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Abstract

We �nd noncommutative crepant resolutions for the a�ne cone of the Grassmannian. To do
this we use the framework of �penko and Van den Bergh. By strengthening their results in this
speci�c family of examples we can show both Cohen-Macaulayness and �nite global dimension.
We actually get two di�erent NCCR's and by relating these NCCR's to categorical resolutions
that Kuznetsov gives we show that they are derived equivalent.
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1 Introduction

The idea of trying to resolve a singularity by replacing a space X which is not smooth with another
space X̃, birational to X, and smooth has been very useful in the study of schemes. This is a
well known and very commonly used tool in algebraic geometry. As resolutions of singularities are
not unique so we often ask for extra conditions, one of those conditions is crepancy (the canonical
bundle pulls back to the canonical bundle).
This type of resolution is geometric, recently the idea of taking a di�erent type of resolution has
appeared, using non-commutative rings or categories instead. This is no longer a geometric idea,
however it still has connections to geometry and even to classical resolutions of singularities in
certain cases.

De�nition 1.1. [[�V15, Def. 1.1.1]] Let S be a scheme, such that S is a normal noetherian domain.
A non-commutative resolution of S is an algebra over S which has �nite global dimension and is of
the form Λ = EndS(M), for M a non-zero, �nitely generated, re�exive S-module.
It is called crepant if S is Gorenstein and Λ is a maximal Cohen-Macaulay S-module.
We abbreviate with NC(C)R.
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De�nition 1.2. [[Kuz06, Def. 3.2]] A categorical resolution of S is a (regular) triangulated category
T and maps

π∗ : T → Db(S) π∗ : Db(S)→ T

such that π∗ is the left adjoint to π∗ on Dperf (S) and the natural map idDperf (S) → π∗π
∗ is an

isomorphism.
It is weakly crepant if π∗ is also the right adjoint to π∗ on Dperf (S).

A NC(C)R gives a categorical resolution and in some cases, the reverse is also true.

1.1 History and Background

For motivation and discussion see the survey paper by Leuschke [Leu11]. In section K the de�nition
of a NCCR is given, it is di�erent to the one above, but later it is shown to be equivalent to the
above de�nition, this paper also contains many other results and thoughts on NC(C)R's. In there is
also a brief discussion of categorical desingularizations (resolutions) and how they relate to NCCR's.

The �rst mentions of non-commutative resolutions were by Bondal and Orlov [BO02] and Van
den Bergh [Van04], not as a main idea, but as something that could be useful to show other results.
Van den Bergh only de�nes an NCCR in the appendix of [Van04], it had been used as an inter-
mediary step in proving two derived categories were equivalent. Looking at derived categories and
equivalences was also the reason that Bondal and Orlov thought of it.
Later, �penko and Van den Bergh, [�V15], gave a framework for proving the existence of NC(C)R's
for quotients by a reductive group, G. They prove the existence of NC(C)R's under speci�c condi-
tions.
Kuznetsov, [Kuz06], de�ned a kind of categorical resolution and proved an existence result, again
under speci�c conditions. Later Kuznetsov with Lunts, [KL12], proved the existence of a categorical
resolution for the derived category of any separated scheme with characteristic 0.

�penko and Van den Bergh build potential NC(C)R's by building M from some �nite collection
of irreducible representations of G, and considering the module of covariants associated to those
representations, motivated by the case of �nite groups, where taking all irreducible representations
works.
They then build resolutions of these modules of covariants, under speci�c conditions they show that
these resolutions prove �nite global dimension of Λ.
Earlier, Van den Bergh [Van91], proved results about the Cohen-Macaulayness of modules of co-
variants, they also show when those results give Cohen-Macaulayness of Λ.

Kuznetsov starts with a geometric resolution, S̃ of S, whose exceptional divisor has a Lefschetz
decomposition. The decomposition is used to �nd a subcategory of Db(S̃) that gives the categorical
resolution.

For more details about both constructions see Sections 3 and 4.
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1.2 Our results

We consider an explicit family of examples, let V be a k dimension vector space over C and let
X = Hom(Cn, V ) where n > k + 1. Consider the standard action of G = SL(V ) on X. (Acting by
left matrix multiplication), then X/G is the a�ne cone of the Grassmannian, Gr(n, V ). It has one
singular point, the origin, and has a natural geometric resolution π : O(−1)Gr(n,V ) → X/G . We
want to �nd a NCCR of X/G using the framework of [�V15]. We do this in Section 3, assuming
that n and k are coprime. If n, k are not coprime then many of the results do not go through.
We can not just apply the main result of [�V15] as our example is not quasi-symmetric, so we will
need to strengthen results about Cohen-Macaulayness and �nite global dimension. First of all we
deal with Cohen-Macaulayness, going back to [Van91] we analyse the spectral sequence provided
there and show which modules of covariants are Cohen-Macaulay. Second, we explain how a result
of Fonarev [Fon13] can be easily adapted to show �nite global dimension.
This gives us an NCCR

End
(⊕

(SαV ∗
⊗

Sym•X∗)G
)

where SαV ∗ is a Schur power and the sum is over all Young Diagrams that �t inside a triangle of
length n− k and height k.
An isomorphic singularity is Hom(S,Cn)/SL(S) and we get a very similar NCCR, however the
algebra we get is not isomorphic to one above. They should however be derived equivalent and the
rest of the paper is dedicated to proving this, see Section 5 and in particular, Theorem 5.2.

We do not do this directly, we go via categorical resolutions as X/G has a geometric resolution,
π : O(−1)Gr(n,V ) → X/G, whose exceptional divisor has a Lefschetz decomposition, [Fon13]. The
�rst block of the decomposition is generated by vector bundles indexed by the same collection of
Young diagrams as the NCCR. (In fact this is the motivation for considering the collection we do
for the NCCR.) In Section 4 we explain what the end result is and how we get a few di�erent
categorical resolutions which are all easily shown to be equivalent. This section has nothing original
apart from a few short proofs (which are all straightforward and probably already known).

Finally in Section 5 we show that the NCCR from Section 3 (the above one) is equivalent to a
geometric one obtained from the categorical resolutions from Section 4. The isomorphic singularity
also has an NCCR equivalent to one coming from a categorical resolution and as all the categorical
resolutions are equivalent we get the wanted result, Theorem 5.2.

We �nally note that even though Kuznetsov's categorical resolutions and Van den Bergh's NCCR
are di�erent (but related) ideas, the proof for �nite global dimension of the NCCR is e�ectively
the same as the proof that gives us generation in the Lefschetz decomposition. However the way of
proving crepancy is rather di�erent.
It would not be surprising if this turned out to be true in other situations as well.

