent cone to
M at y is the hyperplane tangent to B(z) at y, possibly with multiplicity. As pointed
out above, the sheeting theorem in [33], [40] implies that y is a smooth point.

In other words, any geodesic that realizes the distance toM has to end at a smooth
point, i.e. onM (and it meetsM orthogonally). This is the key fact that allows to repeat
the arguments in [21, Section 4] (as we briefly sketch below) and obtain Proposition 3.2.
In the rest of this work we will be interested in the set Tω = {x ∈ N : distN (x,M) < ω},
where ω is chosen in (0, inj(N)), therefore we restrict to this open set for our analysis
(even though not strictly necessary for this section).

Proposition 3.2 (as in [21]). The set SdM ∩ Tω is countably n-rectifiable4. Moreover,
∇dM ∈ SBVloc(Tω \M) and the singular part (with respect to Hn+1 (Tω \M)) of the
Radon measure D2dM (Tω \M) is supported on SdM ∩ (Tω \M).

Remark 3.3. Additionally we have, since M is smooth, that the absolutely continuous
part of D2dM has a smooth density with respect to Hn+1

(
Tω \ (M ∪ SdM )

)
. This

density coincides with the pointwise Hessian of dM .

Sketch: relevant arguments in [21]. Consider the map F (y, v, t) = expy(tv) for
y ∈ M and v a unit vector orthogonal to M at y. For fixed (y, v) the curve F (y, v, t)
is a geodesic leaving M orthogonally. We will limit ourselves to t ≤ ω, since we are
only interested in Tω. If t0 is sufficiently small (depending on (y, v)) the geodesic
t ∈ [0, t0]→ F (y, v, t) is the minimizing curve between its endpoint F (y, v, t0) and M ,

is guaranteed, in which the nearest point projection is a well-defined map; moreover, if C2 regularity
on the submanifold is assumed, Fermi coordinates can be used. In our case, due to the presence of the
singular set M \M , one cannot have a tubular neighbourhood of M .

4Even Ck countably n-rectifiable for all k, however we will not need this stronger property.
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equivalently, its length is dM (F (y, v, t0)). However for large enough t0 the geodesic
may fail to be minimizing, therefore one can consider σ = σy,v ∈ (0, ω] defined as
follows: σ = ω if F (y, v, t) is minimizing (between its endpoint and M) for all t ≤ ω;
otherwise, σ is chosen in (0, ω) so that F (y, v, t) is minimizing (between its endpoint
and M) for t ≤ σ and F (y, v, t) is not minimizing if t > σ. The set of points

Cut(M) = {F (y, v, σ(y,v)) : y ∈M,v ∈ (TyM)⊥, |v| = 1, σ(y,v) < ω}

is the restriction to Tω of the so-called cut-locus of M , and it is a subset of Tω \M
whose closure in Tω does not intersect M . Recall that the unit sphere bundle of M is
just M̃ , the oriented double cover of M , so we will also write (y, v) ∈ M̃ .

Standard theory of geodesics (e.g. [31, Ch. 2, Lemma 4.8 and Ch. 3, Lemma 2.11],
which give the analogue of [21, Prop. 4.7] for M) gives that if x ∈ Cut(M) then at
least one of the following two conditions holds: (a) there exist (at least) two distinct
geodesics from x to M that realize dM (x); (b) the map F : M̃ × (0, ω) → Tω has
non-invertible differential at (y, v, σ(y,v)), where x = F (y, v, σ(y,v)). Conversely, if (a)
or (b) holds, then the geodesic t → F (y, v, t) cannot be minimal on t ∈ [0, t0] when
t0 ∈ (σ(y,v), ω). Option (a) is equivalent to x ∈ SdM ∩ (Tω \M) (see [21, Prop. 3.7]).

Using these facts, the arguments of [21, Proposition 4.8] adapt to give that

SdM ∩ (Tω \M) = Cut(M),

therefore in order to prove the rectifiability in Proposition 3.2 it suffices (since SdM
is countably n-rectifiable, see above) to show that Cut(M) \ SdM is a countably n-
rectifiable set in Tω \M , i.e. the analogue of [21, Theorem 4.11]. Note that SdM ∩M ⊂
M \M is Hn-negligeable, so it does not affect rectifiability. The points in Cut(M)\SdM
are characterised by the validity of option (b) above, and the arguments in [21] are local
around the points (y, v, σy,v) ∈ M̃ × (0, ω), so they apply verbatim to our case.

Once the countable n-rectifiability of SdM has been obtained, it follows that ∇dM
is SBVloc(Tω \M). Indeed, we know to begin with (see above for these statements
about the distance to a closed set) that ∇dM is in BVloc(Tω \M) and notice that dM
is C2 (even Ck for all k) on Tω \ (SdM ∪M) thanks to the smoothness of M . The
“Cantor part” of the Radon measure D2dM gives 0 measure to countably n-rectifiable
sets (see [3, Prop. 3.92 or Prop. 4.2]), in particular it gives 0 to SdM . The smoothness
of D2dM in Tω \ (SdM ∪M) then implies that there is no “Cantor part”, i.e. ∇dM is
SBVloc(Tω \M). This concludes the sketch of proof of Proposition 3.2.

Remark 3.4 (on the diffeomorphism F ). We point out a couple of further facts, mainly
adapted from [21], for future reference. The level sets of dM are smooth in the open
set Tω \ (SdM ∪M), thanks to the implicit function theorem, the smoothness of dM and
the invertibility of F on this open set.

The map F (y, v, t) = expy(tv) for y ∈ M and v a unit vector orthogonal to M at
y, t ∈ (0, ω) is a map from M̃ × (0, ω) into Tω (since the oriented double cover M̃ of M
is defined as the set of (y, v) with y ∈M , v unit vector normal to M at y). Arguing as
in [21, Prop. 4.8] we see that the following restriction of F (still denoted by F )

F : {((y, v), s) : (y, v) ∈ M̃, s ∈ (0, σ(y,v))} → Tω \ Cut(M) \M (4)
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is a (smooth) diffeomorphism.5 This diffeomorphism extends as a continuous map to
M̃ ×{0} by sending ((y, v), 0) to y ∈M (note that it is a 2− 1 map here, the standard
projection from M̃ to M). The image of this continuous map is then Tω \ Cut(M) \
(M \M). Again following verbatim [21, Prop. 4.8], we also have that the function
σ(y,v) is continuous on M̃ . The diffeomorpshism F in (4), continuously extended to M̃ ,
provides the natural replacements for Fermi coordinates around M in our situation,
where the singular set M \M is present. We will write

VM̃ := {((y, v), s) : (y, v) ∈ M̃, s ∈ [0, σ(y,v))},

for the domain of (the extension of) F .
Let us take a closer look at the level sets Γt = {x ∈ Tω : dM (x) = t}, for t ∈ (0, ω).

By the previous discussion, the smooth hypersurface Γt\SdM can be retracted smoothly,
staying in Tω \ SdM onto a subset of M and at each time the image of the retraction is
contained in (a smooth portion of) a level set of dM . In fact, we have a retraction(

Tω \ Cut(M) \ (M \M)
)
× [0, 1]→ Tω \ Cut(M) \ (M \M)

explicitly given, using the identification (4), by (here q = (y, v) ∈ M̃ and σq = σ(y,v))

R : {(q, s) : q ∈ M̃, s ∈ [0, σq)} × [0, 1]→ {(q, s) : q ∈ M̃, s ∈ [0, σq)}
R(q, s, α) = (q, (1− α)s) .

Under the identification (4), the function s is just dM , so it follows that the retraction
preserves level sets of dM .

We will now analyse the jump part of the Hessian of dM : Tω \ M → (0,∞);
this will lead to Lemma 3.5 below. To this end, we perform, for Hn-a.e. point x ∈(
SdM \M

)
∩ Tω, a blow up of dM as follows. Using normal coordinates around x, for

all sufficiently small ρ > 0 consider the function dρ : Bn+1
1 (0)→ (0,∞) defined by

dρ(y) =
dM (x+ ρy)− dM (x)

ρ
.

Then (∇dρ)(y) = (∇dM )(x+ρy). Note that dρ have Lipschitz-constant 1 and dρ(0) = 0,
therefore we can extract a sequence ρj → 0 such that dρj converge in C0,α (for all α < 1)
to a 1-Lipschitz function dx : Bn+1

1 (0) → R with dx(0) = 0. Recall Proposition 3.2:
the rectifiability of SdM implies that at Hn-a.e. point x ∈ SdM \ M there exists a
measure-theoretic unit normal n̂x to SdM (rather, two choices of it); moreover, the left
and right limits in the Lebesgue sense of the SBVloc function ∇dM are well-defined in
the two halfspaces identified by the normal (see [3, Theorem 3.77]). This means that
there exists two constant vectors a 6= b in Rn+1 such that

1

ρn+1

∫
{z∈Bρ(x):z·n̂x<0}

|∇dM − a| → 0 and
1

ρn+1

∫
{z∈Bρ(x):z·n̂x>0}

|∇dM − b| → 0

as ρ→ 0. This is equivalent, by a change of variables, to
5This diffeomorphism shows, in particular, the following. If x ∈ Tω \ (Sd

M
∪M), then we know

that there exists a unique geodesic γ from x to M and its endpoint y is on M by Lemma 3.1. Then,
by the properties (a), (b) discussed above, no point of γ is in Cut(M) and therefore all points on γ
except y have the property that they lie in Tω \ (Sd

M
∪M).
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∫
{z∈B1(0):z·n̂x<0}

|∇dρ − a| → 0,

∫
{z∈B1(0):z·n̂x>0}

|∇dρ − b| → 0

as ρ → 0. Therefore ∇dρj converge in L1(Bn+1
1 (0)) to the function Fab defined to

be constant on each of the two half-balls {z ∈ Bn+1
1 (0) : z · n̂x < 0} and {z ∈

Bn+1
1 (0) : z · n̂x > 0}, with respective values a and b. This function must be the

(distributional) gradient of dx. Indeed, for every v ∈ C1
c (B1(0)) we have

∫
B1(0) dx∇v =

limj→∞
∫
B1(0) dρj∇v = − limj→∞

∫
B1(0)∇dρjv = −

∫
B1(0) Fabv, where we used, in the

two limits, respectively the uniform convergence dρj → dx and the L1-convergence
∇dρj → Fab. The equality obtained expresses the fact that Fab = ∇dx and proves that

dρj → dx in W 1,1(B1(0)) and in C0,α(B1(0)).

Recall now that dM is locally semiconcave, so it has at least an element in the su-
perdifferential, i.e. there exists a C1 function $ in a neighbourhood of x that is ≥ dM
and such that $(x) = dM (x). Performing the same blow up on $, we consider the
rescalings $(x+ρy)−$(x)

ρ . These functions converge in C1(B1(0)) to an affine function
$x. By uniform convergence, $x ≥ dx on B1(0) and $x(0) = dx(0) = 0. Recalling
that ∇dx = Fab, we obtain

(a− b) · n̂x ≥ 0. (5)

The jump part of D(∇dM ) is characterized as the measure that is absolutely continuous
with respect to Hn SdM and with density that is given for Hn-a.e. x ∈ (SdM \M)∩Tω
by (b− a)⊗ n̂x (see e.g. [3, (3.90)]). Taking the trace and using (5) this implies:

Lemma 3.5. Let ∆ denote the Laplace-Beltrami operator on Tω \M . The singular
(jump) part of ∆dM in Tω \M is a negative measure (supported on SdM ).

Next we analyse the absolutely continuous part (with respect to Hn+1) of ∆dM , for
dM : Tω \M → (0,∞). By Proposition 3.2 it suffices to analyse the smooth function
∆dM on Tω \ (SdM ∪M). For this, we will need the Ricci curvature assumption (which
has not been used so far).

Lemma 3.6. The function dM satisfies ∆dM ≤ 0 on Tω \ (SdM ∪M).

Proof. Recall Remark 3.4. For x ∈ Tω \ (SdM ∪M), dM (x) is realized by the length
of a unique geodesic from x to a point in M that we denote by π(x), and the level set
{y ∈ N \ (SdM ∪M) : dM (y) = dM (x)} passing through x is C2 and its scalar mean
curvature at x (with respect to the normal that points away from M) is −∆dM (x).
We are thus in the classical situation in which we look at level sets of the distance
function to a smooth submanifold, in this case a geodesic ball Br(π(x)) in M . This
gives the information on the Laplacian in a neighbourhood of x. By Riccati’s equation
[11, Corollary 3.6], using the non-negativity of the Ricci curvature, we get that the
mean curvature of the level sets {y ∈ N \ (SdM ∪M) : y = expz(tν), z ∈ Br(π(x))}
(this is a disk at distance t from Br(π(x))), for either of the choices of unit normal ν
on Br(π(x)), increases in t, hence ∆dM ≤ 0 on N \ (SdM ∪M).

From Lemmas 3.5 and 3.6, we have ∆dM (Tω\M) ≤ 0 in the sense of distributions6.
We now analyse ∆dM atM . For p ∈M take a sufficiently small open ball U containing

6A distribution is said to be ≤ 0 if for every non-negative test function the result is ≤ 0. A
distribution that is ≥ 0 or ≤ 0 is necessarily a Radon measure, see e.g. [8, Theorem 1.39].
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p, that is disjoint from (M \M) and from Cut(M) and such that U \M is the union of
two disjoint connected open sets U+ and U−. We compute the action of the distribution
∆dM on an arbitrary test function u ∈ C∞c (U), and obtain (∆dM )(u) = −

∫
∇dM∇u =

−
∫
U+ ∇dM∇u −

∫
U− ∇dM∇u. Note that ∇dM extends to a smooth vector field in a

neighbourhood of U+, so
∫
U+ ∇dM∇u =

∫
U+ div(u∇dM )−

∫
U+ u div(∇dM ), where in

the last term div(∇dM ) = ∆dM in the classical sense. The unit outer normal to ∂U+

agrees, on supp(u), with −∇dM (this relavant portion of ∂U+ is contained in M). The
divergence theorem then gives

∫
U+ div(u∇dM ) = −

∫
∂U+ u. Arguing similarly for U−,

we find (∆dM )(u) =
∫
U+∪U− u∆dM + 2

∫
M∩U u.

In conclusion, ∆dM (Tω \ (M \M)) = ∆dM (Tω \M) + 2Hn M . In particular,
∆dM (Tω \ (M \M)) is a Radon measure (we have given its Hahn decomposition into
negative and positive parts). We will now extend acrossM \M by a capacity argument.

Proposition 3.7. Let N be a closed (n + 1)-dimensional Riemannian manifold with
positive Ricci curvature and M a smooth minimal hypersurface as in Theorem 1.3.
Denote by dM the distance function to M and by Tω = {x ∈ N : dM (x) < ω}, where
ω < inj(N). Then ∆dM is a Radon measure on Tω, with positive part 2Hn M .

Proof. Let δ > 0 be arbitrary and choose χ ∈ C∞c (Tω) to be a function that takes
values in [0, 1], is identically 1 in an open neighbourhood of M \M , identically 0 away
from a (larger) neighbourhood of M \M and such that

∫
Tω
|∇χ| < δ (see [8, 4.7]).

Then we have, for v ∈ C∞c (Tω),

(∆dM − 2Hn M)(v) =

(∆dM − 2Hn M)((1− χ)v) + (∆dM )(χv)− 2

∫
M
χv =

(∆dM − 2Hn M)((1− χ)v)−
∫
Tω

∇dM ∇χ v −
∫
Tω

∇dM∇v χ− 2

∫
M
χv. (6)

For the second term recall that the distribution∇dM is an L∞ function with |∇dM | = 1

a.e. and so |
∫
Tω
∇dM∇χv| ≤ ‖v‖L∞

(∫
Tω
|∇χ|

)
< δ‖v‖L∞ . This tends to 0 as δ → 0.

As δ → 0, the corresponding χ will go to 0 in L1(Tω) so the third term will also tend to
0. For the fourth term, we notice that (by the construction of χ) supp(χ) is contained
in {distN (·,M \M) < d} with d→ 0 for δ → 0; as Hn M is a finite measure, we have
that (Hn M)

(
{distN (·,M \M) < d}

)
→ 0, hence the fourth term also tends to 0 for

δ → 0.
The distribution ∆dM is a priori of order ≤ 1: |

∫
Tω

(∆dM )v| = |
∫
Tω
∇dM∇v| ≤

Hn+1(N)‖v‖C1 . For the first term in the right-most side of (6), observe that (1 −
χ)v ∈ C∞c (Tω \ (M −M)) and ∆dM − 2Hn M is a negative Radon measure on this
open set (by Lemma 3.6 and by the observation preceding Proposition 3.7), so that
(∆dM −2Hn M)((1−χ)v) ≤ 0 if v ≥ 0 (because (1−χ)v ≥ 0 by the choice of χ). As
(6) holds for all δ, and its last three terms tend to 0 as δ → 0, for every v ∈ C∞c (Tω)
and v ≥ 0 we have

(∆dM − 2Hn M)(v) = lim
δ→0

(∆dM − 2Hn M)((1− χ)v) ≤ 0.

The distribution ∆dM − 2Hn M is therefore a negative Radon measure on Tω.
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4 Level sets of dM
We consider the level sets Γt = {x : dM (x) = t}, for t ∈ [0, ω/2] (we fixed an

arbitrary ω ∈ (0, inj(N))); we will obtain that the areas of Γt are “essentially” decreas-
ing in t. Further, we will consider an “Allen–Cahn approximation” Gε0 : N → R of
Γ6 ε | log ε | = Γ2 εΛ defined, for ε sufficiently small (to ensure 4 εΛ < ω/2), as follows:

Gε0(x) =

{
−1 for x ∈ N \ Tω

Hε
(−dM (x) + 2 εΛ) for x ∈ Tω

. (7)

Since Hε is constantly −1 on (−∞,−2 εΛ], the function Gε0 is constantly −1 on {x :
dM (x) > 4 εΛ}. Since Hε is smooth, Gε0 has the same regularity of dM , i.e. it is locally
Lipschitz, Gε0 ∈ W 1,∞(N). Moreover, its gradient (which equals −(Hε

)′(−dM (x) +
2 εΛ)∇dM (x) in Tω and 0 otherwise) is in BV (N) and its distributional Laplacian
∆Gε0 is a Radon measure (as computed within (8) below). Note that the profile of
Gε0 in the normal direction at any point of M is given by the function Ψ = Ψ0 in
(3), therefore Gε0 can also be thought of as an Allen–Cahn approximation of 2|M |, or
equivalently of the immersion ι : M̃ → N that covers M twice. The fact that Eε(Gε0)
is approximately 2|M | will be etablished later.

The Allen–Cahn first variation ofGε0 (which is clearly 0 outside Tω) can be computed
in Tω as follows:

−(2σ)E ′ε(Gε0) = ε∆Gε0 −
W ′(Gε0)

ε
= (8)

= εHε′′
(−dM + 2 εΛ)|∇dM |

2 − εHε′
(−dM + 2 εΛ)∆dM −

W ′(Hε
(−dM + 2 εΛ))

ε
=

= εHε′′
(−dM + 2 εΛ)−

W ′(Hε
(−dM + 2 εΛ))

ε︸ ︷︷ ︸
O(ε2)

− εHε′
(−dM + 2 εΛ)︸ ︷︷ ︸

0≤ ·≤3

∆dM︸ ︷︷ ︸
≤0

,

in the distributional sense. Since ∆dM a Radon measure thanks to Proposition 3.7,
we will think of −E ′ε(Gε0) as a Radon measure. (The term O(ε2) in the last line is a
Lipschitz function that we interpret as a density with respect to Hn+1; the last term
is the measure ∆dM multiplied by a bounded Lipschitz function.)

Denote by Fε,µ, for a constant µ > 0, the functional on W 1,2(N) given by

Fε,µ(u) = Eε(u)− µ

2σ

∫
N
u.

The computation in (8) shows that for every ε there exists µε > 0, µε → 0 as ε → 0,
such that7 (we need µε > 4σ‖O(ε2)‖L∞ where O(ε2) is the first term in the last line of
(8))

−F ′ε,µε(Gε0) = −E ′ε(Gε0) +
µεHn+1

2σ
≥ 1

2

µε
2σ
Hn+1.

(The inequality means that the Radon measure on the left minus the Radon measure
on the right is a non-negative measure.) The function Gε0 will form the starting point
for the construction of a barrier for the negative Fε,µε-gradient flow in Section 7.5.

7A precise choice of µε will be made in (34).
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Areas of Γt. Since SdM is countably n-rectifiable (and thus has Hausdorff dimension
≤ n and vanishing Hn+1 measure) we get that, for a.e. t > 0, Hn(SdM ∩ Γt) = 0. We
will denote by Ω ⊂ (0, ω) the set with H1(Ω) = 0 such that

t ∈ (0, ω) \ Ω⇒ Hn(SdM ∩ Γt) = 0

(and therefore, for t /∈ Ω, Γt is a smooth hypersurface away from a Hn-negligeable
set). Therefore for t ∈ (0, ω) \ Ω we have Hn(Γt) = Hn(Γt \ SdM ), i.e. we only need to
compute the area of the smooth part of Γt. Thanks to this, we will compare the area
of Γt to that of M for t ∈ (0, ω) \ Ω.

Lemma 4.1. Let Γt = {x ∈ N : dM (x) = t} and Ω ⊂ (0, ω) as above (H1(Ω) = 0).
Then
(a) for t ∈ (0, ω) \ Ω the set Γt is a smooth hypersurface away from a set of vanishing
Hn-measure and Hn(Γt) < 2Hn(M);
(b) the function t ∈ (0, ω) → Hn(Γt) satisfies for t1 < t2, t2 /∈ Ω (t1 ∈ Ω is allowed),
the inequality Hn(Γt2) < Hn(Γt1).

Proof. The first part of (a) has already been discussed above. Recall the diffeomorphism
induced by F in Remark 3.4. Endow {(q, s) : q ∈ M̃, s ∈ [0, σq)} with the pull-back
metric (via F ) from Tω \Cut(M) \M . The metric extends continuously to M̃ ×{0} to
give the natural metric on M̃ . We will thus work in VM̃ = {(q, s) : q ∈ M̃, s ∈ [0, σq)};
note that F−1

(
Γt0 \ SdM

)
= {(x, s) ∈ VM̃ : s = t0}. Denoting by Π the map Π(q, s) =

(q, 0), recall that from the structure of VM̃ we obtain the following. For every t < t0 the
set {(x, s) ∈ VM̃ : x ∈ Π

(
F−1

(
Γt0 \ SdM

))
, s = t} is contained in F−1(Γt \ SdM ). It

is then enough, for (a) and (b), to prove that, if t0 /∈ Ω and t < t0, then {(x, s) ∈ VM̃ :
s = t0} has area bounded by {(x, s) ∈ VM̃ : x ∈ Π

(
{(x, s) ∈ VM̃ : s = t0}

)
, s = t}.

Let (x1, . . . , xn, s) be local coordinates on VM̃ chosen so that ∂
∂x1

, . . . , ∂
∂xn

form a
local frame around a point x0 ∈ M̃ , that is orthonormal at x0 ∈ M̃ , and ∂

∂s is the unit
speed of the geodesics {x = const}. Then the Riemannian metric on VM̃ induces an
area element θs0 for the level set {s = s0} at the point (x0, s0). By [11, Theorem 3.11]
it satisfies the ODE ∂

∂s log θs = − ~H(x0, s) · ∂∂s , where ~H(x0,s) is the mean curvature of
the level set at distance s evaluated at the point (x0, s). (Note that in [11] θs denotes
the volume element, but since ∂

∂s is a unit vector, the area and volume elements are
the same.) By Riccati’s equation [11, Corollary 3.6] we find that H(x0, s) = ~H(x0,s) ·

∂
∂s

is strictly increasing in s, at least at linear rate, thanks to the positiveness of the Ricci
curvature, H(x0,s) ≥ s(minN RicN ). Therefore ∂

∂s log θs ≤ −s(minN RicN ) and we find
for s0 ≥ 0, t ≥ 0

log

(
θ(s0 + t)

θ(s0)

)
≤ −(min

N
RicN )

∫ s0+t

s0

s ds

and therefore

θs0+t ≤ θs0e−
minN RicN

2
(2s0t+t2), for (x0, s0 + t) ∈ VM̃ .

In particular, θ(t) is decreasing in t. From this (a) and (b) follow by integrating the
area element. (Recall that

∫
M̃ θ0dx

1 . . . dxn = 2Hn(M).)

Allen–Cahn energy of Gε0. Thanks to Lemma 4.1 we can control the Allen–Cahn
energy of Gε0 by twice the area of M . Indeed, recalling that the energy is 0 in the
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complement of Tω/2 and that ∇Gε0 is parallel to ∇dM , we use the coarea formula for
the slicing function dM (for which |∇dM | = 1) and we get∫

Tω/2

ε
|∇Gε0|2

2
+
W (Gε0)

ε
=

∫ ω

0

(∫
Γs

|∇Gε0|2

2
+
W (Gε0)

ε

)
ds =︸︷︷︸

by (7)

=

∫ 2 εΛ

−ω/2+2 εΛ

(∫
Γ2 εΛ−s

ε
(Hε′

(s))2

2
+
W (Hε

(s))

ε

)
ds ≤︸︷︷︸

Lemma 4.1

≤ 2Hn(M)

(∫
R
ε

(Hε′
)2

2
+
W (Hε

)

ε

)
,

where we used Lemma 4.1 (a) for a.e. s, namely s /∈ Ω. By the estimates in (1) we get

Eε(Gε0) ≤ 2Hn(M) (1 +O(ε2)). (9)

5 Instability properties of M (choice of B)

Let ι : M̃ → N be the (smooth) minimal immersion induced by the standard
projection (2–1 map) from the oriented double cover ofM ontoM . Let ν be a choice (on
M̃) of unit normal to the immersion ι. Recall (Remark 3.4) the coordinates ((y, v), s) =
(q, s) on VM̃ , which is diffeomorphic to Tω \ SdM \ (M \M); here y ∈ M and v a unit
vector orthogonal to M at y, or, equivalently, q = (y, v) ∈ M̃ . For every compact set
K ⊂ M̃ there exists cK > 0 such that cK < σ(y,v) for all (y, v) ∈ K. This follows from
the continuity of σq on M̃ (Remark 3.4). Choosing K even (i.e. such that K is the
double cover of a compact set ι(K) in M) this means that ι(K) admits a two-sided
tubular neighbourhood of semi-width cK .

We will now consider deformations of ι with initial velocity dictated by a function
ϕ ∈ C2

c (M̃). For ϕ ∈ C2
c (M̃), choose csuppϕ as above and consider the following

one-parameter family of immersions ιt : M̃ → N defined for t ∈ (−δ0, δ0), where
δ0 ∈

(
0,

csuppϕ
maxϕ

)
:

(y, v)→ expι(y)(tϕ((y, v))ν((y, v))),

for (y, v) ∈ M̃ . The first variation of area at t = 0 is 0 because M is minimal. The
second variation of area at t = 0 is given by∫

M̃
|∇ϕ|2dHn −

∫
M̃
ϕ2(|A|2 + RicN (ν, ν))dHn, (10)

where A denotes the second fundamental form of ι, ∇ the gradient on M̃ (with respect
to g0, the Riemannian metric induced by the pull-back from M), RicN the Ricci tensor
of N and Hn is induced on M̃ by g0 (equivalently, integrate with respect to dvolg0).

Lemma 5.1 (unstable region). There exist a geodesic ball D ⊂⊂ M and φ̃ ∈ C2
c (M̃)

with φ̃ ≥ 0, such that, writing D̃ = ι−1(D), the support of φ̃ is contained in M̃ \ D̃ and∫
M̃
|∇φ̃|2dHn −

∫
M̃
φ̃2(|A|2 + RicN (ν, ν))dHn < 0. (11)
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Proof. The second variation of M is only defined for initial velocities induced by a
function with compact support in M . Fix an arbitrary point b ∈ M . Let δ > 0 be
arbitrary and choose ρ = ρδ ∈ C∞c (N) such that 0 ≤ ρ ≤ 1, ρ = 1 in an open neigh-
bourhood of {b}∪ (M \M), ρ = 0 in the complement of a (larger) open neighbourhood
of {b} ∪ (M \M), and

∫
N |∇ρ|

2 < δ. This is possible because {b} ∪ (M \M) has finite
(actually 0 when n > 2) Hn−2-measure, and the mass growth is Euclidean around every
point of M (since 2|M | is a stationary integral varifold, which gives the validity of the
monotonicity formula): the previous two facts allow to conclude that the 2-capacity of
{b}∪ (M \M) is 0 (see [8, Section 4.7]), establishing the existence of ρ with the desired
properties.

Then the function ϕ(q) = 1 − ρ(ι(q)) is admissible in (10) and the expression
becomes (integrating on M)

2

∫
M
|∇ρ|2dHn − 2

∫
M

(1− ρ)2(|AM |2 + RicN (ν, ν))dHn.

(Note that on M the choice of ν is in general only permitted up to sign; this suffices
for the term RicN (ν, ν) to make sense.) Sending δ → 0 the second term tends to
−2
∫
M (|AM |2 + RicN (ν, ν))dHn and the first term tends to 0, so the above expres-

sion converges to a negative number (recall that RicN > 0). Therefore there exists δ
sufficiently small such that

2

∫
M
|∇ρ|2dHn − 2

∫
M

(1− ρ)2(|AM |2 + RicN (ν, ν))dHn < 0.

We let, for this δ, φ̃(q) = 1 − ρ(ι(q)). Since 1 − ρ vanishes in a neighbourhood of b,
there exists a geodesic ball D whose closure is disjoint from supp(1− ρ) and therefore
its double cover D̃ is a positive distance away from suppφ̃.

Remark 5.2. This lemma uses n ≥ 2 to argue that {b} has codimension ≥ 2 (for n = 1
the lemma fails, e.g. for RP1 ⊂ RP2).

Remark 5.3. By the construction of ρ in [8], ρ(x) = 0 when distN (x, {b}∪(M \M)) > dδ
for some dδ → 0 as δ → 0. This means that for δ sufficiently small the support of ρ
has at least two (compact) connected components one of which contains b (and thus
D̃) while the union of the others contains an open neighbhourhood O1 of M \ M .
Let O ⊂⊂ O1 be an open set containing M \M (to avoid technical difficulties, we
ensure also that ∂O ∩ M is (n − 1)-dimensional, thanks to the coarea formula for
distN ). For φ̃ = 1 − ρ ◦ ι, we have that the complement of suppφ̃ has at least two
(open) connected components in M̃ , one containing D̃ while the other contains ι−1(O).
Note that K = M̃ \ ι−1(O) is compact. These facts guarantee that φ̃ vanishes in a
neighbourhood of ∂D̃ and of ∂(ι−1(O)) = ∂K, a condition that will be technically
useful in Section 6.

Remark 5.4 (choice of B). Choose the ball B in M to be concentric with D and with
half the radius. Denote by R > 0 the radius of B. Let B̃ = ι−1(B): this is the union
of two geodesic balls in M̃ . The choices of B and φ̃ will be kept until the end.

Remark 5.5. The geometric counterpart of Lemma 5.1 is that the minimal immersion
ι is unstable with respect to the area functional also if we restric to deformations that
leave D̃ (and D) fixed and that do not move M close to its singular set M \M . We
will be more specific in Section 6 below.
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6 Relevant immersions (choice of τ)

Recall Remark 5.3. We will fix the compact subset K = M̃ \ ι−1(O) and will denote
by KB the compact set K \ B̃, where B̃ is as in Remark 5.4. Note that both K and
KB are even in M̃ , i.e. they are double covers (via ι) of compact subsets of M . We
have suppφ̃ ⊂ KB ⊂ K, for φ̃ chosen in Lemma 5.1. Recall that φ̃ vanishes in a
neighbourhood of ∂KB (and of ∂K). We will define on K and KB suitable two-sided
immersions into N , smooth up to the boundaries ∂K and ∂KB (this means that there
exist open neighbourhoods of K and KB to which the immersions can be smoothly
extended).

Choose cK > 0 such that cK < min(y,v)∈K σ(y,v) (by the continuity of σ > 0 on M̃
the minimum exists and is positive). We therefore have a well-defined one-sided tubular
neighbourhood of K in VM̃ , namely K × [0, cK), with closure contained in VM̃ . Note
that there exists an open neighbhourhood of K on which σ(y,v) > cK , by continuity of
σ on M̃ .