2 Borel-Weil-Bott and local cohomology

We will be using and calculating cohomology repeatedly, so we will give a brief overview of the Borel-
Weil-Bott theorem which is used for calculations and then of local cohomology which is mainly used
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as a tool to �nd Cohen-Macaulay sheaves.

2.1 Borel-Weil-Bott

Theorem 2.1 (Borel-Weil-Bott). Let G be a reductive group, let B ⊂ G be a Borel subgroup. Let α
be a weight of B, it corresponds to a line bundle O(α) on G/B. Let ρ be half the sum of the positive

roots of G.
There exists a unique element, σ, of the Weyl group of G that takes α+ ρ to a dominant weight, let

α+ = σ(α+ ρ)− ρ. Then we have two possible situations

- H i (G/B,O(α)) = 0 for all i when α+ is not dominant.

- H i (G/B,O(α)) = V (α+) for i = l(α+) and zero for all other i when α+ is dominant. Here

V (α+) denotes the irreducible representation of G with highest weight α+ and l(α+) = l(σ) is the

smallest number k such that σ is the product of k simple re�ections, called the length of σ.

Remark 2.2. G/B is a �ag variety, in the special case of G = GL(V ) we have G/B is the complete
�ag on V .

We also need a result about calculating cohomology on the Grassmannian, which follows from Borel-
Weil-Bott.

Let V be a vector space of dimension n.
Consider Gr(k, V ) = Gr(V, n − k), the Grassmannian of k-planes in V , or identically the same as
(n− k)-quotients of V .
We have two dual tautological short exact sequences on Gr(k, V ).

0→ S → V
⊗

OGr(k,V ) → Q→ 0

0→ Q∗ → V ∗
⊗

OGr(k,V ) → S∗ → 0

Where S is the tautological sub-bundle and Q is a tautological quotient bundle.

Let α be a Young Diagram, i.e. α = (α1, . . . , αn) ∈ Zn such that α1 ≥ α2 ≥ · · · ≥ αn ≥ 0.
These ordered collections of positive integers also correspond to highest weights of SL(V ) (as long
as αn = 0) and it turns out that if we let Sα denote the Schur functor associated to α, then SαV
gives the irreducible representation of SL(V ) with highest weight α.
In a similar way every Young Diagram also corresponds to a highest weight of GL(V ) and again
SαV gives the irreducible representation of GL(V ) with highest weight α. This enables us to extend
SαV to any highest weight α of GL(V ).

Proposition 2.3. Let β ∈ Zk, γ ∈ Zn−k be two non-increasing sequences of integers and let α =
(β, γ) ∈ Zn.
Then we have

H•(Gr(k, V ),SβS∗
⊗

SγQ∗) ∼= Sα
′
V ∗[−l(α′)]

Where α′ is the unique dominant weight in the twisted weyl group orbit of α, and l(α′) is the length.
(If such an element doesn't exist, the cohomology is zero.)
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Remark 2.4. This proposition is the result we will mainly use. It follows from applying Borel-Weil-
Bott twice. First we apply it to the two �ag bundles, F (S∗) and F (Q∗) over Gr(k, V ), then by
using the Künneth formula we �nd out that O(α) on F (S∗) × F (Q∗) = F (V ∗) pushes down to
SβS∗

⊗
SγQ∗. Second we apply it to G = GL(V ∗) with G/B = F (V ∗) and the line bundle O(α).

As a special case, if α is dominant then we just have H0 being SαV ∗ and there is no higher coho-
mology.
Also note, by considering the vector space V ∗ instead, any result we get for S∗, Q∗ also holds for
S,Q up to appropriate swapping of k and n− k.

We use the Littlewood-Richardson rule to calculate what Young diagrams can appear in the tensor
product of two diagrams.

2.2 Local Cohomology

Let X be a scheme and let Y ⊂ X be a closed subscheme, we can then de�ne ΓY (F) to be the
sections of F with support in Y , deriving we get H i

Y (X,F), which are called the local cohomology

groups.
There is also another de�nition.
Let U = X\Y and let j : U → X be the inclusion, then H•Y (X,F) = Cone(F → j∗j

∗F) where the
map comes from adjunction. Take global sections to get H i

Y (X,F).

There are two sequences that hold for local cohomology that will be useful to us. First we have the
following long exact sequence.

0→H0
Y (X,F)→ H0(X,F)→ H0(U,F|U )→

H1
Y (X,F)→ H1(X,F)→ H1(U,F|U )→ · · ·

For the second sequence, let Z ⊂ Y ⊂ X be a sequence of closed subspaces, we then have an exact
triangle.

H•Z(X,F)→ H•Y (X,F)→ H•Y \Z(X\Z,F|X\Z) (1)

We will use local cohomology in the following way. Let X be a scheme and M be a bundle on X,
then given a family Z of closed subschemes over X that lives inside M we have Hi

Z(M,−), we will
use this to denote the pushdown to X.
In the special case of N ⊂ M, where N is a sub-bundle of M we know exactly what the local
cohomology of OM is.

Lemma 2.5. Let X be a smooth scheme, let M be a bundle over X and N be a sub-bundle of M.

Then

Hcodim N
N (M,OM) = Sym•

(
N∨
)⊗

Sym• (M/N)
⊗

det (M/N)

and all other cohomology is zero.

Proof. See [Van93].

The exact triangle also holds in this case.
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Finally there is a third way of thinking about local cohomology, it is the same as relative De
Rham homology, which is de�ned as follows, given a diagram

Y X̃

X

where the horizontal map is a closed immersion and the vertical one is smooth, de�ne HDR
i (Y/X) =

H2n−i
Y (X̃,Ω•

X̃/X
) where n is the relative dimension of X̃/X.

It is functorial for proper maps, so if we have Y ′ → Y proper, we get a map HDR
i (Y ′/X) →

HDR
i (Y/X) and we have

HDR
−i (Y/X) = H i

Y (X,OX)

for Y ⊂ X closed.
For more details on relative De Rham homology see [Van91].

3 Algebraic NCCR

Let X = Hom(Cn, V ), let G = SL(V ) acting on X. We want to �nd a NCCR for X/G. There are
not any general methods for �nding NCCR's of an arbitrary singular scheme, however for speci�c
types of singularities there are some approaches. Our singularity is a quotient by a reductive group,
for this type of singularity, �penko and Van den Bergh [�V15] provide a general method for �nding
NCCR's.
Based on the �nite group case, for H a reductive group acting on Y , they consider the algebra

Λ = (End(U)
⊗
k[Y ])H

where U =
⊕
χ∈L V (χ) with V (χ) being the irreducible representation with highest weight χ and L

is some �nite collection of highest weights.