Recall that VM̃ is endowed with the Riemannian metric induced by the pull-back
fromN . Let ΠK denote the nearest point projection ontoK (in coordinates, ΠK(q, s) =
(q, 0)). For future purposes, we ensure that cK above is also suitably small to ensure
that, for x = (q, s) ∈ K × [0, cK), then

| |JΠK |(x)− 1 | ≤ 2CKs and
∣∣∣∣ 1

|JΠK |(x)
− 1

∣∣∣∣ ≤ 2CKs, (12)

where |JΠK | =
√

(DΠK)(DΠK)T and the constant CK > 0 is the maximum of the
norm of the second fundamental form of ι : M̃ → N restricted to K ⊂ M̃ . Note that
s is just the Riemannian distance of (q, s) to K (and to M).

Choosing c̃0 > 0 and t̃0 > 0 sufficiently small, we can ensure that (q, c + tφ̃(q)) ∈
K × [0, cK2 ) for all t ∈ [0, t̃0] and for all c ∈ [0, c̃0]. For any such c, t we thus have

a smooth two-sided immersion q = (y, v) ∈ Int(K) → expy
(

(c+ tφ̃(q))v
)

from the
interior of K into N .

Remark 6.1. Note that, since φ̃ = 0 in a neighbourhood of ∂K, the immersion q =

(y, v) ∈ Int(K) → expy
(

(c+ tφ̃(q))v
)
agrees with q = (y, v) ∈ Int(K) → expy(cv) in

a neighbourhood of ∂K, therefore it extends smoothly to ∂K. Similarly, q = (y, v) ∈
Int(KB) → expy

(
(c+ tφ̃(q))v

)
extend smoothly to ∂KB because φ̃ = 0 vanishes in a

neighbourhood of ∂K.

Remark 6.2. (a) Again thanks to the fact that φ̃ = 0 in a neighbourhood of ∂K, we
have the following technically useful fact. For the two-sided immersion q = (y, v) ∈
K → expy

(
(c+ tφ̃(q))v

)
, with c > 0, denote by ν a choice of unit normal (which

extends continuously up to ∂K) and by Kc,t,φ̃ its image. We can find c > 0 such that,
for any t ∈ [0, t̃0] and c ∈ [0, c̃0], the set {expx(sν) : s ∈ (−c, c), x ∈ Kc,t,φ̃} is contained
in K × [0, cK). By making c smaller if necessary, we can also ensure that the set

{expx(sν) : s ∈ (−min{c, c},min{c, c}), x ∈ Kc,t,φ̃}

is a tubular neighbourhood of Kc,t,φ̃, in the sense that it admits a well-defined nearest
point projection Πc,t onto Kc,t,φ̃. This projection extends smoothly up to the bound-
ary portion {expx(sν) : s ∈ (−min{c, c},min{c, c}), x ∈ ∂Kc,t,φ̃}. In fact, close to
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{expx(sν) : s ∈ (−min{c, c},min{c, c}), x ∈ ∂Kc,t,φ̃} we have that Πc,t agrees with the
nearest point projection onto Γc.

These properties essentially say that we can work with tubular neighbourhoods of
Kc,t,φ̃ without interfering with the complement of F (K × [0, cK)) and it will be useful
when writing Allen–Cahn approximations of the immersions q = (y, v) ∈ Int(K) →
expy

(
(c+ tφ̃(q))v

)
. 8

(b) For notational convenience we redefine c̃0, by choosing the minimum of c̃0

specified above and c specified in (a). Then we have a well-defined nearest point
projection

Πc,t : {expx(sν) : s ∈ (−c, c), x ∈ Kc,t,φ̃} → Kc,t,φ̃

for all c ∈ (0, c̃0] and all t ∈ [0, t̃0].

Remark 6.3. Choosing a suitably small t0 ≤ t̃0, t0 > 0, we can further ensure that
the area of the immersion q = (y, v) ∈ Int(K)→ expy

(
(tφ̃(q))v

)
is strictly decreasing

in t on the interval [0, t0]. This follows upon noticing that the first variation (with
respect to area) at t = 0 is 0 (by minimality of M) and the second variation at
t = 0 is negative by Lemma 5.1 (see Remark 5.5). Remark that the immersions
q = (y, v) ∈ Int(KB) → expy

(
(tφ̃(q))v

)
(the previous family of immersions restricted

to Int(KB)) have the same area-decreasing property, since φ̃ = 0 on D̃. For the latter
family of immersions, the area at t = 0 is Hn(K)−Hn(B̃) ≤ 2Hn(M)− 2Hn(B).

Lemma 6.4. Let t0 be as in Remark 6.3 and c̃0 as in Remark 6.2 (b). There exist
c0 ∈ (0, c̃0] and τ > 0 such that

(i) for all c ∈ [0, c0] and for all t ∈ [0, t0] the area of the immersion

q = (y, v) ∈ Int(KB)→ expy
(

(c+ tφ̃(q))v
)

is ≤ Hn(K)− 3
4H

n(B̃) = Hn(K)− 3
2H

n(B);

(ii) for all c ∈ [0, c0] the area of the immersion

q = (y, v) ∈ Int(K)→ expy
(

(c+ t0φ̃(q))v
)

is ≤ Hn(K)− τ .

Proof. Let us prove that (i) holds for some c′0 ∈ (0, c̃0] (in place of c0). Argue by
contradiction: if not, then there exists ci → 0 and ti ∈ [0, t0] such that the area of q ∈
Int(KB)→ expy

(
(ci + tiφ̃(q))v

)
is ≥ 2(Hn(M)− 3

4H
n(B)) for all i. Upon extracting

a subsequence we may assume ti → t ∈ [0, t0] and by continuity of the area we get that
the area of q ∈ Int(KB)→ expy

(
(tφ̃(q))v

)
is ≥ (Hn(K)− 3

2H
n(B)). This is however

in contradiction with Remark 6.3, which says that this area is ≤ Hn(K)− 2Hn(B).
Let us prove that (ii) holds for some c′′0 ∈ (0, c̃0] (in place of c0) and for some τ > 0.

By Remark 6.3 the area of q = (y, v) ∈ Int(K) → expy
(

(t0φ̃(q))v
)
is strictly smaller

than Hn(K). Denote by 2τ the positive difference of the two areas. By continuity,
8More precisely, we can patch the definition of Allen–Cahn approximation given in the tubular

neighbourhood of Kc,t,φ̃ (for c = 2 εΛ to be chosen) with the function Gε0 defined in (7).
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there exists c′′0 > 0 such that for all c ∈ [0, c′′0] the area of the immersion q = (y, v) ∈
Int(K)→ expy

(
(c+ t0φ̃(q))v

)
is smaller than Hn(K)− τ .

Choosing c0 = min{c′0, c′′0} concludes.

We will write, in Section 7, Allen–Cahn approximations of the immersions in Lemma
6.4. To that end, we will work in the tubular neighbourhoods specified in Remark 6.2,
restricting the range of c and t to [0, c0] and [0, t0] respectively (in order to exploit the
area bounds obtained in the lemma). We will also make use of the following bounds.

Remark 6.5. There exists a constant CK,c0,t0 > 0, depending only on c0, t0, on the
Riemannian metric and on the C3 norms of φ̃ on K and of F , such that for c ∈ [0, c0]
and t ∈ [0, t0]

| |JΠc,t|(x)− 1 | ≤ CK,c0,t0s and
∣∣∣∣ 1

|JΠc,t|(x)
− 1

∣∣∣∣ ≤ CK,c0,t0s, (13)

where |JΠc,t| =
√

(DΠc,t)(DΠc,t)T and s is the distance of x to Kc,t,φ̃.

Signed distance distKc,t,φ̃. To write Allen–Cahn approximation of the immersions in
Lemma 6.4 we will need to use the following notion of signed distance to Kc,t,φ̃. Recall
that φ̃ ≥ 0 is smooth and φ̃ = 0 in a neighbourhood of ∂K. In the coordinates of VM̃ ,
Kc,t,φ̃ is identified with a graph, namely (for c ∈ [0, c0] and t ∈ [0, t0])

F−1
(
Kc,t,φ̃

)
= {(q, s) ∈ K × [0, cK) : s = c+ tφ̃(q)}.

We define, on K × (0, cK), the following “signed distance to F−1
(
Kc,t,φ̃

)
”, for c > 0.

First we decide the sign of the distance: we say that (q, s) ∈ K × (0, cK) has negative
distance to F−1

(
Kc,t,φ̃

)
if s < c + tφ̃(q) and positive distance to F−1

(
Kc,t,φ̃

)
if

s > c + tφ̃(q). Next we define its modulus. The modulus of the signed distance is
the unsigned distance of (q, s) to F−1

(
Kc,t,φ̃

)
in K × (0, cK) (recall that K × (0, cK)

is endowed with the Riemannian metric pulled back from N). Note that if (q, s) ∈
F−1

(
Kc,t,φ̃

)
then the distance extends smoothly at (q, s) with value 0. Also remark

that we do not define the signed distance on K×{0}. The signed distance just defined
descends to a smooth function on F (K × (0, cK)) ⊂ N that we will denote by distKc,t,φ̃ .
The set F (K × (0, cK)) is an open tubular neighbourhood of ι(K) of semi-width cK ,
with M removed.

7 Allen–Cahn approximations and paths in W 1,2(N)

The overall aim in the sections that follow is to produce, for all sufficiently small
ε, a continuous path in W 1,2(N) that starts at the constant −1, ends at the constant
+1 and such that Eε is bounded by ≈ 2Hn(M)−min

{
Hn(B)

2 , τ2

}
, where B and τ were

chosen respectively in Remark 5.4 and Lemma 6.4 and depend only on geometric data
(not on ε). Theorem 1.3 (and Theorems 1.1, 1.8) will follow immediately once this is
achieved.
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7.1 Choice of ε

Let B be as in Remark 5.4 and c0, t0, τ be as in Lemma 6.4. The geometric
quantities Hn(B) and τ are relevant in the forthcoming construction.

In the following sections we are going to exhibit, for every sufficiently small ε, a
continuous path in W 1,2(N) with Eε suitably bounded along the whole path. We will
specify now an initial choice ε < ε1 that permits the construction of theW 1,2-functions
describing the path. When we will estimate Eε along the path, we will do so in terms
of geometric quantities (typically, areas of cetain hypersurfaces, hence independent of
ε) plus errors that will depend on ε. For sufficiently small ε, i.e. ε < ε2 for a choice of
ε2 ≤ ε1 to be specified, these errors will be ≤ C(ε | log ε |), for some C > 0 independent
of ε; we will not keep track of the constants and will instead write O(ε | log ε |). At the
very end (Section 8), in order to make these errors much smaller than τ and Hn(B),
and thus have an effective estimate on Eε along the path, we may need to revisit the
smallness choice: for some ε3, (possibly ε3 ≤ ε2) we will get that for ε < ε3 the errors
can be absorbed in the geometric quantities. Therefore for ε < ε3, we will have an
upper bound for Eε along the path that is independent of ε.

Now we choose ε1. The choices of ε2, ε3 will be made as we proceed into the
forthcoming arguments. We restrict to ε1 < 1, so that the O(ε2) controls that we have
on the approximated one-dimensional solutions in Section 2.2 are valid for all ε < ε1.
We then require ε1 <

1
e so to have ε | log ε | is decreasing as ε decreases so that the

conditions specified on ε1 hold also for each ε < ε1 and, moreover,

6ε1| log ε1| <
c0

20

(and implicitly < 1
2ω). Since the quantity 6ε| log ε| will appear frequently (due to the

choice of truncation in Section 2.2), we will use the shorthand notation Λ = 3| log ε |,
when working at fixed ε.

7.2 Allen–Cahn approximation of 2(|M | − |B|)

Recall the function Gε0 : N → R defined in (7), which is an Allen–Cahn approxima-
tion of ι : M̃ → N , i.e. a W 1,2 function with nodal set close to the image of ι and such
that its Allen–Cahn energy Eε(Gε0) is approximately9 the area of ι (i.e. ≈ 2Hn(M)).
Due to the fact that we replace hypersurfaces by non-sharp transitions, the function
Gε0 can also be thought of as an Allen–Cahn approximation of Γ2 εΛ (that is exactly
the nodal set of Gε0).

Definition of f . We will now “remove the ball B” from Gε0 : N → R. In other
words, we will write an Allen–Cahn approximation f of 2(|M | − |B|), or, equivalently,
of ι|M̃\B̃. Always because we have non-sharp transitions, we can think of f also as
an Allen–Cahn approximation of Γ2 εΛ with two balls removed. Although f = f ε does
depend on ε, we drop the ε for notational convenience. What is important to keep in
mind is that we can perform the contruction of f given below for any ε < ε1 and that
we will obtain estimates on Eε(f ε) that are uniform in ε.

9In Section 4 we only established an upper bound for Eε(Gε0), and most of the times an upper
bound is all that will matter for our Allen–Cahn approximations (although a lower bound in terms of
the area of the correspoding immersion is also going to be always valid). In the case of Gε0, such a
lower bound for Eε(Gε0) will be established later.
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To this end, we let χ ∈ C∞c (M̃) be smooth and even (i.e. χ(p) = χ(q) if ι(p) = ι(q)),
with χ = 1 on B̃, |∇χ| ≤ 2

R , where R is the radius of B, and suppχ ⊂⊂ D̃. Then we
define, using coordinates (q, s) ∈ K × [0, cK) ⊂ VM̃ ,

Gε0,B(q, s) = Ψ4 εΛχ(q)(s), (14)

where Ψt is as in (3). Since χ is even, the function Gε0,B descends to a well-defined
function f on F (K × [0, cK)) (this is a tubular neighbourhood of semi-width cK around
ι(K)). Note that f agrees withGε0 on F

(
(K \ D̃)× [0, cK)

)
and on F ((K × (cK/2, cK))

(on the latter both are equal to −1), therefore we extend f to N by setting it equal to
Gε0 on N \ F (K × [0, cK)),

f(x) =

{
Gε0 for x ∈ N \ F (K × [0, cK))

Gε0,B(F−1(x)) for x ∈ F (K × [0, cK))
; (15)

then f is W 1,∞ on the complement of F (D̃ × [0, cK/2]). Since Ψt(x) is even and
Lipschitz on R, see (3), we will in fact conclude that f is W 1,∞ on N . We only need
to check it around points x ∈ D. Let χ0 : M → R be defined by χ0(y) = χ(ι−1(y));
this is a smooth function compactly supported in D. In a neighbourhood of x ∈ D
we can choose a small geodesic ball Br(x) ⊂ M and use Fermi coordinates (y, a) ∈
Br(x)× (−cK , cK). Then in this neighbourhood f(y, a) = Ψ4 εΛχ0(y)(a). Since Ψt(z) is
Lipschitz in (t, z) ∈ [0,∞)×R, we conclude that f is Lipschitz on Br(x)× (−cK , cK).
(The Jacobian factor that measures the distortion of the Riemannian metric from the
product metric on Br(x) × (−cK , cK) is bounded by a constant that only depends on
the geometric data F (K) ⊂ M ⊂ N ; therefore it suffices to observe that Ψ4 εΛχ0(y)(a)
is Lipschitz with respect to the product metric.) Therefore f ∈W 1,∞(N).

Allen–Cahn energy of f . To estimate from above the Allen–Cahn energy of f , since
f = Gε0 in the complement of F

(
D̃ × [0, cK)

)
and we estimated Eε(Gε0) in (9), we only

need to compute the energy of f on F
(
D̃ × [0, cK)

)
(and, similarly, the energy of Gε0

on F
(
D̃ × [0, cK)

)
). We can therefore use coordinates (q, s) on D̃× [0, cK) ⊂ VM̃ as in

(14) and apply the coarea formula (for the function ΠK(q, s) = (q, 0), whose Jacobian
determinant |JΠK | is computed with respect to the Riemannian metric induced from
N): ∫

F (D̃×[0,cK))

ε
|∇f |2

2
+
W (f)

ε
=

∫
B̃×(0,cK)

(
ε

2
|∇Gε0,B|2 +

W (Gε0,B)

ε

)
+ (16)

+

∫
D̃\B̃

(∫
(0,cK)

1

|JΠK |

(
ε

2

∣∣∣∣ ∂∂sGε0,B
∣∣∣∣2 +

W (Gε0,B)

ε

)
ds

)
dq+

+

∫
(D̃\B̃)×(0,cK)

ε

2
|∇qGε0,B|2.