We want this algebra to have �nite global dimension and be Cohen-Macaulay. It splits into com-
ponents (V (µ)

⊗
k[Y ])H where V (µ) appears in the decomposition of V (χ)∗

⊗
V (χ′) for χ, χ′ ∈ L.

It is su�cient to prove that each individual component is Cohen-Macaulay. �penko and Van den
Bergh just reference a result from [Van91] to show Cohen-Macaulayness. We will strengthen this
result.
Most of the paper [�V15] is dedicated to showing �nite global dimension, they �rst show that is suf-
�cient to prove that each H-equivariant Λ-module of the form Pχ = Hom (U

⊗
k[Y ], V (χ)

⊗
k[Y ])

has �nite projective dimension. Then they build a resolution of Pχ as follows.
Pick a one parameter subgroup λ of T ⊂ B ⊂ H (T a maximal torus inside a Borel subgroup B).
Let Zλ ⊂ Y be the subspace of points that �ow to zero as λ tends to zero.
Let Z̃λ = Zλ ×B H, it is a resolution of HZλ and a sub-bundle of Ỹ where both are bundles over
H/B. Taking the Koszul resolution of Z̃λ gives an exact complex, we can also tensor it with Ṽ (χ)
and then applying Hom(U

⊗
k[Y ],−) gives us a complex. If χ and λ are suitably related then the

cohomology of this complex is exact and is a resolution of Pχ. They also describe all the modules
Pµ that appear in this resolution.



8 A NCCR for Hom(Cn, V )/SL(V )

The idea to show �nite global dimension is as follows. Take any module Pχ, if χ ∈ L, then Pχ
is projective. If χ 6∈ L then we use the resolution constructed above, the aim is to prove that by
iterating these resolutions a �nite number of times we can �nd a projective resolution of Pχ. If we
can do this for all χ, we have �nite global dimension. We will explain brie�y how Fonarev, [Fon13]
shows this after we have shown Cohen-Macaulayness.

3.1 Setup

For us, we let UPn,k be the collection of all Young Diagrams α such that αi ≤ (n − k)k−ik . These
are all diagrams that �t inside a triangle of length n− k and height k, see Figure 1 for an example.

Figure 1: An example of a Young Diagram in UP11,4

We want to show that the algebra

Λ = End

 ⊕
α∈UPn,k

(SαV ∗
⊗

Sym•X∗)G


gives a NCCR of X/G = Hom (Cn, V ) /SL(V ).
We will do this by using the framework of �penko and Van den Bergh.
First we show that Λ is Cohen-Macaulay, to do that we need to show that each representation that
appears in Λ is Cohen-Macaulay.
We use the techniques from [Van91]. The same result is proved using di�erent methods in [RWW14].

Second we will show that Λ has �nite global dimension.

Let RGα be the component of OX with weight α (split OX into irreducible representations of G).
We have RGα is Cohen-Macaulay i� (SαV ∗

⊗
Sym•X∗)G is Cohen-Macaulay, so we will show RGα is

Cohen-Macaulay, to do this we will use the following result proved in [Van89]. (The above if and
only if is also shown in this paper).

Lemma 3.1. Let Xu ⊂ X be the null cone, let h = dimOGX , then R
G
α is Cohen-Macaulay i� there

is no representation with weight α in H i
Xu(X,OX), where i = 0, 1, . . . , h− 1.
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As Xu is singular, it is hard to calculate H i
Xu(X,OX) directly so we will use a spectral sequence

from [Van91] that converges to H i
Xu(X,OX).

Fix a Borel subgroup B ⊂ G, all parabolic subgroups will contain B.
Let w1 = (1, 0, . . . , 0), w2 = (1, 1, 0 . . . , 0), . . . , wk−1 = (1, . . . , 1, 0). These are the fundamental
weights of SL(V ), i.e. any dominant weight can be written as

∑
aiwi where ai ≥ 0.

(Note: our weights live in Rk up to shifts of (a, a, . . . , a), so we shift all our weights to have a zero
in the �nal position.)

3.2 The Spectral Sequence

We want to calculate H i
Xu(X,OX), to do this we will �nd a spectral sequence where the terms are

local cohomology terms H∗Y (X̃,−) where Y is a sub-bundle of X̃ and X̃ is X ×G/P , for some P a
parabolic subgroup. Y will be closely related to a resolution of a strati�cation of Xu.

First we will do the �rst two cases by hand, then give the general construction in [Van91] ap-
plied in our situation. Let dimV = 2, then Xu = {rank ≤ 1 maps} and 0 ⊂ Xu ⊂ X, so we get a
triangle

H•0 (X,OX)→ H•Xu(X,OX)→ H•Xu\0(X\0,OX\0)

We think of this as replacing H•Xu(X,OX) with H•0 (X,OX), which we understand, and
H•Xu\0(X\0,OX\0). To deal with this term we use the relation between local cohomology and
relative De Rham homology. We have the following diagram

Xu\0 Y \Gr(1, V ) X ×Gr(1, V )

X X

∼

where Y = Hom(Cn, L)Gr(1,V ), rank L = 1. Y is a resolution of Xu and also a sub-bundle of X
thought of as a trivial bundle over Gr(1, V ). This diagram shows that we have

H•Xu\0(X,OX) ∼= HDR
• (Xu\0/X) ∼= H•Y \Gr(1,V )(X ×Gr(1, V ),Ω•X×Gr(1,V )/X)

Then using the exact triangle (1), we can replace H•Y \Gr(1,V )(X × Gr(1, V ),Ω•X×Gr(1,V )/X) with
H•Y (X × Gr(1, V ),Ω•X×Gr(1,V )/X) and H•0×Gr(1,V )(X × Gr(1, V ),Ω•X×Gr(1,V )/X), we can calculate
both of them using Lemma 2.5, so we are done. (Up to working out maps and gradings).

The next case is dimV = 3, here we have 0 ⊂ X1 ⊂ X2 = Xu, where Xi are the maps of
rank ≤ i.
If we consider 0 ⊂ X2 ⊂ X as above we get the following. Let Y = Hom(Cn, L)Gr(2,V ) where rank
L = 2. Again Y is a resolution of Xu, however this time Zu\0 6∼= Y \Gr(2, V ). Over the rank 2
maps the map Y → Xu is an isomorphism, however a rank 1 map has P1 as a �bre over it. What
is instead true is that Xu\X1 ∼= Y \Y 1 where Y 1 is the preimage of X1.
This means that we should consider 0 ⊂ X1 ⊂ X and X1 ⊂ X2 ⊂ X and in the same way as above,
using (1), we can replace the local cohomology of Xu by local cohomology of 0, Y , 0 × Gr(1, V ),
Z = Hom(Cn, L′)Gr(1,V ) (where rank L′ = 1) and a term Y 1. We can also deal with this �nal term
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in a similar way.
We have U = Hom(Cn,M)Fl(1,2,3) resolving Y 1 (M is rank 1) and Y 1\0 × Gr(2, V ) ∼= U\0 ×
Fl(1, 2, 3) so we can replace the local cohomology of Y 1 by that of 0×Gr(2, V ), U and 0×Fl(1, 2, 3).
All of these terms are linear sub-bundles so we can use Lemma 2.5.

They all �t together as in the following diagram

0×Gr(2, 3) 0× Fl(1, 2, 3)

Hom(Cn, L)Gr(2,3) Hom(Cn,M)Fl(1,2,3)

0 0×Gr(1, 3)

Xu Hom(Cn, L′)Gr(1,3)

In general we have exactly the same idea. Stratify Xu by the Xi, take a speci�c resolution, Y i,
of each Xi and then consider a strati�cation of each Y i given by the preimages of the Xj with
j < i, resolve those strati�cations and repeat this procedure until we only have local cohomology of
sub-bundles. The general case is explained in [Van91], here is a brief summary of the result in our
situation using some of their language.

Consider the strati�cation 0 ⊂ X1 ⊂ · · · ⊂ Xk−1 = Xu where dimV = k.
Let Y i be a linear subspace of X such that GY i = Xi. Let P ⊇ B be any parabolic subset pre-
serving Y i, consider Y i ×P G, this is a sub-bundle of X ×G/P and maps down to Xi. These give
the local cohomology terms in the spectral sequence. We get maps Y ×P G→ Y ′ ×P ′ G whenever
Y ⊆ Y ′ and P ⊆ P ′.

3.3 Calculations

Now that we know what terms appear in the spectral sequence we next calculate all the possible
representations that can appear in these terms, this will also tell us what representations can not
appear in H•Xu(X,OX).

The result we will get is the following

Lemma 3.2. Any representation appearing in H i
Xu(X,OX) for i < h has weight

∑
aiwi where at

least one ai ≥ n− k and all the ai are non-negative.

This is enough to prove that Λ is a Cohen-Macaulay algebra, see Proposition 3.7 for a proof.

The rest of this section will be devoted to proving this result. A slightly stronger result was proved
independently using another method of calculating local cohomology in [RWW14].
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Lemma 3.1 tells us that we only need to check what representations appear in the �rst h =
dimX−dimG degrees. We have dimX = dim Hom(Cn, V ) = nk and dimG = dimSL(V ) = k2−1
which gives us that h = nk − k2 + 1.

We have H•Y (X ′,OX′) lives in degree codimY when Y is a sub-bundle and in general we have
the following diagram

HDR
−i (0× F/X) H2m+i

0×F (X × F,Ω•X×F/X)

HDR
−i (Xu/X) H i

Xu(X,OX)

∼

∼

where m is the relative dimension of X ×F/X = dimF . At worst F is the complete �ag variety of
V which has dimension k(k−1)

2 and as 0× F has codimension nk, we have a map

Hnk
0×F (X × F,Ω∗X×F/X)→ Hnk−2m

Xu (X,OX)

and m ≤ k(k−1)
2 so at worst this maps into degree nk − k(k − 1) = nk − k2 + k > h. We also have

Ω∗X×F/X = OX×F/X
⊕

Ω1
X×F/X [−1]

⊕
· · ·

⊕
ΩdimF
X×F/X [−dimF ]

and H i(Y,F[−j]) = H i−j(Y,F), so Hnk
0×F (X×F,Ωj

X×F/X [−j]) appears in degree nk+ j and so gets

mapped to Hnk−2m+j
Xu (X,OX).

This shows that we can ignore the local cohomology of any of the terms where Y = 0×G/P where
P is any parabolic (including P = G).

Next we calculate what representations appear in the remaining terms, to do this we will use
Borel-Weil-Bott and Lemma 2.5.
Consider the situation X × F q−→ F

π−→ pt. We have

H•Y (X × F,Ω•X×F/X) ∼= H•(F,H•Y (X × F,OX×F )
⊗

Ω•F ))

using Ω•X×F/X = OX×F
⊗
q∗Ω∗F , the projection formula and that calculating cohomology is the same

pushing forward along π ◦ q (Recall that we are using H•Y (X ×F,−) to denote the pushdown along
q to F ). We will �rst calculate what potential representations we get from the H•Y (X × F,OX×F )
term, then we will add in Ω∗F to get the result afterwards.

Lemma 3.3. Let Y = Hom (Cn,W )F where F is some �ag variety and dimW = l. Then H•Y (X×
F,OX×F ) only contains terms that are the pushdown of line bundles O(γ) on the complete �ag,

where γ =
∑
aiwi, with al ≥ n, ai ≥ 0.

Proof. We can push the bundle Hom (Cn,W ) down to Gr(l, V ) without changing the weights that
appear. (Another way of saying this is that the line bundle which pushes down to Hom (Cn,W )
doesn't depend on the partial �ag that it is over). So we can assume that F = Gr(l, V ).
By Lemma 2.5 we have

H•Y (X ×Gr(l, V ),OX×Gr(l,V )) = Sym• (Hom(Cn,W )∗)
⊗

Sym• (Hom(Cn, V/W ))
⊗

(detV/W )⊗n
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Consider the �rst term, let α1 ≥ α2 ≥ · · · ≥ αl ≥ 0, then using

Sym• (
⊕
W ∗) ∼=

⊗
Sym• (W ∗)

and the Littlewood-Richardson rule on

Symα1 (W ∗)
⊗

Symα2 (W ∗)
⊗
· · ·

⊗
Symαl (W ∗)

⊗
Sym0 (W ∗)

⊗
· · · Sym0 (W ∗)

we �nd that SαW ∗ appears for any α = (α1, . . . , αl) a Young diagram.

Looking at the �nal term, we have detV/W ∼= detW ∗ ∼= O(1). This comes from the Young
diagram (n, n, . . . , n) as we have n copies of detV/W , on the complete �ag this corresponds to nwl.

Finally considering the middle term and writing Q = V/W , we get Sβ′Q appearing for any β′

a Young diagram in exactly the same way as for W . Rewriting in terms of Q∗ we get SβQ∗ where
β = (−β′n−k, . . . ,−β′1). When we lift to the line bundle O(γ) = O(α, β) on the complete �ag, we
are allowed to shift by (1, 1, . . . , 1) as we only care about SL(V ) weights, not GL(V ) weights, so
shift by β′1 to get that γ must appear in the wanted form.

Proof of Lemma 3.2. If a representation appears in H i
Xu(X,OX), it must appear somewhere in the

spectral sequence, i.e. it must appear in

H•Y (X × F,Ω•X×F/X) ∼= H•(F,H•Y (X × F,OX×F )
⊗

Ω•F ))

For some Y, F as above. By the earlier discussion we do not need to consider the terms where
Y = O × F for any F .