The notation ∇q stands for the gradient projected onto the level sets of s (recall that
∂
∂s is orthonormal to the level sets of s). By definition of Gε0,B we have, at (q, z) ∈
D̃ × (0, cK):

∂Gε0,B
∂qi

=
d

da
(Ψa)(z)

∣∣∣∣
a=4 εΛχ(q)

4 εΛ
∂χ

∂qi
,
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where, with a slight abuse of notation, χ(q, z) = χ(q). As a function on M̃ , χ satisfies
|∇χ| ≤ 2

R (where R denotes the radius of B). Moreover, | dda(Ψa)(z)| = |Ψ′(|z|+a)| ≤ 3
ε .

These bounds imply (Λ = 3| log ε |)

ε |∇qGε0,B|2 ≤ ε
C

ε2

ε2 | log ε |2

R2
=
C ε | log ε |2

R2
. (17)

(Here C = (8 · 6)2C ′, where C ′ > 0 depends on the distortion factor between the
Riemannian metric and the product metric.) Since B̃, D̃, R and C are independent of
ε, (17) implies that the third term on the right-hand-side of (16) can be made arbitrarily
small by choosing ε sufficiently small; this term is O(ε2 | log ε |3), since the integrand
is zero on (D̃ \ B̃)× (4 εΛ, cK). The first term on the right-hand-side of (16) vanishes
because Gε0,B = −1 on that domain. For the second term on the right-hand-side of
(16), note that the inner integral only gives a contribution in [0, 4 εΛ] (Gε0,B = −1 on
s ∈ [4 εΛ, cK ]). Recalling the bounds on the Jacobian factor |JΠK | given in (12) and
the energy estimates on the one-dimensional profiles, see (1) and (3), we find

second term on right-hand side of (16) ≤

≤ (1 + 8 εΛCK)

∫
D̃\B̃

(∫ 4 εΛ

0

1

2
ε
(

Ψ′4 εΛχ(q)

)2
+
W (Ψ4 εΛχ(q))

ε

)
dq

≤ Hn(D̃ \ B̃) (1 + 8 εΛCK) Eε(H
ε
) ≤

≤ (Hn(D̃)−Hn(B̃)) (1 + 8 εΛCK)(2σ +O(ε2)).

We can thus rewrite (16) as a leading term 2σ
(
Hn(D̃)−Hn(B̃)

)
plus errors; for a

sufficiently small choice of ε2 ≤ ε1, for ε < ε2 all errors are of the type O(ε | log ε |).
We therefore conclude that the following estimate holds for all ε < ε2:∫

F (D̃×[0,cK))

ε
|∇f |2

2
+
W (f)

ε
≤ 4σ(Hn(D)−Hn(B)) +O(ε | log ε |).

Going back to Gε0, we can give a lower bound to its energy on F (D̃× [0, cK)) with a
computation analogous to the one just carried out. With coordinates (q, s) ∈ D×[0, cK)
we have that Gε0 is the function Ψ(s) and therefore |∇Gε0| is given by

∣∣ ∂
∂sΨ(s)

∣∣ (the
gradient is parallel to the ∂

∂s). Using the coarea formula (again10 with ΠK) we get∫
F (D̃×[0,cK))

ε
|∇Gε0|2

2
+
W (Gε0)

ε
=

=

∫
D̃

(∫ 4 εΛ

0

1

|JΠK |

(
ε

2

∣∣∣∣ ∂∂sΨ(s)

∣∣∣∣2 +
W (Ψ(s))

ε

)
ds

)
dq ≥ (18)

≥ Hn(D̃)(1− 8 εΛCK)(2σ +O(ε2)),

where we used (12), (1), (3). The result in (18) is of the form 4σHn(D) plus errors.
The errors are of the form O(ε | log ε |) for all ε < ε2 for some suitably small choice of
ε2 ≤ ε1.

10It would also be possible to use the coarea formula slicing by the distance to M , as done in (9),
making use of Lemma 4.1.
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Remark 7.1 (on the choice of ε2). We make the choice of ε2 several times along the
construction, always with the scope of making the errors controlled by C ε | log ε | with
C independent of ε ∈ (0, ε2). The specific value ε2 might change from one instance to
the next, but since we make finitely many choices we implicitly assume that the correct
ε2 is the smallest of all. From now on, this remark will apply every time we say that
the errors are of the form O(ε | log ε |) for all ε < ε2 for some suitably small choice of
ε2.

In conclusion for all ε < ε2 we have that

1

2σ

∫
F (D×[0,cK))

ε
|∇Gε0|2

2
+
W (Gε0)

ε
− 1

2σ

∫
F (D×[0,cK))

ε
|∇f |2

2
+
W (f)

ε
≥

≥ 2Hn(B)− |O(ε | log ε |)|. (19)

Recall that f does depend on ε, although we are not expliciting the dependence for
notational convenience, and that we can produce f (as defined above) for every ε < ε1.
By (9) and (19), and the fact that f = Gε0 on N \F (D̃× [0, cK)), we conclude that for
a sufficiently small choice of ε2 ≤ ε1, for all ε < ε2, the following estimate holds:

Eε(f) ≤ 2 (Hn(M)−Hn(B)) +O(ε | log ε |). (20)

This says that f is a good11 Allen–Cahn approximation of 2(|M | − |B|). In terms of
the immersions of Lemma 6.4, f is also an Allen–Cahn approximation of q = (y, v) ∈
Int(KB)→ expy (2 εΛv) (the nodal set of f contains the image of this immersion with
boundary).

7.3 From Eε(−1) = 0 to 2(|M | − |B|)

In this section we construct a continuous path in W 1,2(N) that joins f to the
constant −1, keeping Eε along the path controlled by Eε(f).

We begin by introducing the following one-parameter family of functions: for r ∈
[0, 4 εΛ] define

Y ε
r (x) =

{
−1 for x ∈ N \ Tω

Ψr(dM (x)) for x ∈ Tω
, (21)

where Ψr is as in (3). Since Hε is constantly −1 on (−∞,−2 εΛ], the function Y ε
t is

constantly −1 on {x : dM (x) > 4 εΛ−r}. Moreover, since dM is Lipschitz on N and Ψr

is Lipschitz on R, denoting the Lipschitz constants of Ψr and dM respectively by CΨr ,
CdM , we have |Ψr(dM (x))−Ψr(dM (y))| ≤ CΨr |dM (x)− dM (y)| ≤ CΨrCdMdistN (x, y).
Therefore Y ε

r ∈W 1,∞(N).
Notice that Y ε

0 = Gε0. We compute Eε(Y ε
r ) by using the coarea formula (slicing by

the distance function dM , for which |∇dM | = 1) as we did for Gε0 (see (9)). We obtain

Eε(Y ε
r ) ≤ 2Hn(M)

(
1

2σ

∫ 4 εΛ−r

0

ε
(Ψ′r)

2

2
+
W (Ψr)

ε

)
≤ 2Hn(M)(1 +O(ε2)), (22)

11We only need the upper bound (20), however a lower bound of the form Eε(f) ≥
2 (Hn(ι(K))−Hn(D))−O(ε | log ε |) is also easily seen to be valid.
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using (1) and the fact that
∫ 4 εΛ−r

0
ε (Ψ′r)

2

2 + W (Ψr)
ε ≤

∫∞
0
ε (Ψ′r)

2

2 + W (Ψr)
ε = 2σ+O(ε2).

Note that Eε(Y ε
r )→ 0 as r → 4 εΛ.

Now we give a lower bound for the energy of Y ε
r on the domain F (D̃ × [0, cK)) as

we did for Gε0 in (18), i.e. using the coarea formula for the function ΠK . Note that
on this domain we can use the coordinates (q, s) on D̃ × [0, cK) and the fact that the
gradient of Y ε

r is parallel to ∂
∂s . We have∫

F (D̃×[0,cK))

ε
|∇Y ε

r |2

2
+
W (Y ε

r )

ε
=

=

∫
D̃

(∫ 4 εΛ−r

0

1

|JΠK |

(
ε

2

∣∣∣∣ ∂∂sΨr(s)

∣∣∣∣2 +
W (Ψr(s))

ε

)
ds

)
dq ≥ (23)

≥ 2Hn(D)(1− 8 εΛCK)

∫ 4 εΛ−r

0

ε
(Ψ′r)

2

2
+
W (Ψr)

ε
,

where we used (12) and the fact that ε
2

∣∣ ∂
∂sΨr(s)

∣∣2 + W (Ψr(s))
ε is independent of q.

We therefore conclude, from the first inequality in (22) and from (23), the following
estimate for the Allen-Cahn energy of Y ε

r in N \ F (D̃ × [0, cK)): there exists ε2 ≤ ε1

sufficiently small such that for all ε < ε2∫
N\F (D̃×[0,cK))

ε
|∇Y ε

r |2

2
+
W (Y ε

r )

ε
≤ (24)

≤ 2 (Hn(M)−Hn(D))

∫ 4 εΛ−r

0

ε
(Ψ′r)

2

2
+
W (Ψr)

ε
+O(ε | log ε |).

Definition of the path fr. We now define a continuous path r ∈ [0, 4 εΛ] → fr ∈
W 1,2(N) as follows. Recalling the definition of χ ∈ C∞c (M̃) and using coordinates
(q, s) ∈ D̃ × [0, cK) we set

Yr,B(q, s) = Ψ4 εΛχ(q)+r(s),

where Ψt is as in (3). The function fr : N → R is then defined by

fr(x) =

{
Y ε
r (x) if x ∈ N \ F (D̃ × [0, cK))

Yr,B(F−1(x)) if x ∈ F (D̃ × [0, cK))
. (25)

Note that fr is well-defined on D since χ is even. Remark also that for r = 0 this
function is f and for r = 4 εΛ it is the constant −1. Moreover, fr ∈ W 1,∞(N) for
every r. To see this, notice that Yr,B is smooth on D̃ × (0, cK), so fr is smooth on
F (D̃ × (0, cK)). Moreover, fr ∈ W 1,∞(N \ F (D̃ × [0, cK ])) because it agrees with Y ε

r

on this open set. The smoothness at F (D̃ × {cK}) is immediate because fr = −1 in a
neighbourhood of F (D̃×{cK}). We thus only need to check that fr is Lipschitz locally
around any point x ∈ D. Using Fermi coordinates (y, a) ∈ B(x)×(−δ, δ), where B(x) is
a small geodesic ball in M centred at x and δ > 0, we have the following expression for
f , thanks to the fact that Ψr : R → R is even for every r: fr(y, a) = Ψ4 εΛχ0(y)+r(a),
where χ0(p) = χ(F−1(p)). Since Ψr(z) is Lipschitz on {(r, z) : r ∈ [0,∞), z ∈ R},
and since χ0 is smooth, we obtain that fr ∈ W 1,∞ on the chosen neighbourhood of
x. (As we did in (15), we use the fact that being Lipschitz for the product metric on
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B(x)× (−δ, δ) implies Lipschitzianity with respect to the Riemannian metric induced
from N .) In conclusion we have fr ∈W 1,∞(N).

The path r ∈ [0, 4 εΛ] → fr ∈ W 1,2(N) is moreover continuous. Let us check the
continuity of ∇fr in r (with respect to the L2 topology on N). The partial derivatives
of fr on F (D̃ × [0, cK)) are given by, using (q, s)-coordinates on D̃ × (0, cK):(

. . . , 4 εΛ
∂χ(q)

∂qi
Ψ′0(s+ 4 εΛχ(q) + r), . . . ,Ψ′0(4 εΛχ(q) + r + s)

)
.

By continuity of translations in Lp, and smoothness of χ and of the Riemannian metric,
we get that ∇fr is continuous in r (with respect to the L2-topology, or even Lp for any
p). Similarly we can argue for Tω \ F (D̃ × [0, cK)), where f = Y ε

r and the gradient
is Ψ′0(r + dM (x))∇dM (x): this changes continuously with r (with respect to the L2-
topology, or even Lp for any p). Therefore we have that r ∈ [0, 4 εΛ]→ ∇fr ∈ L2(N) is
continuous. The fact that fr changes continuously in r with respect to the L2 topology
is even more straightforward.

Energy along the path. To estimate Eε(fr) we compute the energy on F (D̃× [0, cK))
using the coarea formula for ΠK , similarly to (20), in the coordinates (q, s) ∈ D̃×[0, cK).
Notice that Y ε

0,B(q, s) = −1 for q ∈ B. Then we obtain∫
F (D̃×[0,cK))

ε
|∇fr|2

2
+
W (fr)

ε
=

=

∫
D̃\B̃

∫ cK

0

1

|JΠK |

(
ε
|Ψ′r(s)|2

2
+
W (Ψr(s))

ε

)
ds dq ≤︸︷︷︸

(12)

≤ (1 + 8 εΛCK)

∫
D̃\B̃

∫ cK

0

(
ε
|Ψ′r(s)|2

2
+
W (Ψr(s))

ε

)
ds dq ≤

≤ 2(1 + 8 εΛCK)Hn(D \B)

(∫ 4 εΛ

r

ε
(Ψ′)2

2
+
W (Ψ)

ε

)
.

Recalling that fr = Y ε
r on N \F (D̃× [0, cK)) and by the estimate in (24) we conclude

that there exists ε2 ≤ ε1 such that for all ε ≤ ε2 the following estimates hold for
r ∈ [0, 4 εΛ]:

Eε(fr) ≤ 2 (Hn(M)−Hn(B))

(
1

2σ

∫ 4 εΛ

r

ε
(Ψ′)2

2
+
W (Ψ)

ε

)
+O(ε | log ε |), (26)

Eε(fr) ≤ 2 (Hn(M)−Hn(B)) +O(ε | log ε |).

(The second follows from the first since the energy of Ψ in parentheses is ≤ 1 +O(ε2).)
The second estimate shows the uniform energy control on r ∈ [0, 4 εΛ]; the first shows
that Eε(fr)→ 0 as r → 4 εΛ.

Remark 7.2. At least for n ≤ 6 it is possible to produce a continuous path from f
to −1, with a similar energy control as in (26), by employing alternatively a negative
Eε-gradient flow starting at a suitably constructed function f2 that is W 1,2-close to f
and with Eε(f2) ≈ Eε(f). One can choose f2 such that the flow is mean convex and
converges (decreasingly) to the constant −1, reaching it in time O(ε | log ε |). The ε→ 0
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limit of such paths is then the Brakke flow that starts at 2(|M | − |B|) and vanishes
instantaneously. The family (25) that we gave in this section mimics exactly this flow,
however it is more elementary, even for n ≤ 6, as we can exhibit the path explicitly
(and moreover presents no additional difficulties for n ≥ 7). Note that the path fr that
we produced also reaches −1 in time O(ε | log ε |).

7.4 Lowering the peak

In this section we construct the next portion of our path, starting at f . The immer-
sions in Lemma 6.4 are particularly relevant, as they provide the geometric counterpart
of this portion of the W 1,2-path: first we use the immersions in (i) of Lemma 6.4 keep-
ing c = 2 εΛ and increasing t from 0 to t0; then we connect the final immersion just
obtained to the one in (ii) of Lemma 6.4 with t = t0 and c = 2 εΛ (in doing so, we
“close the hole at B”). The portion of the path that we exhibit in this section is made
of Allen–Cahn approximations of the immersions just described. It is this portion of
the path that “lowers the peak” of Eε (compare Figure 2), keeping it a fixed amount
below 2Hn(M) (thanks to the estimates in Lemma 6.4).

We will keep using the shorthand notation Λ = 3| log ε |. All the functions that we
will construct in this section coincide with Gε0 in the complement of F (K × [0, cK)).
By construction they will in fact agree with Gε0 in a neighbourhood of ∂F (K × [0, cK))
(guaranteeing a smooth patching) and thanks to Remark 6.2 and since 2 εΛ < c0/20
(Section 7.1) we can use tubular neighbourhoods of semi-width 2 εΛ around Kc,t,φ̃ for
every c ≥ 2 εΛ to define Allen–Cahn approximations of the immersions in Lemma 6.4.