In Lemma 3.3 we showed how to deal with H•Y (X × F,OX×F ), so we need to deal with Ω•F , where
OF

⊕
Ω1
F [−1]

⊕
· · ·

⊕
Ωp
F [−p], dimF = p.

In the �rst case of F = Gr(l, V ) we have Ω1
Gr(l,V )

∼= Hom(Q,W ) ∼= Q∗
⊗
W using the notation of

Lemma 3.3 and Ωp
Gr(l,V )

∼= det(Q∗
⊗
W ) ∼= O(−k). In the other extreme case, on the complete �ag,

F (V ), we have Ωp
F (V )

∼= O(−2ρ) where ρ = (k− 1, k− 2, . . . , 1, 0). (ρ is half the sum of the positive
weights).

In general there is not an easy way of describing Ω•F , but we can describe the line bundles that push
down to the components of Ω•F . Using this description on G/P we get that Ω1

G/P has associated
line bundles O(γ), where γ corresponds to the collection of roots of G with the roots of P removed.
As B ⊂ P we get some collection of negative roots, and for P = B we get all the negative roots.
(The negative roots look like (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0))
Taking wedge products corresponds to adding the weights together, for example on the complete
�ag, the canonical bundle corresponds to adding all the negative weights together, this is exactly
−2ρ as above.

This means that we need to consider the line bundle corresponding to nwl +
∑
aiwi +

∑
p∈S− p

where S− is some collection of negative roots. This is not written in the right form to �nd what
the weight is so we need to rewrite without the

∑
p∈S− p term. We can assume all the ai are zero

as they only make the situation better, so let β = nwl +
∑

p∈S− p.
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Before we can analyse this further we will prove a bound on the maximum di�erence that can appear
in γ =

∑
p∈S− p. The claim is that in this situation we have γj − γi ≤ k + j − i− 1, for j > i. We

will show this by induction.

Fix k, pick i < j. If i = 1, j = k then the weight −2ρ gives the worst case. If at least one of
i, j is not 1, k then let k′ = j − i + 1 < k. By assumption, only using weights that �t into the
window [i, j], we get that γ′j − γ′i ≤ k′ + j − i − 1 = 2j − 2i. We can at most increase γ′j by i − 1
as we have that many choices for a negative weight with the −1 in one of the �rst i− 1 entries and
the 1 in the jth entry, similarly we can reduce γ′i by at most k − j. Putting these together we get

γj − γi ≤ γ′j − γ′i + i− 1 + k − j ≤ 2j − 2i+ i+ k − j − 1 = k + j − i− 1

The base case of k = 2 is trivial.

Now that we have this bound we can complete the proof.

If β is dominant, at most we can have βl − βl+1 = n − (k + l + 1 − l − 1) = n − k. Rewriting
in terms of the wi basis we get the result.

If β is not dominant then we need to apply Borel-Weil-Bott in full generality. Let β′ =
∑

ρ∈S− ρ
and let βi be the smallest entry with i ≤ l, βj the largest entry with j > l. After applying the
twisted Weyl action from Borel-Weil-Bott we get α (we assume that we get a dominant weight α,
if we get nothing it is �ne) and we have the following bounds

αl ≥ βi + (k − i)− (k − l) = βi + l − i
αl+1 ≤ βj + (k − j)− (k − (l + 1)) = βj + l − j + 1

as βi = n+ β′i and βj = β′j we have

αl − αl+1 ≥ n+ β′i + l − i− (β′j + l − j − 1)

≥ n+ (−k − j + i+ 1) + l − i− l + j − 1

≥ n− k

Again, rewriting in the wi basis gives us the result.

Remark 3.4. It is easy to show that these bounds are attained and that given any representation
such that at least one of the coe�cients in front of the wi is at least n − k we can �nd a term in
the spectral sequence where it appears.
In seems like [Van99] enables us to strengthen this and say that these representations also appear
in H i

Xu(X,OX), this would give us the same result as [RWW14].

Remark 3.5. We can also see exactly where we get a stronger result then the one from [Van91]. In
the above work we have shown that the collection of representations that we get does not get any
bigger after applying Borel-Weil-Bott in full generality. I.e. everything that appears after applying
the twisted Weyl group action can also be found directly. This is not true in [Van91], more precisely,
we have strengthened Corollary 6.8 of that paper.

Now that we have found out what weights are Cohen-Macaulay, we can answer the original
question of whether our weights give a Cohen-Macaulay algebra.
To do this we use a result about what weights can appear in the decomposition of Sα

⊗
Sβ , the full

decomposition is given by the Littlewood-Richardson rule, we just need the following
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Lemma 3.6. Assume that Sγ ⊂ Sα
⊗

Sβ and that all diagrams have at most k rows. Then we have

the following bounds on the entries of γ.

αi + βk ≤ γi ≤ α1 + βi

Proof. We will �rst prove the upper bound then the lower one.
A straightforward application of the rule says that the boxes from the ith row of β can only appear
in rows i to k. This gives us γ1 ≤ α1 + β1. As each column has to have strictly increasing boxes,
once we have �lled up to column α1 the columns have to look like 1234 etc. This shows that row i
can not be longer than α1 + βi.

Using the �rst observation also tells us that γk ≥ αk + βk and we can generalize this using part of
the rule. It tells us that there must be at least βk boxes from βk−1 placed in the rows above the kth

row, combining this with the fact that boxes from βk−1 can only appear in rows k − 1 and k tells
us that at least βk of them must appear in row k − 1. I.e. γk−1 ≥ αk−1 + βk.
In exactly the same way one can show that we need to place at least βk boxes from βi in the ith

row. This gives us the lower bound γi ≥ αi + βk.

This is enough to show that our algebra is Cohen-Macaulay.

Proposition 3.7. The algebra

Λ = End

 ⊕
α∈UPn,k

(SαV ∗
⊗

Sym•X∗)G


is Cohen-Macaulay

Proof. It is su�cient to show that every piece of the decomposition of Λ is Cohen-Macaulay. In
this situation each piece appears in the decomposition of Sα∗V ∗

⊗
SβV ∗ where α∗ = (α1−αk, α1−

αk−1, . . . , α1 − α1) and αi, βi ≤ (n− k)k−ik .
Applying Lemma 3.6 we get the following bounds on the γi.

α1 − αk−i+1 ≤ γi ≤ α1 + βi

(as αk = βk = 0). This shows that

γi − γi+1 ≤ α1 + βi − (α1 − αk−i)
≤ βi + αk−i

≤ (n− k)
k − i
k

+ (n− k)
k − (k − i)

k
= n− k

As n and k are coprime we have a strict less than and this shows that if we write γ in terms of the
wi each coe�cient must be less then n− k.
So our algebra Λ is Cohen-Macaulay!