Recall the notation Kc,t,φ̃ from Section 6: it denotes the image via F : VM̃ → N of
the graph {(q, s) ∈ VM̃ : q ∈ K, s = c + tφ̃(q)}, for t ∈ [0, t0] and c ∈ [0, c0]. In other
words, Kc,t,φ̃ is image of the immersion (smoothly extended up to ∂K, see Remark

6.1) q = (y, v) ∈ K → expy
(

(c+ tφ̃(q))v
)
. Recall the definition of signed distance

provided in Section 6 and denote by distKc,t,φ̃ the signed distance to Kc,t,φ̃, well-defined
on F (D̃× (0, cK)). If t = 0, then distKc,0,φ̃ extends continuously to F (D̃× [0, cK)) with
value −c on F (D̃ × {0}). With this in mind, the definition of f in (14)-(15), can
equivalently be given as follows

f(x) =

{
Hε

4 εΛχ0(ΠK(x))

(
−distK2 εΛ,0,φ̃

(x)
)

for x ∈ F (K × [0, cK))

Gε0(x) for x ∈ N \ F (K × [0, cK)),

where
Hε
s(·) = Hε

(· − s),

χ0 = χ◦F−1 and, with a slight abuse of notation, ΠK(x) is the nearest point projection
of x ontoM . (In the coordinates of VM̃ we have ΠK(q, s) = (q, 0), which is the notation
used in Section 6; the map on F (K × [0, cK)) that we are using above should then
be F ◦ ΠK ◦ F−1, we however denote both the map in K × [0, cK) and the map in
F (K × [0, cK)) by the same symbol ΠK .)

Remark 7.3. The signed distance distK2 εΛ,t,φ̃
(x) is defined on F (K × (0, cK)). We

point out the following facts. Let x ∈ F (K × {0}) and xj → x, xj ∈ F (K × (0, cK))
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(so that the signed distance is negative on xj for j sufficiently large). Then

lim sup
j→∞

distK2 εΛ,t,φ̃
(xj) ≤ −2 εΛ.

Moreover, distK2 εΛ,t,φ̃
extends continuously to F

(
(K \ supp(φ̃))× {0}

)
with value

−2 εΛ. In particular, the continuous extension is valid on (a neighbourhood of) D.

Definition of gt. We construct now the portion of path t ∈ [0, t0] → gt ∈ W 1,2(N)
whose geometric counterpart is given by the immersions in (i) of Lemma 6.4 with
c = 2 εΛ and t ∈ [0, t0]. These immersions “have a hole at B̃”. We set, for t ∈ [0, t0]:

gt(x) =


Gε0(x) (see (7)) for x ∈ N \ F (K × [0, cK))

Hε
4 εΛχ0(ΠK(x))(−distK2 εΛ,t,φ̃

(x)) for x ∈ F (K × (0, cK)) ∪D
1 for x ∈ F ((K \D)× {0})

. (27)

In the second line of (27) we are using the fact that distK2 εΛ,t,φ̃
is well-defined and

continuous onD, with value −2 εΛ (see Remark 7.3). Also note that on F (∂K×[0, cK))
the definition in the second line agrees with the definition of Gε0 (φ̃ vanishes in a
neighbourhood of ∂K, see Section 6) and the same is true on F (K × {cK}) (gt = −1
in a neighbourhood). For t = 0 we have g0 = f , by the expresion of f given earlier in
this section.

gt ∈ W 1,∞(N) for each t. Let us check first that gt it is continuous on N for
each t. In view of the comments just made, this needs to be checked only at an
arbitrary x in F ((Int(K) \D)×{0}). Let xj → x, then for sufficiently large j we have
xj ∈ F ((Int(K) \D) × [0, cK)). Then x, xj /∈ suppχ0 × [0, cK). Therefore by (27) we
get gt(xj) = Hε

(−distK2 εΛ,t,φ̃
(xj)). Recall Remark 7.3. By continuity of Hε and the

fact that Hε
(z) = 1 for z ≥ 2 εΛ we conclude that gt(xj) → 1, hence gt is continuous

at x.
To check that gt ∈ W 1,∞(N), note first that the definition in the second line of

(27) is equal to the one of Gε0 in a neighbourhood of the boundary of F (K × [0, cK)).
Moreover gt is smooth on F (K × (0, cK)) and Gε0 is W 1,∞(N). These fact imply that
gt ∈ W 1,∞(N \ F (K × {0})), and actually even in a neighbourhood of the boundary
of F (K × [0, cK)). Moreover, for x ∈ B we have gt = −1 in a neighbourhood of x,
because χ0 = 1 on B and Hε

4 εΛ(z) ≡ −1 for z ≤ 2 εΛ.
Therefore we only need to check that gt is locally Lipschitz around points x ∈

F ((Int(K)\ B̃)×{0}). We distinguish two cases. If x /∈ D, i.e. if x ∈ F ((Int(K)\ D̃)×
{0}), then gt is actually C1 in a neighbourhood of x. This is seen by repeating the
argument used above (for the continuity of gt at such point) to prove that |∇gt(xj)| → 0

(using the fact that Hε′ is smooth on R and equal to 0 on [2 εΛ,∞)). We therefore
have: gt is C1 on F ((Int(K) \ D̃) × (0, cK)), gt extends continuously to F ((Int(K) \
D̃) × {0}) with constant value 1 and ∇gt extends continuously to this set with value
0. From these facts it follows that the L∞ function equal to ∇gt on F ((Int(K) \ D̃)×
(0, cK)) is the ditributional derivative of gt in a neighbourhood of x and therefore gt
is C1 in a neighbourhood of x. In the second case, i.e. if x ∈ D \ B, then for a
sufficiently small ball Bρ(x) ⊂ M we have φ̃ = 0 on F−1(Bρ(x)) (because supp(φ̃)

and D̃ are disjoint) and we can use a well-defined system of Fermi coordinates (y, a) ∈
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Bρ(x)× (−cK , cK). In these coordinates we have distK2 εΛ,t,φ̃
(F (y, a)) = |a|− 2 εΛ and

gt(F (y, a)) = Hε
4 εΛχ(y)(−|a|+ 2 εΛ), which is Lipschitz in the neighbourhood.

The path t → gt is continuous. It suffices to check that the second line in (27)
is continuous in t. The proof can be carried out using the coordinates on VM̃ and
the fact that the graph {(q, s) : q ∈ K, s = 2 εΛ + tφ̃(q)} changes smoothly in t,
hence so does the function distK2 εΛ,t,φ̃

. In fact, for our purposes it suffices to observe
that if ti → t then K2 εΛ,ti,φ̃

converges to K2 εΛ,t,φ̃ in the Hausdorff distance, from
which it follows that distN (·,K2 εΛ,ti,φ̃

) converges pointwise a.e. to distN (·,K2 εΛ,t,φ̃).
This implies that ∇gti converges pointwise a.e. to ∇gt and, by dominated convergence
(since N is compact and |∇gt| is uniformly bounded independently of t) ∇gti → ∇gt
in L2(N). The fact that gti → gt in L

2(N) follows easily by checking that t → gt is a
Lipschitz curve with respect to L∞(N). Therefore the path t ∈ [0, t0]→ gt ∈W 1,2(N)
is continuous.

Energy of gt. To give an upper bound for Eε(gt) we first need a lower bound for the
energy of Gε0 on F (K × [0, cK)). This is analogous to the estimate in (18):∫

F (K×[0,cK))

ε
|∇Gε0|2

2
+
W (Gε0)

ε
=

=

∫
K

(∫ 4 εΛ

0

1

|JΠK |

(
ε

2

∣∣∣∣ ∂∂sΨ0(s)

∣∣∣∣2 +
W (Ψ0(s))

ε

)
ds

)
dq ≥︸︷︷︸

(12)

≥ (1− 8 εΛCK)

∫
K

(∫ 4 εΛ

0

(
ε

2

∣∣∣∣ ∂∂sΨ0(s)

∣∣∣∣2 +
W (Ψ0(s))

ε

)
ds

)
dq ≥

≥ Hn(K)(1− 8 εΛCK)

(∫ 2 εΛ

−2 εΛ

ε

2

∣∣∣Hε′
∣∣∣2 +

W (Hε
)

ε

)
=

= Hn(K)(1− 8 εΛCK)(2σ +O(ε2)), (28)

where we used (1).
From (9) and (28) we obtain that, for some suitably small choice of ε2 ≤ ε1, for all

ε < ε2 the following holds for the energy of Gε0 (and thus also of gt) inN\F (K×[0, cK)):

1

2σ

∫
N\F (K×[0,cK))

ε
|∇Gε0|2

2
+
W (Gε0)

ε
≤ Hn(M̃ \K) +O(ε | log ε |). (29)

We now pass to an estimate for the energy of gt in F (K× [0, cK)). For this we will use
Fermi coordinates for a tubular neighbourhood of K2 εΛ,t,φ̃ of semi-width 2 εΛ. Denote
by (y, a) ∈ K2 εΛ,t,φ̃ × (−2 εΛ, 2 εΛ) such coordinates and by Π2 εΛ,t the nearest point
projection from the chosen tubular neighbourhood onto K2 εΛ,t,φ̃ (see Remark 6.2).
Remark that gt = −1 on F (B̃× [0, cK)) so there is no energy contribution in this open
set. The coarea formula (for the function Π2 εΛ,t) then gives12

12In the first inequality that follows we use the fact that for y ∈ K2 εΛ,t,φ̃ ∩ F ((D̃ \ B̃) × [0, cK)),
integration in a is in the domain −2 εΛ ≤ a ≤ 2 εΛ(1− 2χ(ΠK((y, a)))), and we can bound the top
endpoint of this interval by 2 εΛ.
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∫
F ((K\B̃)×[0,cK))

ε
|∇gt|2

2
+
W (gt)

ε
≤

∫
K2 εΛ,t,φ̃\F (B̃×[0,cK))

(∫ 2 εΛ

−2 εΛ

1

|JΠ2 εΛ,t|

(
ε

2

∣∣∣Hε′
(a)
∣∣∣2 +

W (Hε
(a))

ε

)
da

)
dy ≤︸︷︷︸

(13)

(1 + 2 εΛCK,t0,c0,φ̃)Hn(K2 εΛ,t,φ̃ \ F (B̃ × [0, cK)))

(∫ 2 εΛ

−2 εΛ

ε

2

∣∣∣Hε′
∣∣∣2 +

W (Hε
)

ε

)
=

(1 + 2 εΛCK,t0,c0,φ̃)Hn(K2 εΛ,t,φ̃ \ F (B̃ × [0, cK)))(2σ +O(ε2)).

Therefore for some suitably small choice of ε2 ≤ ε1, for all ε < ε2 the following holds

1

2σ

∫
F (K×[0,cK))

ε
|∇gt|2

2
+
W (gt)

ε
≤ Hn(K2 εΛ,t,φ̃ \ F (B̃ × [0, cK))) +O(ε | log ε |).

Note that K2 εΛ,t,φ̃ \ F (B̃ × [0, cK)) is the image of KB via the immersion in (i) of
Lemma 6.4 when c = 2 εΛ. Using Lemma 6.4 in the last estimate and putting it
together with (29) we finally obtain that, for some suitably small choice of ε2 ≤ ε1, for
all ε < ε2 the following estimate holds for all t ∈ [0, t0]:

Eε(gt) ≤ 2

(
Hn(M)− 3

4
Hn(B)

)
+O(ε | log ε |). (30)

Definition of gt0+r: “closing the hole at B”. We have constructed a continuous
path t ∈ [0, t0] → gt ∈ W 1,2(N) with g0 = f and with Eε uniformly controlled by
(30), reproducing the middle row of Figure 1. The next portion of the path will start
from gt0 and will “close the hole at B”. On the geometric side, we are starting at the
immersion in Lemma 6.4 (i) with c = 2 εΛ and t = t0, and ending at the immersion in
Lemma 6.4 (ii) with c = 2 εΛ and t = t0, reproducing the bottom row of Figure 1. We
define for r ∈ [0, 1]

gt0+r(x) =


Gε0(x) (see (7)) for x ∈ N \ F (K × [0, cK))

Hε
4 εΛ(1−r)χ0(ΠK(x))(−distK2 εΛ,t,φ̃

(x)) for x ∈ F (K × (0, cK)) ∪D
1 for x ∈ F ((K \D)× {0})

.

(31)
Note that gt0+r = gt0 when r = 0 (justifying the notation). Moreover gt0+r(x) = gt0(x)
for r ∈ [0, 1] and x ∈ N \ F (supp(χ) × [0, cK)). In other words, we are only making
changes to the values of gt0 in the set F

(
D̃ × [0, cK)

)
(equivalently, introducing Fermi

coordinates centred at D, the set D × (−cK , cK)).
The fact that gt0+r ∈ W 1,∞(N) for every r ∈ [0, 1] follows by repeating the argu-

ments used for gt, where the only part that has to be altered is the local expression of
gt0+r around points of D. Using Fermi coordinates (y, a) with y ∈ D, a ∈ (−cK , cK)
we get gt0+r(F (y, a)) = Hε

4 εΛ(1−r)χ(y)(−|a| + 2 εΛ), which is Lipschitz. Notice that
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this is the domain in N where we are “closing the hole”: when r = 1 the expression just
obtained becomes gt0+1(F (y, a)) = Hε

0(−|a|+ 2 εΛ) = Ψ0(a) and so

gt0+1(x) =


Gε0(x) (see (7)) for x ∈ N \ F (K × [0, cK))

Hε
(−distK2 εΛ,t,φ̃

(x)) for x ∈ F (K × (0, cK))

1 for x ∈ F (K × {0})
. (32)

Note also that r ∈ [0, 1]→ gt0+r ∈ W 1,2(N) is a continuous path (with a proof as the
ones used earlier for gt and fr).

Energy of gt0+r. We use the coarea formula as we did to reach (30). We get∫
F (K×[0,cK))

ε
|∇gt0+r|2

2
+
W (gt0+r)

ε
≤

≤
∫
K2 εΛ,t0,φ̃

(∫ 2 εΛ

−2 εΛ

1

|JΠ2 εΛ,t0 |

(
ε

2

∣∣∣Hε′
(a)
∣∣∣2 +

W (Hε
(a))

ε

)
da

)
dy ≤︸︷︷︸

(13)

≤ (1 + 2 εΛCK,t0,c0,φ̃)Hn(K2 εΛ,t0,φ̃
)

(∫ 2 εΛ

−2 εΛ

ε

2

∣∣∣Hε′
∣∣∣2 +

W (Hε
)

ε

)
=

= (1 + 2 εΛCK,t0,c0,φ̃)Hn(K2 εΛ,t0,φ̃
)(2σ +O(ε2)).

Therefore for some suitably small choice of ε2 ≤ ε1, for all ε < ε2 the following holds

1

2σ

∫
F (K×[0,cK))

ε
|∇gt0+r|2

2
+
W (gt0+r)

ε
≤ Hn(K2 εΛ,t0,φ̃

) +O(ε | log ε |).

Note that K2 εΛ,t0,φ̃
is the image of K via the immersion in (ii) of Lemma 6.4 when

c = 2 εΛ. Using Lemma 6.4 in the last estimate and putting it together with (29) we
finally obtain that, for some suitably small choice of ε2 ≤ ε1, for all ε < ε2 the following
estimate holds for all r ∈ [0, 1]:

Eε(gt0+r) ≤ 2Hn(M)− τ +O(ε | log ε |). (33)

7.5 Connect to +1

To conclude the construction of our path, we will connect gt0+1 to the constant +1
by means of a (negative) gradient flow. To this end, we will produce a suitable barrier
m, constructed from Gε0. First we check that

Gε0 ≤ gt0+1 on N.

To see this, recall that Gε0 = gt0+1 on N \F (K×[0, cK)), so we only need to compare the
two functions on F (K×[0, cK)). On this domain we use coordinates (q, s) ∈ K×[0, cK).
Use the following temporary notation: H(x) = Hε

(−x), T = {(q, s) : q ∈ K, s =
2 εΛ + t0φ̃(q)} and d(q, s) = distK2 εΛ,t0,φ̃

(F (q, s)). Equivalently, the latter signed
distance is sgn(q,s)dist((q, s), T ), where dist is the Riemannian distance (induced from
N) and sgn(q,s) = −1 on {(q, s) : q ∈ K, 0 < s < 2 εΛ + t0φ̃(q)} and sgn(q,s) = +1 on
{(q, s) : q ∈ K, 2 εΛ+t0φ̃(q) ≤ s < cK}. Then Gε0(q, s) = H(s−2 εΛ) and gt0+1(q, s) =
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H(d(q, s)). If sgn(q,s) = −1 then the Riemannian distance to T is ≥ 2 εΛ− s, because
T lies above {s = 2 εΛ}. Similarly, if sgn(q,s) = +1 then the Riemannian distance to T
is ≤ s− 2 εΛ. Therefore in either case we have d(q, s) ≤ s− 2 εΛ. This implies (since
H is decreasing) that Gε0(q, s) ≤ gt0+1(q, s).

We are going to work with the “modified” Allen–Cahn energy

Fε,µε(u) = Eε(u)− µε
2σ

∫
N
u dHn+1,

where µε > 0 tends to 0 as ε → 0. The role of µε is that of a forcing term, to ensure
that the flow “moves in the desired direction” and is moreover “mean-convex”. There
is flexibility on the choice of µε; we fix the following (note that in Section 4 we only
required µε > |O(ε2)| in order to obtain (8)):

µε = ε | log ε |. (34)

We are now ready to contruct the barrier.

Lemma 7.4. For all sufficiently small ε there exists a smooth function m : N → R
(m = mε) such that m < gt0+1 and −(2σ)F ′ε,µε(m) = ε∆m− W ′(m)

ε + µε > 0.

Proof. In Section 4 we obtained that, for all sufficiently small ε,

−(2σ)F ′ε,µε(Gε0) ≥ µε
2
Hn+1,

for µε > 0 as in (34). Recall that this inequality means that (the positive Radon
measure) −(2σ)F ′ε,µε(Gε0) minus µε

2 H
n+1 is a positive measure.

For ρ > 0 consider the function Gε0 − ρ. Then ∆(Gε0 − ρ) = ∆Gε0 and W ′(Gε0 − ρ)
converges uniformly on N to W ′(Gε0) as ρ → 0. Therefore we can find a sufficiently
small ρ0 ∈ (0, 1) (depending on ε, in fact we may choose ρ0 ≈ ε2) such that for all
sufficiently small ε we have

−(2σ)F ′ε,µε(Gε0 − ρ0) ≥ µε
3
Hn+1. (35)

Let CN be the constant in Lemma A.3. We are going to work with ε sufficiently small
to ensure (in addition to the previous conditions identified so far in this proof) that
2 εCN < µε/20. From now we work at fixed ε (satisfying the smallness conditions just
imposed).

Let ηδ be the mollifiers defined in Appendix A for δ < δ0, where δ0 > 0 depends
only on the geometry of N . Then the (smooth) function −(2σ)F ′ε,µε(Gε0 − ρ0) ? ηδ
defined in (57) is positive for all δ, more precisely for all sufficiently small δ (one needs
1
12 > |O(δ2)|, where O(δ2) appears in (52))(

−(2σ)F ′ε,µε(Gε0 − ρ0)
)
? ηδ ≥

µε
4
. (36)

This follows from (35) and (52), (57). We now mollify (Gε0 − ρ0) as in (53). We have
|Gε0 − ρ0| < 2, since |Gε0| ≤ 1. From Lemma A.1, part (i), we obtain that the functions
(Gε0 − ρ0) ? ηδ converge uniformly on N to (Gε0 − ρ0) as δ → 0. Therefore (for δ
sufficiently small −2 < (Gε0 − ρ0) ? ηδ < 2 since the same bound holds for Gε0 − ρ0)∥∥W ′((Gε0 − ρ0) ? ηδ)−W ′(Gε0 − ρ0)

∥∥
C0(N)

≤
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≤ ‖W ′′‖C0([−2,2])‖(Gε0 − ρ0) ? ηδ − (Gε0 − ρ0)‖C0(N) → 0

as δ → 0. The functionW ′(Gε0−ρ0) belongs toW 1,∞(N), therefore by Lemma A.1, part
(i), we get ‖W ′(Gε0 − ρ0) ? ηδ −W ′(Gε0 − ρ0)‖C0(N) → 0. By the triangle inequality we
therefore have ∥∥W ′((Gε0 − ρ0) ? ηδ)−W ′(Gε0 − ρ0) ? ηδ

∥∥
C0(N)

→ 0 (37)

as δ → 0. By Lemma A.3 there exists CN (depending only on the geometry of N)
such that for all δ < δ0 we have ‖∆((Gε0 − ρ0) ? ηδ) − ∆(Gε0 − ρ0) ? ηδ‖L∞(N) ≤
CN‖Gε0 − ρ0‖L∞(N) ≤ 2CN . Therefore the modulus of the difference of the following
two (smooth) functions

ε∆((Gε0 − ρ0) ? ηδ)−
W ′((Gε0 − ρ0) ? ηδ)

ε
+ µε and

(
−(2σ)F ′ε,µε(Gε0 − ρ0)

)
? ηδ

is at most 2 εCN +Oδ(1), where the infinitesimal of δ is given by the norm in (37) plus
O(δ2)µε. Recall (36) and the smallness condition imposed on ε. Then for sufficiently
small δ, writing m = (Gε0 − ρ0) ? ηδ, we have

ε∆m− W ′(m)

ε
+ µε ≥

µε
5
. (38)

Finally note that for sufficiently small δ we also have m < gt0+1, since Gε0− ρ0 < gt0+1

and (Gε0 − ρ0) ? ηδ converges uniformly to Gε0 − ρ0 as δ → 0 (Lemma A.1).

Remark 7.5. (choice of ε2, again) We will assume that Lemma 7.4 is valid for all ε < ε2,
where once again we change the choice of ε2 if necessary.

Flow from m. We consider now the negative gradient flow of (2σ)Fε,µε , with initial
condition given by the smooth function m, i.e. the solution mt to the PDE{

ε ∂
∂tmt = ε∆mt − W ′(mt)

ε + µε
m0 = m

, (39)

where ∆ is the Laplace–Beltrami operator on N . This semilinear parabolic problem
has a solution for t ∈ [0,∞) and mt ∈ C∞(N) for all t > 0, as we will now sketch.

Short-time existence and uniqueness for a weak solution in W 1,2(N) are valid by
standard semilinear parabolic theory (rewrite the problem as an integral equation, then
use a fixed point theorem). To see why we get global existence in our case, integrate
(39) on any interval [0, T ] on which the weak solution is defined: we get

ε

∫ T

0

(∫
N

∣∣∣∣ ∂∂tmt

∣∣∣∣2
)
dt+

ε

2

∫
N
|∇mT |2 = (40)

=
ε

2

∫
N
|∇m0|2 −

1

ε

∫
N

(W (mT )− ε µεmT ) +
1

ε

∫
N

(W (m0)− ε µεm0) .

With our choice of W that is quadratic on (±2,±∞) we can ensure that W (u)
ε −µεu is

bounded below. Then (40) gives a priori bounds
∫
N |∇mt|2 ≤ Cm0,ε,W independently of
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t ∈ [0, T ]. Again from (40), moving the term 1
ε

∫
N (W (mT )− ε µεmT ) to the left-hand-

side and recalling |u|2 ≤ CW,ε max{2, W (u)
ε −µεu}, we also get an a priori L2-bound on

mt. In conclusion

‖mt‖W 1,2(N) ≤ C,
∫ T

0

(∫
N

∣∣∣∣ ∂∂tmt

∣∣∣∣2
)
≤ C, (41)

with C independent of t. This first bound in (41) provides the assumption under which
short-time existence can be iterated to lead global existence for a weak solution to (39)
in W 1,2(N).

Writing the PDE in the form ∂
∂tmt −∆mt = − 1

ε2W
′(mt) + µε

ε , we treat the right-
hand-side as the non-homogeneous term ft of a linear parabolic PDE. Thanks to the
quadratic growth of W , there exists a constant CW (depending only on W ) such that
‖ft‖W 1,2(N) ≤ CW ‖mt‖W 1,2(N) and ‖∂ft∂t ‖L2(N) ≤ CW ‖∂mt∂t ‖L2(N), which are respec-
tively L∞ and L2 in t by (41). Parabolic regularity gives that mt ∈ W 2,2(N) and
∂mt
∂t ∈ W 1,2(N) for all t, with ‖mt‖W 2,2(N) and ‖∂mt∂t ‖W 1,2(N) bounded uniformly in
time (see e.g. [7, Section 7.2.3, Theorem 6]). Bootstrapping gives smoothness of mt.

Lemma 7.6 (mean convexity of mt). The positivity condition −(2σ)F ′ε,µε(mt) =

ε∆mt − W ′(mt)
ε + µε > 0 holds for all t ≥ 0.

Proof. For notational convenience, we write for this paragraph Ft = ε∆mt−W ′(mt)
ε +µε

(right-hand-side of the first line in (39)). By the previous discussion, Ft is smooth on
N for all t ∈ [0,∞). Differentiating Ft = ε∆mt − W ′(mt)

ε + µε (and using ε ∂tmt = Ft)
we get the evolution of Ft, given by ∂tFt = ∆Ft − W ′′(mt)

ε2 Ft. So Ft solves ∂tγ =

∆γ − W ′′(mt)
ε2 γ, and the constant γ = 0 is also a solution to the same PDE. The

condition Ft > 0 is therefore preserved by the maximum principle, since it holds at
t = 0 by Lemma 7.4.

Lemma 7.6 implies in particular that mt : N → R is increasing in t (since ∂tmt =
−2σ

ε F ′ε,µε(mt) > 0), therefore limt→∞mt = m∞ is well-defined pointwise on N . The
W 1,2(N)-norm of mt is bounded uniformly in t by (41), therefore mt → m∞ in W 1,2-
weak. Moreover ‖W ′(mt)‖W 1,2(N) is also uniformly bounded in t, since |∇(W ′(mt))| =
|W ′′(mt)||∇mt| ≤ ‖W ′′‖C0([−2,2])|∇mt| (one can check that −2 ≤ mt ≤ 2 for all t by
the maximum principle). Therefore W ′(mt)→W ′(m∞) in W 1,2-weak. By the second
bound in (41) we have L1-summability in time, on t ∈ (0,∞), for

∥∥ ∂
∂tmt

∥∥
L2(N)

and
therefore there exists tj → ∞ such that the function ∂

∂tmt : N → R has L2(N)-norm
that tends to 0 along the sequence tj . These facts imply that the weak formulation of
the PDE in (39) passes to the limit as tj →∞ and gives that m∞ solves −F ′ε,µε = 0 in
the weak sense. Standard elliptic theory (or passing parabolic estimates for mt to the
t→∞ limit) then show that m∞ ∈ C∞ solves −F ′ε,µε(m∞) = 0 in the strong sense.

Lemma 7.7 (stability of m∞). The limit m∞ of the flow mt (as t → ∞) is a stable
solution of F ′ε,µε = 0.

Proof. This is a consequence of the “mean convexity” of mt (Lemma 7.6) and of the
maximum principle. We give the explicit argument. Recall from the previous discussion
that m∞ is stationary, i.e. F ′ε,µε(m∞) = 0. Also recall that the second variation at
u : N → R of the functional (2σ)Fε,µ (for a constant µ) on the test function φ is given
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by the quadratic form Q(φ, φ) =
∫
N
ε |∇φ|2 + W ′′(u)

ε φ2 (the term involving µ disappears
because it is linear) and the Jacobi operator is given by − ε∆φ+ W ′′(u)

ε φ.
Let ρ1 be its first eigenfunction, then ρ1 is (strictly) positive and smooth on N .

Consider, for s ∈ (−δ, δ) (for some small positive δ), the functions m∞ − sρ1. Then
their first variation satisfies

∂

∂s

(
−(2σ)F ′ε,µε(m∞ − sρ1)

)
= − ε∆ρ1 +

W ′′(m∞ − sρ1)

ε
ρ1.

If m∞ were unstable, then the first eigenfunction would satisfy − ε∆ρ1 + W ′′(m∞)
ε ρ1 =

λ1ρ1 for some λ1 < 0 and therefore

∂

∂s

∣∣∣∣
s=0

(
−(2σ)F ′ε,µε(m∞ − sρ1)

)
= λ1ρ1 < 0

on N . Then we could choose s0 > 0 sufficiently small so that

−(2σ)F ′ε,µε(m∞ − sρ1) = ε∆(m∞ − sρ1)− W ′((m∞ − sρ1))

ε
+ µε < 0 (42)

on N for s ∈ [0, s0]. Note that m∞ − sρ1 is smooth on N .
Since −(2σ)F ′ε,µε(mt) > 0, at any t ∈ [0,∞) we have mt > m0, in particular

m∞ > m0. Choose s sufficiently small so that s < s0 and m∞ − sρ1 > m0. Let
τ > 0 be the first time for which mτ has a point x such that mτ (x) = (m∞ − sρ1)(x).
Then m∞ − sρ1 −mτ is a smooth non-negative function on N with a minimum at x,
so ∆(m∞ − sρ1)(x) ≥ ∆mτ (x). Moreover we have W ′(m∞ − sρ1) = W ′(mτ ) at x.
Recalling that ε∆mτ − W ′(mτ )

ε +µε > 0 on N (preservation of mean convexity) we get
ε∆(m∞ − sρ1)(x)− W ′((m∞−sρ1)(x))

ε + µε > 0, contradicting (42).

Proposition 7.8. If RicN > 0 then any stable solution to F ′ε,µ = 0 on N must be a
constant (here µ is any given constant.)

Proof. Let u be a stable solution to F ′ε,µ(u) = 0. We test the stability inequality
Q(·, ·) ≥ 0 on a test function of the form |∇u|φ for φ ∈ C2(N). We get (this expression
of Q follows using Bochner’s identity, see [6], [36], [5])∫

N\{|∇u|=0}

(
|Aε|2 + RicN

(
∇u
|∇u|

,
∇u
|∇u|

))
ε |∇u|2φ2 ≤

∫
N

ε |∇u|2|∇φ|2,

where |Aε|2 = |D2u|2 − |∇|∇u||2 ≥ 0. We plug in φ = 1 so the positiveness of RicN
gives ∇u ≡ 0.

Lemma 7.7 and Proposition 7.8 give that m∞ is a constant. There exist exactly
two stable constant solutions of F ′ε,µ = 0. Indeed, any constant k satisfying F ′ε,µ = 0
must satisfy W ′(k) = ε µ (and therefore W (k) ≈ c2

W ε2 µ2 for some cW depending on
W ), so we obtain three constants, one slightly larger than −1, one slightly larger than
+1, one slightly smaller than 0, when ε is sufficiently small. It is easily verified that
the constant close to 0 is unstable, while the other two are stable. In our case, since
m∞ > m0 and m0 > 1/2 on an open neighbourhood of M , we conclude that m∞ is
the constant slightly larger than +1, which we will denote by kµε :

m∞ ≡ kµε . (43)
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Flow from gt0+1. We now want to consider the negative (2σ)Fε,µε-gradient flow {ht}
starting at gt0+1. We first make the initial datum smooth, by considering mollifiers ηδ
for δ ∈ (0, δ] as in Appendix A and δ sufficiently small to preserve the strict inequality
with m = m0, i.e. to ensure gt0+1 ? ηδ > m0 for δ ∈ (0, δ]. The family

δ ∈ (0, δ]→ gt0+1 ? ηδ ∈W 1,2(N) (44)

is continuous in δ and extends by continuity at δ = 0 with value gt0+1 (see Remark
A.2). Continuity is also valid for δ ∈ (0, δ] → gt0+1 ? ηδ ∈ C0(N). As a consequence,
Eε(gt0+1?ηδ) varies continuously with δ and therefore, upon choosing δ possibly smaller,
we also have, in addition to (44) and to gt0+1 ? ηδ > m0, that the following holds for
all δ ∈ (0, δ],

Eε(gt0+1 ? ηδ) ≤ Eε(gt0+1) +
1

4
τ. (45)

We now let h0 = gt0+1?ηδ be the initial condition for the negative (2σ)Fε,µε-gradient
flow: {

ε ∂
∂tht = ε∆ht − W ′(ht)

ε + µε
h0 = gt0+1 ? ηδ

. (46)

By the maximum principle, sincem0 < h0, the two flows (39) and (46) preservemt < ht
for all t.13 Since gt0+1 ≤ 1 by construction, we also have h0 < kµε , therefore ht < kµε
for all t > 0 by the maximum principle. On the other hand we saw that mt → kµε as
t → ∞, therefore (with smooth convergence, in particular we have continuity in t for
t ∈ [0,∞]→ ht ∈W 1,2(N))

ht → kµε as t→∞. (47)

Evaluation of Eε on the path ht. Let us estimate the value of Eε along this path.
For this, note that Fε,µε is decreasing along the flow {ht}, therefore Eε(ht) ≤ Eε(h) +
2µε2σH

n+1(N) for all t (where we used ht < 2 for all t). This implies that Eε is
bounded above indepedently of ε; more precisely, recalling that Eε(h0) ≤ 2Hn(M) −
τ +O(ε | log ε |), we can absorbe µε

σ H
n+1(N) in the error O(ε | log ε |) for ε sufficiently

small. In other words we obtain, for ε2 ≤ ε1 sufficiently small, the upper bound

Eε(ht) ≤ 2Hn(M)− 3

4
τ +O(ε | log ε |) (48)

for all t and for all ε < ε2.