As an aside, in general a collection of weights will give a Cohen-Macaulay endomorphism algebra
if it is "small" enough and that algebra will have �nite global dimension if the collection is "big"
enough. As we are looking for a NCCR which requires both CM and �nite global dimension, our
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collection should be on the boundary of both conditions. It turns out that we can prove that if we
add any weight to UPn,k then the resulting endomorphism algebra is no longer Cohen-Macaulay.

To show this is true we need �rst need another simple result about the Littlewood-Richardson
rule, it follows by simply building β given α and γ.

Lemma 3.8. Let α, β, γ be weights with at most l rows, then a Sγ such that γ1 = α1 appears in the

decomposition of Sα
⊗

Sβ if and only if β ≤ (α1 − αl, α1 − αl−1, . . . , α1 − α1).

Lemma 3.9. Let β be any weight that doesn't appear in UPn,k, i.e there exists a βi that doesn't
satisfy βi ≤ (n− k)k−ik .
Then there exists a weight α ∈ UPn,k such that at least one representation that appears in the

decomposition of Sα∗
⊗

Sβ that is not Cohen-Macaulay.

Proof. Let l = max{i|βi > (n− k)k−ik } by the assumptions on β such a l exists.
Let

ᾱ = (α1, α2, · · ·αl, 0, . . . , 0)

where αi is the largest allowed value. Then we have that

ᾱ∗ = (α1, α1, . . . , α1, α1 − αk−l, α1 − αk−l−1, . . . , α1 − α2, 0)

We claim that we can �nd Sγ ⊂ Sᾱ∗
⊗

Sβ such that Sγ is not Cohen-Macaulay.
It is su�cient to show that there exists a γ with γl − γl+1 ≥ n− k.

Let γ = (α1 + β1, α1 + β2, . . . , α1 + βl, ?, . . . , ?).
In applying the Littlewood Richardson rule (algorithm) we have used up all the entries of β up to
and including the lth row, we also can not change the �rst l entries of γ so we have reduced the
problem to applying the Littlewood Richardson rule to the situation

(α1 − αk−l, α1 − αk−l−1, . . . , α1 − α2, 0)⊗ (βl+1, . . . , βk−1, 0)

We want to �nd a diagram in the decomposition with the �rst entry equal to α1 − αk−l.
To check that we can do this we need to show that our weights satisfy the conditions of the above
lemma.

So we need to show that βl+i ≤ (α1 − αk−l)− (α1 − αi) = αi − αk−l.

Note that we have αi + αk−j ≤ αi−j for i ≥ j. (We are assuming that αi is the maximum
possible value for all i.)1

Applying this gives us that
αi − αk−l ≥ αl+i

and by assumption

βl+i ≤ (n− k)
k − (l + i)

k

so using that αl+i is as large as possible, we get that βl+i ≤ αl+i and so we have found a γ which
looks like (. . . , α1 + βl, α1 − αk−l, . . . ).
And we have βl + αk−1 ≥ n− k (use that αk−l is maximal and that βl > (n− k)k−lk ).

1This follows as bac+ b ≤ a+ b which implies that bac+ bbc = bbac+ bc ≤ ba+ bc.
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3.4 Finite global dimension

To complete the proof that Λ is a NCCR, we need to show that Λ has �nite global dimension.
To do this we will use the resolution from [�V15] described at the start of this section. The same
resolution is also found in [Fon13] and [DS14] for the special case of G = GL(V ) but they describe
it di�erently (staircase complexes), it turns out that their description is more helpful for us.
We will analyse this resolution and show that by iterating it a �nite number of times, any module
Pα has a �nite resolution by modules Pβ for β ∈ UPn,k.

First if Pα is any module such that α1 > n − k, then using the description in [�V15] it is easy
to see that all MPβ that appear in the resolution satisfy β1 < α1, see Theorem 3.11 for the proof.
This tells us that every weight has a �nite resolution by weights that �t into a rectangle of size
(n− k)× k. Therefore it is su�cient to prove that all weights of size at most (n− k)× k have �nite
projective dimension.

To do this we will use the description of the resolution, as found in [Fon13] and [DS14], called
a staircase complex.
This is all found in [Fon13], we reproduce it here for completeness, and also simplify the arguement.
(Fonarev uses GL(V ) representations, our representations are SL(V ) ones).

We can represent a Young diagram, α, using a binary sequence of length n containing k 1's and
n− k 0's. Representing diagrams in this way gives us a natural action of Z/nZ by rotation, under
this action exactly one diagram in each orbit will be upper triangular.

There is a geometric way of describing this operation as well.
Take a diagram α with α1 ≤ n− k and glue them together at the corners. (In terms of the binary
sequence, repeat the sequence in�nitely in both directions.) Then applying i rotations is the same
as starting at the bottom left corner of the diagram and taking i steps along the edge of α, then
creating a new diagram with the bottom left being at this point.
I.e. take a box of size (n − k) × k and move it along the edge of the diagram α to give the other
diagrams in the orbit.

In Figure 2 we see an example where n = 11, k = 4, α = (6, 3, 3, 0). The green box labelled 1 is
the original diagram, the box labelled 2 is the diagram (4, 3, 0, 0) and corresponds to 4 · α. Finally,
the box labelled 3 is the diagram (4, 4, 1, 0) and corresponds to 9 · α.

Using this description we can also easily show that there exists a unique upper triangular dia-
gram in the orbit. To see this draw a diagonal line with gradient (n− k)/k through each corner of
the diagram, one of these lines will be the lowest (and in fact only one, using the fact that n and k
are coprime.). Take the diagram that has as corners, the points where this line touches the repeating
diagram, it will be upper triangular. See Figure 3 for an example, again with α = (6, 3, 3, 0).

Let dupp(α) be the number of rotations needed to take α to an upper triangular diagram, or
equivalently the number of steps needed to move to the corner which gives the lowest line. Note
that dupp(α) = 0 for all diagrams in UPn,k.
Next we describe the terms that appear in the staircase complex, these come from SL(V ) represen-
tations, but we won't remove any complete columns when we draw the diagrams.
Let α be a diagram such that α1 ≤ n− k, create a new diagram by adding a strip to the edge of α



Bradley Doyle - LSGNT 17

1

2

3

Figure 2: The e�ect of the Z/nZ action

Figure 3: Detecting the upper triangular element in the orbit

as seen in Figure 4 and extend along the �rst row until we have added n boxes. Then the �rst term
in the complex has diagram corresponding to the new diagram, but where we have only completed
the �rst column, and the ith term has diagram corresponding the new diagram, but this time with
only the new terms from the �rst i columns. (It is also possible to �nd the multiplicities of the
terms, but we don't need that detail.)
Looking at Figure 4, the ith term is the diagram corresponding to the original diagram as well as
all boxes labelled i or less.