To complete the path, we connect h∞ = kµε to +1 (through constant functions):

kt = (1− t)kµε + t (49)

for t ∈ [0, 1]. The energy Eε(kt) is decreasing in t ∈ [0, 1], since W is an increasing
function on [1, kµε ]. Therefore the same upper bound that we had in (48) holds:

Eε(kt) ≤ 2Hn(M)− 3

4
τ +O(ε | log ε |) (50)

for all t and for all ε < ε2.
13We have smoothed the initial data in order to use basic linear parabolic theory to obtain smooth-

ness at all times and thus use the classical maximum principle. The other option is to use gt0+1 as
initial condition and prove that it becomes smooth after a short time.
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8 Conclusion of the proof of Theorems 1.3, 1.1 and 1.8

In the previous sections we exhibited (given M as in Theorem 1.3, which also fixed
B and τ by Remark 5.4 and Lemma 6.4) for all sufficiently small ε (namely ε < ε2) the
following six continuous paths in W 1,2(N): (25) reversed, (27), (31), (44), (46), (49).
In the order just given, the endpoint of each partial path matches the starting point of
the next one, therefore their composition in the same order provides a continuous path
in W 1,2(N) for all ε < ε2, that starts at the constant −1 and ends at the constant +1
and such that

Eε along this path is ≤ 2Hn(M)−min

{
3

4
τ,

3Hn(B)

2

}
+O(ε | log ε |),

thanks to (26), (30), (33), (45), (48), (50). Choosing ε3 sufficiently small to ensure that
ε < ε3 ⇒ |O(ε | log ε |)| ≤ min

{
τ
4 ,H

n(B)
}
the above bound gives, for all ε < ε3, that

the maximum of Eε on the path is at most 2Hn(M)−min
{
τ
2 ,
Hn(B)

2

}
.

The path is in the admissible class for the minmax construction in [14], therefore
the maximum on this specific path controls from above the minmax value cε achieved
by the index-1 solution uε obtained from [14] (for all ε < ε3). Summarising, for every
M ⊂ N as in Theorem 1.3 there exist ε3 > 0, τ > 0 and B ⊂ M (non-empty) such
that for all ε < ε3

cε = Eε(uε) ≤ 2Hn(M)−min

{
τ

2
,
Hn(B)

2

}
. (51)

This concludes the proof of the strict inequality in Theorem 1.3.

For Theorem 1.1 it suffices to observe that the integral varifold V produced in [14]
is (thanks to [40], [37]) such that each connected component of regV (the smoothly
embedded part of spt ‖V ‖) has the properties needed so that it can be used in place of
M in Theorem 1.3, or in (51) above; moreover, the mass ‖V ‖(N) of V is limεi→0 cεi
(see Section 2.1). Letting M be any connected component of regV and denoting by
θ ∈ N its (constant) multiplicity, using (51) we get θHn(M) ≤ ‖V ‖(N) < 2Hn(M).
This implies θ = 1 and the multiplicity assertion in Theorem 1.1 is proved.

The fact that the minimal hypersurface is two-sided then follows immediately, since
under multiplicity-1 convergence (and by the lower energy bounds in [14]) we have that
uεi → u∞ in BV (N), where u∞ is a non-constant function that takes values in {−1,+1}
and, moreover, V is the multiplicity-1 varifold associated to the reduced boundary of
the set (of finite perimeter) {u∞ = +1} (there is no “hidden boundary” in the limit).
We therefore have a global normal on regV (the interior- or the exterior-pointing normal
for ∂{u∞ = +1}). Theorem 1.8 is therefore proved.

Remark 8.1. Note that regV has to be connected, since each connected14 component
of it is unstable (because it is two-sided and RicN > 0) and therefore the Morse
index of regV is at least the number of its connected components. On the other hand,
by multiplicity-1 convergence (or by [15], [9]) the Morse index of regV is ≤ 1. An
alternative argument for the connectedness, that does not rely on two-sidedness, can

14We point out that connectedness of regV and of spt ‖V ‖ are in fact the same thing by the varifold
maximum principle.

43



be given by means of the maximum principle for stationary varifolds ([17] [40]) and the
Frankel property15 for RicN > 0 (using the regularity results [37], [40]).
Remark 8.2. In view of discussing Remark 1.6, we collect the three instances in which
the curvature assumption RicN > 0 was used in the proof of Theorems 1.1, 1.3, 1.8.
The first was in obtaining the sign condition ∆dM ≤ 0 in Lemma 3.6 and the area
bounds in Lemma 4.1. The second, in Lemma 5.1, was to conclude that ι : M̃ → N is
unstable as a minimal immersion. The third, in Proposition 7.8, was to conclude that
every stable solution to F ′ε,µ = 0 on N (for µ constant) is a constant function.

The weaker assumptions stated in Remark 1.6 are easily seen to be sufficient for the
proof. Lemma 3.6 only requires RicN ≥ 0. Similarly, in Lemma 4.1 it suffices to use
RicN ≥ 0 to conclude Hn(Γt) ≤ 2Hn(M); this inequality is enough for the estimates
that follow Lemma 4.1 and lead to (9).

Let us assume that {RicN = 0} has vanishing Hn-measure. To carry out the
proof of Lemma 5.1, in particular to obtain the negativity of −

∫
M RicN (ν, ν)dHn,

it suffices to notice that the integrand is negative on a subset of M of full measure.
For Proposition 7.8 the conclusion will be in a first instance that ∇u vanishes except
possibly on {RicN = 0}; the smoothness of any solution to F ′ε,µ = 0 and the fact that
{RicN = 0} has empty interior then imply that ∇u vanishes identically.

Let us assume now that {RicN = 0} ⊂ ∪∞i=1Ai as in Remark 1.6. Then for a sta-
tionary varifold (2|M | in our case) the support cannot be contained in ∪∞i=1Ai (and
therefore M \ {RicN = 0} has positive measure). This follows from the maximum
principle [18], using the boundaries of Ai as barriers (e.g. flowing them by mean cur-
vature until they touch the support of the varifold). Then we follow Lemma 5.1 and
the negativity of the term −

∫
M RicN (ν, ν)dHn follows from the previous observation.

For Proposition 7.8 the conclusion will be in a first instance that ∇u vanishes except
possibly on {RicN = 0}. On an arbitrary connected component of N \ {RicN = 0}
then, u has to be a constant k; this constant must also be a solution to F ′ε,µ = 0 on N .
Then k and u are both solutions to F ′ε,µ = 0 and they coincide on a non-empty open
set; taking the difference of the two PDEs, by unique continuation we obtain u−k ≡ 0,
in particular u is constant.

A Mollifiers

We explain in detail the mollification procedure used in Section 7.5. For this ap-
pendix, notation is reset. Let (N, g) be a closed Riemannian manifold of dimension
n+ 1 and f : N → R in W 1,∞(N). We are going to produce, for every δ > 0 sufficienly
small, a smooth function fδ : N → R such that fδ → f strongly in W 1,2(N) as δ → 0
(even W 1,p for every p <∞, but we will not need this). The function fδ is defined as a
convolution f ? ηδ, for a suitable mollifier ηδ. Moreover we will check that, if addition-
ally ∇f ∈ BV (N), then we have, for all δ sufficiently small, that ∆ fδ = (∆f)?ηδ+Eδ,
where (∆f) ? ηδ is the convolution of the Radon measure ∆f with the mollifier ηδ and
hence it is identified with its (smooth) density with respect toHn+1, and Eδ is a smooth
function bounded in L∞ by a constant that only depends on N . It would not suffice
for our scopes in Section 7.5 to have a convolution procedure that gives ∆ fδ → ∆f as
measures, therefore we give an ad hoc contruction here.

15The proof of the Frankel property can be adapted because we have local stability for V and so the
shortest geodesic between two connected components of spt ‖V ‖ must have endpoints on the smooth
parts (not on the singular set), by the same reasoning used in Lemma 3.1, see also [42, Theorem 2.10].
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We begin with the definitions. The standard smooth bump function on R is η(x) =

e
− 1

1−x2 for |x| < 1, and η(x) = 0 for |x| ≥ 1. In the following, δ < inj(N). We then let
ηδ : N ×N → R be defined as

ηδ(x, y) =

{
1
cn

1
δn+1 η

(
d(x,y)
δ

)
for d(x, y) < δ

0 for d(x, y) ≥ δ
;

here d is the Riemannian distance on N (note that in the first line y belongs to the
geodesic ball centred at x with radius δ) and we set cn =

∫
Bn+1

1 (0) η(|x|) dLn+1 =

(n+ 1)ωn+1

∫ 1
0 η(s)snds, where the integration is with respect to the Lebesgue (n+ 1)-

dimensional measure. Therefore for every x, using normal coordinates centred at x,
the function ηδ ◦ expx integrates to 1 in the ball of radius δ in the tangent space to N
at x, endowed with the Euclidean metric.

The sectional curvatures of N are bounded in modulus since N is compact. Recall-
ing Riccati’s equation and the Bishop-Günther inequalities (see the final inequality in
the proof of [11, Theorem 3.17], combined with [11, (3.23)] in the case P = {x}) there
exist δ0 < inj(N) and CN > 0 such that for all x ∈ N and for δ ≤ δ0 we have

|Hn(∂Bδ(x))− (n+ 1)ωn+1δ
n| ≤ CN (n+ 1)ωn+1δ

n+2,

where ωn+1 is the Euclidean volume of the unit ball in Rn+1.
Moreover, denoting by Bδ(x) the geodesic ball centred at x, by picking a possibly

smaller δ0 ∈ (0, inj(N)), we can further ensure that there exists CN > 0 such that, for
all x ∈ N and for all δ ≤ δ0,∫

Bδ(x)
ηδ(x, y)dHn+1(y) = 1 +O(δ2), (52)

where |O(δ2)| ≤ CNδ
2. (The constant CN depends only on the curvature of N , more

precisely on the maximum of the modulus of the sectional curvature.)
Proof of (52). This follows by using the coarea formula in Bδ(x) for the func-

tion d(x, ·), for which |∇d(x, ·)| = 1. By the choice of δ0 above we have a constant
CN > 0 such that for all x ∈ N and for s ≤ δ0, |Hn(∂Bs(x)) − (n + 1)ωn+1s

n| ≤
CN (n + 1)ωn+1s

n+2. Then by the coarea formula we get
∫
Bδ(x) ηδ(x, y)dHn+1(y) =

1
cn

1
δn+1

∫ δ
0 H

n(∂Bs(x))η
(
s
δ

)
ds ≤ 1

cn
1

δn+1 (n+1)ωn+1

∫ δ
0 s

nη
(
s
δ

)
ds+ 1

cn
1

δn+1CN (n+1)ωn+1

∫ δ
0 s

n+2η
(
s
δ

)
ds

and using s2 ≤ δ2 in the second term we conclude that
∫
Bδ(x) ηδ(x, y)dHn+1(y) is

bounded above by

1

cn
(n+ 1)ωn+1

∫ 1

0
tnη (t) dt+ δ2 1

cn

1

δn+1
CN (n+ 1)ωn+1

∫ δ

0
snη

(s
δ

)
ds = 1 + CNδ

2.

For the other inequality, namely
∫
Bδ(x) ηδ(x, y)dHn+1(y) ≥ 1 − CNδ

2, one proceeds
similarly.

Final choice of δ0. By picking a possibly yet smaller δ0 ∈ (0, inj(N)), we can further
ensure the following (see [11, (3.35)], or also [12, Lemma 12.1]). For all x ∈ N and for
δ ≤ δ0, denoting by Hx,δ the mean curvature function on the geodesic sphere of radius
δ around the point x (with respect to the outward-pointing normal, hence Hx,δ ≤ 0)
we have (−n

δ is the Euclidean mean curvature of the sphere of radius δ in Rn+1)∣∣∣Hx,δ +
n

δ

∣∣∣ ≤ CNδ on ∂Bδ(x).
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From now on we take δ ≤ δ0. The convolution of an L∞ function f : N → R with
ηδ is the function f ? ηδ : N → R defined as follows:

(f ? ηδ)(x) =

∫
N
f(y)ηδ(x, y)dHn+1(y). (53)

This is a smooth function thanks to the smoothness of ηδ in (x, y). (Smoothness can
be checked in charts using standard properties of convolutions.) Note that we have
chosen a convolution kernel that does not integrate exactly to 1, however (52) suffices
to ensure:

Lemma A.1. Let f ∈W 1,∞(N). Then
(i) f ? ηδ → f uniformly on N ;
(ii) f ? ηδ → f in W 1,2(N).

proof of Lemma A.1 (i). For all x we rewrite
∫
N |f(y)− f(x)|ηδ(x, y)dHn+1(y) as∫

N
|f(y)− f(x)| ηδ(x, y)

1 +O(δ2)
dHn+1(y) +

∫
N

O(δ2) |f(y)− f(x)| ηδ(x, y)

1 +O(δ2)
dHn+1(y);

here O(δ2) is the function in (52). Writing Lf for the Lipschitz constant of f , the
first term is bounded by Lf

∫
N |x − y| ηδ(x,y)

1+O(δ2)
dHn+1(y) ≤ Lfδ. The second term is

bounded in absolute value by C̃NLfδ2 for all sufficiently small δ. Therefore
∫
N |f(y)−

f(x)|ηδ(x, y)dHn+1(y) tends to 0 uniformly in x. Then we compute, recalling (52),

(f ? ηδ)(x)− f(x) =

∫
N
f(y)ηδ(x, y)dHn+1(y)−

∫
N
f(x)

ηδ(x, y)

1 +O(δ2)
dHn+1(y) =

=

∫
N

(f(y)− f(x))ηδ(x, y)dHn+1(y) +

∫
N
f(x)

O(δ2)

1 +O(δ2)
ηδ(x, y)dHn+1(y).

The last term is bounded in absolute value by CN‖f‖C0(N)δ
2 for all sufficiently small

δ. Therefore
(f ? ηδ)→ f uniformly on N. (54)

proof of Lemma A.1 (ii). We can choose a finite cover of N by geodesic balls of radius
δ0 in which we fix a local orthonormal frame. In each ball U ⊂ N , we let {v`}n+1

`=1

denote the g-orthonormal frame. We can make the non-restrictive assumption that
the collection of open sets Ũ obtained by setting Ũ = {x ∈ U : dist(x, ∂U) ≥ δ0/2}
still constitutes a finite cover of N . Our final aim is to prove that for each U and for
every ` we have

∫
Ũ |(∇(f ? ηδ)−∇f) · v`|2 → 0 as δ → 0. There are only finitely many

open sets Ũ , so this implies that
∫
N |∇(f ? ηδ)−∇f |2 → 0. (Here | | stands for the

g-norm, ∇ for the metric gradient and · for the g-scalar product of vectors.)
We divide the proof in two parts. In step 1 we will show that, writing v for one

of the v`, we have (∇f · v) ? ηδ → (∇f · v) in L2(Ũ) (by the choice of Ũ , these
convolutions can be defined by staying inside U for δ < δ0/2). In step 2 we will prove
that (∇f · v) ? ηδ −∇(f ? ηδ) · v tends to 0 in L∞(Ũ). The two steps together then give∫

Ũ
|∇(f ? ηδ) · v −∇f · v|2 → 0
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as δ → 0, which is our aim.
Step 1. The first observation is that if q ∈ L∞(N) then

for Hn+1-a.e. x we have
∫
N
|q(y)− q(x)|ηδ(x, y)dHn+1(y)→ 0 as δ → 0. (55)

This follows by writing, as in Lemma A.1 (i),
∫
N |q(y) − q(x)|ηδ(x, y)dHn+1(y) =∫

N |q(y)−q(x)| ηδ(x,y)
1+O(δ2)

dHn+1(y)+
∫
N |q(y)−q(x)| O(δ2)

1+O(δ2)
ηδ(x, y)dHn+1(y). The second

term tends to 0 as argued earlier. The first term tends to 0 if x is a Lebesgue point of
q (hence for almost all x). Then we have:∫

Ũ
|((∇f · v) ? ηδ)(x)− (∇f · v)(x)|2dHn+1(x) =∫

Ũ

∣∣∣∣∫
U

((∇f · v)(y)− (∇f · v)(x)) ηδ(x, y)dHn+1(y)+

+ (∇f · v)(x)

∫
U

O(δ2)ηδ(x, y)

1 +O(δ2)
dHn+1(y)

∣∣∣∣2 dHn+1(x) ≤︸︷︷︸
|a+b|2≤2a2+2b2

2

∫
Ũ

∣∣∣∣∫
U

((∇f · v)(y)− (∇f · v)(x)) ηδ(x, y)dHn+1(y)

∣∣∣∣2︸ ︷︷ ︸
→0 by (55) for a.e. x

dHn+1(x)+

+C̃N‖∇f‖2L∞(N)δ
4.