Lemma 3.10. Let α be a diagram not in UPn,k and such that α1 ≤ n− k, let Pβ be any term that

appears in the given resolution of Pα.
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1 2 3 4

4

4 5 6 7

7 8

Figure 4: The staircase resolution

Then we have dupp(β) < dupp(α)

Proof. We will take the de�nition of dupp as the number of steps to get to the corner that gives the
lowest diagonal. It is clear that adding more boxes can only make the lowest diagonal lower so we
can assume β is the �nal term in the resolution.
Also note that removing a column reduces dupp by 1 and β has a full column so at least one can be
removed, this shows it is su�cient to show dupp(β′) ≤ dupp(α) where β′ is β without excess columns
removed.

As β′ looks like α shifted diagonally by 1, if the lowest diagonal comes from a corner not on
the �rst row then dupp(β′) = dupp(α) so it is su�cient to show that the lowest diagonal can't come
from the corner on the �rst row.

At worst β′1 = n − k + 1, if this is the case we need to remove the �rst column so that we �t
into a box of size (n − k) × k. Assume this is the case and that the lowest diagonal meets here.
This means that the weight (β′2 − 1, . . . , βk − 1, 0) is upper triangular. We have βi = αi−1 + 1 for
i ≥ 2 which shows that (α1, . . . , αk−1, 0) is in fact upper triangular. This contradicts the original
assumption.

This result is found in [Fon13, Prop. 5.6] as a note.
We can now show the main result, that Λ is a NCCR for X/G.

Theorem 3.11. The algebra Λ has �nite global dimension and gives a NCCR of X/G.

Proof. It is su�cient to show that Pα has �nite projective dimension for any Young diagram α.
By construction all the Pα where α ∈ UPn,k are projective, so let α be a weight not in UPn,k, if
α1 ≤ n− k then Lemma 3.10 shows that we have a �nite resolution of Pα by projectives.
Another way of describing the terms, Pβ , in the resolution is that β is one of the weights that arise
by applying Borel-Weil-Bott to α+ (0, 0, . . . , 0, i) for i = 1, . . . n.
We will use this description to deal with diagrams α such that α1 > n− k.

As i ≤ n < α1 + k, after applying Borel-Weil-Bott we still have that α1 is the largest entry,
and the �nal element is at least 1. This shows that any Pβ in the resolution satis�es β1 < α1.
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Therefore any module Pα with α1 > n−k has a �nite resolution by modules Pβ such that β1 ≤ n−k.

Putting these two results together we get that each Pα has �nite projective dimension.

We have already shown that Λ is Cohen-Macaulay in Proposition 3.7 so we get Λ is an NCCR
of X/G.

4 Geometric NCCR

There is another to �nd a NCCR of X/G.
We have a geometric resolution of X/G given by O(−1)Gr(n,k) and the exceptional divisor is the
zero locus, isomorphic to the Grassmannian.

Gr(n, V ) OGr(n,V )(−1)

0 Hom(Cn, V )/SL(V )

i

π

p

We also have the standard exact sequence of vector bundles on Gr(n, V ).

0→ S → Cn
⊗

OGr(n,V ) → Q→ 0

Fonarev, [Fon13], tells us that we have a rectangular Lefschetz decomposition of Db(Gr(k, n)) with
the �rst block given by Schur powers of the universal quotient-bundle, Q, on the Grassmannian.
These Schur powers are indexed by upper triangular Young diagrams of size (n − k) × k, exactly
the ones in UPn,k as earlier.

Kuznetsov, [Kuz06], gives a way to �nd a categorical (crepant) resolution in this situation. He
works in the slightly more general situation of a geometric resolution with an exceptional divisor
that has a Lefschetz decomposition. He uses this Lefschetz decomposition to build a semiorthogonal
collection on the resolution. Then the left orthogonal of this collection gives a categorical (crepant)
resolution.

Applying this to our situation gives us that the subcategory D̃ = {F|i∗F ∈ B0} is a categorical
weakly crepant resolution where B0 is the subcategory generated by the Schur powers mentioned
above. As p ◦ i = id, we have that D̃ is generated by p∗SαQ.
If in addition D̃ is generated by a tilting vector bundle, then Kuznetsov proves that the endomor-
phism algebra of vector bundle gives an NCCR.

Lemma 4.1. The vector bundle
⊕
p∗SαQ where the sum is over α ∈ UPn,k is tilting over

Hom(Cn, V )/SL(V ).

Proof. As Hom(Cn, V )/SL(V ) is a�ne we just need to show that

RHom(p∗SαQ, p∗SβQ) = Hom(p∗SαQ, p∗SβQ)
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for all α, β ∈ UPn,k.

We have

RHom(p∗SαQ, p∗SβQ) ∼= H•
(
O(−1), p∗

(
(SαQ)∗

⊗
SβQ

))
∼= H•

(
Gr(n, V ), (SαQ)∗

⊗
SβQ

⊗
p∗OO(−1)

)
As p∗OO(−1) =

⊕
i≥0 O(i) we need to show that (SαQ)∗

⊗
SβQ

⊗
O(i) has no higher cohomology for

all i ≥ 0.
To do this consider what terms can appear in the decomposition of (SαQ)∗

⊗
SβQ ∼= Sα∗Q

⊗
SβQ

From Lemma 3.6 we get the following bounds on any SγQ appearing

−(n− k)(k − 1)/k + i ≤ γk ≤ i

If γk ≥ 0 it is a dominant weight and we only have cohomology in degree 0 (using Borel-Weil-Bott).
Else we have

γk ≥ i− (n− k)(k − 1)/k ≥ −(n− k)(k − 1)/k

so when we apply the twisted Weyl action, we �rst add ρ which has kth entry n − k + 1, then we
rearrange and as n − k + 1 > (n − k)(k − 1)/k we get two entries with the same value. Therefore
this weight is not dominant and we have no cohomology at all.
In both cases we get the wanted result.

Corollary 4.2. D̃ ∼= Db (End (
⊕
p∗SαQ)))

Proof. See [Kuz06, Section 5]

This process actually gives us four categorical resolutions, as we have two di�erent Lefschetz de-
compositions, one with terms of the form SαQ, and one with terms SαtS, where αt is the transposed
Young diagram. We then get two more by using SαQ∗ and SαtS∗. As we have (SαQ)∗ = SαQ∗
and dualizing is an anti-auto-equivalence this shows us straightforwardly that we only have two
potentially di�erent categorical resolutions.
We can in fact go further and show that the remaining two resolutions are equivalent.