(In the last term, we have included Hn+1(Ũ) ≤ Hn+1(N) in the constant C̃N .) The
braced integrand in the first term tends to 0 for a.e. x by (55), used with∇f ·v in place of
q. Moreover, the braced expression is bounded for every x by 4‖∇f‖2L∞(N)(1+O(δ2))2,
which is summable on N . Hence we can use dominated convergence to conclude that
the first term tends to 0 as δ → 0. The second tends to 0 a well, therefore we conclude
that

(∇f · v) ? ηδ → (∇f · v) in L2(Ũ).

Step 2. We compute the difference between the two (smooth) functions (∇f ·v)?ηδ
and ∇(f ? ηδ) · v and prove that it goes to 0 uniformly on Ũ . We work in normal
coordinates centred at an arbitrary point O ∈ Ũ , namely in the ball D = {x ∈ Rn+1 :
|x| < δ0/2}, with exponential map expO : D → Bδ0/2(O) ⊂ U . We will evaluate the
difference of the two functions at O, making sure that the result does not depend on O.
Since we are interested in ∇(f ? ηδ) · v, we need to let x vary in a neighbourhood of O
before evaluating the derivative, therefore we will assume x ∈ {x ∈ Rn+1 : |x| < δ0/4}
and δ < δ0/4, so that y stays in D.

We use the customary notation gij for the metric coefficients,
√
|g| for the volume

density induced by g. We denote by h the Lipschitz function on D given by f ◦ expO :
D → R and by ρ : D × D → R the mollifier ρ(x, y) = ηδ(expO(x), expO(y)), for an
arbitrary δ < δ0

4 . We point out that ρ(0, y) = 1
cnδn+1 η

(
|y|
δ

)
because we are in normal

coordinates, where | · | denotes the Euclidean length. We write ∇g to denote the metric
gradient in D, (∇g)i = gij∂xj . Let v` be represented, in the chart, by

∑
vj`∂j . We

fix an arbitrary ` and write, for notational ease, v = (v1, . . . , vn+1) = (v1
` , . . . , v

n+1
` ).
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We will write · between two vectors to denote the scalar product induced by g, so
∇gh · v =

∑
gijg

ia∂xah v
j = δaj ∂xah v

j = ∂xjh v
j (= dh(v)). We restrict to x ∈ Dδ0/4

and we compute for δ < δ0
4 the coordinate expression for ∇(f ? ηδ) · v (integration is in

dy unless otherwise specified):

∂xj

(∫
D
h(y)ρ(x, y)

√
|g|(y)dy

)
vj(x) = (56)

vj(x)

∫
D
h(y)∂xj (ρ(0, y − x))

√
|g|(y)︸ ︷︷ ︸

I

+ vj(x)

∫
D
h(y)∂xj (ρ(x, y)− ρ(0, y − x))

√
|g|(y)︸ ︷︷ ︸

II

.

Working on the first term, and using the notation ρ(0, ·) = ρ0(·), we have

I = −
∫
D
h(y)(∂jρ0)(y − x)

√
|g|(y) =︸︷︷︸

y−x=z

−
∫
D
h(x+ z)(∂jρ0)(z)

√
|g|(x+ z)dz =

=

∫
D

(∂jh)(x+ z)ρ0(z)
√
|g|(x+ z)dz +

∫
D
h(x+ z)ρ0(z)(∂j

√
|g|)(x+ z)dz︸ ︷︷ ︸

III

=

=︸︷︷︸
x+z=y

∫
D

(∂jh)(y)ρ0(y − x)
√
|g|(y)dy + III =

=

∫
D

(∂jh)(y)ρ(x, y)
√
|g|(y) +

∫
D

(∂jh)(y)(−ρ(x, y) + ρ(0, y − x))
√
|g|(y)︸ ︷︷ ︸

IV

+III.

Consider the first term from the last line, recalling that vj(x) multiplies I in (56):

vj(x)

∫
D

(∂jh)(y)ρ(x, y)
√
|g|(y) =

=

∫
D
vj(y)(∂jh)(y)ρ(x, y)

√
|g|(y)︸ ︷︷ ︸

=((∇f ·v)?ηδ)(expO(x))

+

∫
D

(vj(x)− vj(y))(∂jh)(y)ρ(x, y)
√
|g|(y)︸ ︷︷ ︸

V

.

We now evaluate (56) at x = 0 to obtain

(∇(f ? ηδ) · v)(O)− ((∇f · v) ? ηδ)(O) =

= V |x=0 + vj(0) IV |x=0 + vj(0) III|x=0 + II|x=0 .

It is immediate that IV |x=0 = 0. In V we have ρ(0, y) = 0 for d(0, y) = |y| ≥ δ,
therefore |vj(0) − vj(y)| ≤ C|y| for some constant C that depends on derivatives of
v in U and can be thus chosen independently of U (there are finitely many U ’s) and
of v` (finitely many smooth vector fields). We therefore get that V |x=0 is bounded in
modulus by C‖∇f‖L∞δ(1 + O(δ2)) ≤ C ′‖∇f‖L∞δ for some C ′ that depends only on
the choices of charts and vector fields. In III|x=0, the integrand is non-zero only for
|z| ≤ δ. Let C̃N > 0 be an upper bound for the modulus of the second derivatives of
the volume element in a normal coordinate system of radius δ0 centred at an arbitrary
point in N (such a constant exists by the compactness of N , the smoothness of the
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metric and the fact that δ0 < inj(N)). Recalling that in normal coordinates the metric
coefficients have vanishing first derivatives at 0, we get that |III||x=0 ≤ C‖f‖C0δ for all
δ ≤ δ0, with a constant C that only depends on the geometric data. For II, recall that
ρ(x, y) = 1

cnδn+1 η
(
d(x,y)
δ

)
, where d is the Riemannian distance (induced by g); so for

each y we have ∂xjρ(x, y) = 1
cnδn+2 η

′
(
d(x,y)
δ

)
∂xjd(x, y). On the other hand ρ(0, y−x) =

1
cnδn+1 η

(
|y−x|
δ

)
so for each y we have ∂xjρ(0, y − x) = 1

cnδn+2 η
′
(
|y−x|
δ

)
∂xj |y − x|. At

x = 0 we have, for every y 6= 0, ∂xj |y − x| = ∂xjd(x, y) = − yj
|y| , because we are in

normal coordinates, and d(0, y) = |y|. Therefore II|x=0 = 0.
We have therefore proved that |(∇(f ? ηδ) · v)(O)− ((∇f · v) ? ηδ)(O)| ≤ Cδ for C

independent of O, i.e. |(∇f · v) ? ηδ − (∇(f ? ηδ) · v)| → 0 uniformly on Ũ .

Remark A.2. Also note that δ ∈ (0, δ0] → (f ? ηδ) ∈ W 1,2(N) is continuous, since
ηδ changes smoothly with δ (in fact, this curve is differentiable on (0, δ0)). Similarly,
δ ∈ (0, δ0]→ (f ? ηδ) ∈ C0(N) is continuous.

Next we are going to be interested in ∆(f ? ηδ) under the additional assumption
on f that ∇f ∈ BV (N). Here ∆ denotes the Laplace-Beltrami operator. Recall that
f ? ηδ is smooth, so ∆(f ? ηδ) is smooth on N . We shall compare this function with
(∆f) ? ηδ, where ∆f is a Radon measure. For a Radon measure µ on N we define the
(smooth) function µ ? ηδ : N → R as follows:

(µ ? ηδ)(x) =

∫
ηδ(x, y)dµ(y). (57)

Lemma A.3. Let f ∈W 1,∞(N) with ∇f ∈ BV (N). There exists CN > 0 (depending
only N and δ0, once η : R→ R is fixed) such that, for all δ < δ0,

‖(∆f) ? ηδ −∆(f ? ηδ)‖L∞(N) ≤ CN‖f‖L∞(N).

Proof. We work in a normal system of coordinates centred at an arbitrary O ∈ N .
Let D be the ball centred at 0 ∈ Rn+1 of radius δ0, with expO : D → Bδ0(O) de-
noting the exponential map. We keep notation as in the proof of step 2 of Lemma
A.1 (ii), in particular we set ρ(x, y) = ηδ(expO(x), expO(y)) and ρ0(·) = ρ(0, ·). The
Laplace-Beltrami operator ∆ is, in the coordinate chart, 1√

|g|
∂
∂xi

(√
|g|gij ∂

∂xj

)
, so ∆f

is 1√
|g|

∂
∂xi

(√
|g|gij ∂h∂xj

)
, where h = f ◦ expO. We compute ∆(f ? ηδ)(x) in the nor-

mal chart, keeping x ∈ {| · | ≤ δ0/2} and δ < δ0/2 so that y ∈ D in the following
computations. Differentiating,

∆

(∫
D
h(y)ρ(x, y)

√
|g|(y)dy

)
= (58)

=

∫
D
h(y)∆(ρ0(y − x))

√
|g|(y)︸ ︷︷ ︸

I

+

∫
D
h(y)∆(ρ(x, y)− ρ(0, y − x))

√
|g|(y)︸ ︷︷ ︸

II

,

where derivatives are taken in x and integration is in dy. We compute, for each y:

∆(ρ0(y − x)) =
−1√
|g|(x)

∂xi

(√
|g|(x)gij(x)

)
(∂iρ0) (y − x) + gij(x)(∂2

ijρ0)(y − x);
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(∆ρ0)(y − x) =
1√

|g|(y − x)
∂xi

(√
|g|(y − x)gij(y − x)

)
(∂iρ0) (y − x)+

+gij(y − x)(∂2
ijρ0)(y − x).

Therefore

∆(ρ0(y − x))− (∆ρ0)(y − x) =
(
gij(x)− gij(y − x)

)
(∂2
ijρ0)(y − x)− (59)(

1√
|g|(x)

∂xi

(
(
√
|g|gij)(x)

)
+

1√
|g|(x− y)

∂xi

(
(
√
|g|gij)(x− y)

))
(∂iρ0) (y − x)

and we can rewrite I as follows (so that in the second term we will be able to use (59)):

∫
h(x+ z)(∆ρ0)(z)

√
|g|(x+ z)dz +

∫
h(y) (∆(ρ0(y − x))− (∆ρ0)(y − x))

√
|g|(y)︸ ︷︷ ︸

III

.

We want to evaluate at x = 0. Let ρ̃0 = ρ0 ◦ exp−1
O and recall that f = h ◦ exp−1

O ,
then the first term on the right-hand-side of the last equality, evaluated at x = 0, is∫
N f ∆ρ̃0 dHn+1. Integrating by parts we rewrite is as

∫
N ∆f ρ̃0 dHn+1 and we get

I|x=0 =

∫
∆h(z)ρ0(z)

√
|g|(z)dz + III|x=0 =

=

∫
∆h(y)ρ(0, y)

√
|g|(y)dy + III|x=0 = ((∆f) ? ηδ)(O) + III|x=0 .

Recall (58); the statement of Lemma A.3 will therefore follow by estimating II|x=0 and
III|x=0, taking care that the estimates should be independent of O. For III|x=0, we
use (59) and the following two facts. Firstly,

∫
∂2
ijρ0(y)dy = 1

cnδ2

(∫
B1
∂2
ijη1(0, y)dy

)
and

∫
∂iρ(y)dy = 1

cnδ

(∫
B1
∂iη1(0, y)dy

)
(the two integrals on the right-hand-sides are

Euclidean and depend only on the explicitly given η, so they will be absorbed into
constants). Secondly, since we are in normal coordinates, gij(0) = δij , ∂xkgij = 0 at
0 for all k; since N is compact, there exists a constant CN,δ0 such that in any normal
system of coordinates centred at a point of N and with radius δ0 (< inj(N)), the second
derivatives of the metric coefficients are bounded in modulus by CN,δ0 . Therefore∣∣gij(0)− gij(y)

∣∣ ≤ CN,δ0 |y|2 and
∣∣∣∣ 1√
|g|(−y)

∂xi |x=0

(
(
√
|g|gij)(x− y)

)∣∣∣∣ ≤ CN,δ0 |y|. Us-

ing these two facts in (59), and noting that |y| ≤ δ on the set where the inte-
grand of III|x=0 does not vanish, we get that III|x=0 is bounded in modulus by
‖f‖L∞Cn,N,δ0‖η‖C2(R) = C‖f‖L∞ , with C depending only on fixed geometric data.
For II|x=0 we need to compare, for each y 6= 0, ∆(ρ(x, y)) and ∆(ρ0(y − x)), both
evaluated at x = 0. Let us write mδ(·) = 1

cnδn+1 η
( ·
δ

)
, mδ : R → R. Then, denoting

by d the distance induced by g and by | | the Euclidean distance, by | |g the vector
length for g, and by ∇ the g-gradient, we get for each y 6= 0 (derivatives with respect
to ·)

∆(ρ(·, y)) = ∆ (mδ(d(·, y))) = m
′′
δ (d(·, y))|∇d(·, y)|2g +m

′
δ(d(·, y))∆d(·, y),

∆(ρ0(y − ·)) = ∆ (mδ(|y − ·|)) = m
′′
δ (|y − ·|) | ∇|y − ·| |2g +m

′
δ(|y − ·|)∆|y − ·|.
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Evaluating at · = 0 we note thatm′′δ (d(0, y))|∇d(0, y)|2g = m
′′
δ (|y|)|∇|y||2g and, moreover,

m
′
δ(d(0, y)) = m

′
δ(|y|), because in normal coordinates we have d(0, y) = |y| and ∇|y −

·| = ∇d(·, y) = − y
|y| at the point · = 0 (for any chosen y 6= 0). We therefore need to

compare, for any y 6= 0, ∆d(·, y) and ∆|y − ·| at 0. The former is the opposite of the
mean curvature at 0 of a geodesic sphere centred at y with radius d(0, y) (as usual, we
compute the scalar mean curvature with respect to the outward-pointing normal to the
sphere). On the other hand, recall that computing ∆ at 0 is the same as computing the
Euclidean Laplacian, therefore −∆|y−·| at 0 is the Euclidean mean curvature at 0 of a
Euclidean sphere centred at y with radius |y|, hence ∆|y−·| = − n

|y| at 0. The difference
∆d(·, y)−∆|y−·| is therefore bounded in modulus by CN |y|, thanks to the initial choice
of δ0. Since we can take |y| ≤ δ in II|x=0 (because ρ = 0 otherwise) we can estimate
(∆(ρ(x, y))−∆(ρ0(y − x)))|x=0 in modulus by ‖m′δ‖L∞CNδ ≤

1
δn+1CηCN ; integrating

on {|y| ≤ δ} we get that II|x=0 is bounded in modulus by CηCN‖f‖L∞ .
We have thus obtained |(∆f)?ηδ−∆(f ?ηδ)|(O) ≤ C‖f‖L∞ with C depending only

on (N, g) and on the fixed entities δ0, η. The arbitraryness of O gives the result.
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