Lemma 4.3. The two collections {SαQ}α∈UPn,k and {SαtS}α∈UPn,k generate the same subcategory

D̃ in Db(OGr(n,V )(−1)).

Proof. We can take Schur powers of a sequence, as follows.
Given a short exact sequence

0→ A→ B → C → 0

we get

0→ SαA→ SαB → · · · →
⊕(

SβB
⊗

Sγ
t
C
)⊕mαβγ → · · · → Sα

t
C → 0

is exact, where the sum is over |γ| = p, |λ| = |α| − p and mα
βγ is the Littlewood-Richardson

coe�cients. It is non-zero only if γ is a sub-digram of α. Applying this to

0→ S → Cn
⊗

OGr(n,V ) → Q→ 0
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we get that

〈SαtS|α ∈ Ln,k〉 ⊂ 〈SαQ|α ∈ UPn,k〉

One can also expand SαC by terms involving Schur powers of A and B, this gives us the reverse
inclusion.
Therefore our two collections are just di�erent generators of the same subcategory.

This shows that all four categorical resolutions that arise from the geometric resolution are equiva-
lent, and therefore all four NCCR's are derived equivalent.

5 These NCCR's are equivalent

There is a conjecture that all NCCR's should be derived equivalent, we want to show it in the special
case above. We have already shown that the four di�erent NCCR's from the geometric resolution
using Kuznetsov's construction are equivalent, we also have at least two NCCR's from the algebraic

picture, one in terms of (SαV ∗
⊗

Sym•X∗)G and another in terms of
(
SαtW

⊗
Sym•X ′∗

)G
, where

X ′ = Hom(W,Cn),dimW = n − k and these Schur powers are thought of as SL(V ), SL(W )
representations, but they are indexed by exactly the same Young diagrams, α ∈ UPn,k.
One can show that even in the �rst non-trivial case (n = 5, k = 2) we get two di�erent endomorphism
algebras. Representing the algebras as quivers and writing X = Hom(U, V ) and X ′ = Hom(W,U)
we get

· ·⊕
S(a,a)U ⊕

S(a+1,a)U

⊕
S(a+1,a)U ⊕

S(a,a)U
⊕

S(a+2,a)U

for X (we haven't mentioned what the relations are), and

· ·⊕
S(a,a,a)U∗ ⊕

S(a+1,a+1,a)U∗

⊕
S(a+1,a,a)U∗ ⊕

S(a,a,a)U∗
⊕

S(a+2,a+1,a)U∗

for X ′. Picking a volume form for U gives us an isomorphism between some of the components
(
⊕

S(a,a,a)U∗ ∼=
⊕

S(a,a)U), but not all of them. For example in degree 0 (a = 0), we have U maps
from the left to the right in the �rst algebra and

∧2 U∗ maps in the second algebra. These have
ranks 5 and 10 respectively.

We will prove that these two are derived equivalent by showing that they are equivalent to those
from the geometric resolution.

We have the following diagram
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OGr(n,V )(−1) [Hom(Cn, V )/SL(V )]

Hom(Cn, V )/SL(V )

and while there is no map between the geometric resolution and the stack resolution, we can �nd
an open set in each of them which are isomorphic.
On the geometric side we have the complement of the zero section and on the stack side we have
the full rank locus, these opens are both isomorphic to the nonsingular part of Hom(Cn, V )/SL(V ).

We will show that on both sides, we can calculate the endomorphism algebra on the open sets,
not just on the whole space, then as they agree on these subsets we are done.

On the stack side this follows for dimension reasons (algebraic Harthog's Lemma, the locus of
maps without full rank has codimension n). To show this on the geometric side we will use local
cohomology.

Let Y be the total space of the O(−1) line bundle on Gr(n, V ) and let Z be the zero locus of
the zero section, Z ∼= Gr(n, V ), �nally let U = Y \Z.
The next lemma shows that each component of the endomorphism algebra can be calculated by
restricting to the open set U and then taking global sections.

Lemma 5.1. For α, β ∈ UPn,k we have

H0
(
Y, p∗

(
(SαQ)∗

⊗
SβQ

))
∼= H0

(
U, p∗

(
(SαQ)∗

⊗
SβQ

)∣∣∣
U

)
Proof. We have the following exact sequence for local cohomology

0→ H0
Z(Y,F)→ H0(Y,F)→ H0(U,F|U )→ H1

Z(Y,F)→ · · ·

so it is su�cient for us to prove that H0
Z(Y,F) and H1

Z(Y,F) vanish for F ∼= p∗
(
(SαQ)∗

⊗
SβQ

)
.

We have

H•Z(Y, p∗F) =H•0×Gr(n,V )

(
OGr(n,V )(−1), p∗F

)
=H•

(
Gr(n, V ),H•0×Gr(n,V )

(
OGr(n,V )(−1),OOGr(n,V )(−1)

)⊗
F
)

and we also have

H•0×Gr(n,V )

(
OGr(n,V )(−1),OOGr(n,V )(−1)

)
=
⊕
i≥1

OGr(n,V )(−i)

by Lemma 2.5. Rewriting we get

H•
(
Gr(n, V ),

(
(SαQ)∗

⊗
SβQ

)
(−i)

)
= RHomGr(n,V )

(
SαQ(i), SβQ

)
For 1 ≤ i ≤ n this vanishes by [Fon13]. (The terms SβQ give a Lefschetz decomposition with respect
to O(1) for the Grassmannian)
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If i > n, then we will use Serre Duality to show the result. The canonical bundle is O(−k) so
we have

H i
(
Gr(n, V ),

(
(SαQ)∗

⊗
SβQ

)
(−i)

)
∼= Hp−i

(
Gr(n, V ),

((
SβQ

)∗⊗
SαQ

)
(i− k)

)∗
As we have full symmetry between α and β and i > n > k so i − k > 0 we are in the situation of
Lemma 4.1. During the proof we showed that such a term only has cohomology in degree 0, pushing
this through Serre Duality we get that

H•
(
Gr(n, V ),

(
(SαQ)∗

⊗
SβQ

)
(−i)

)
is non-zero only in the top degree.

Therefore in all situations we have no cohomology in degree 0 and 1, this gives us the wanted
result.

Theorem 5.2. Let X = Hom(Cn, V ) and X ′ = Hom(S,Cn).
Let Λ and Λ′ be the NCCR's of X/SL(V ) and X ′/SL(S) respectively from Theorem 3.11.

Then Λ and Λ′ are derived equivalent.

Proof. We have already done all the work;
For dimension reasons we can calculate Λ and Λ′ on the open set of maps with full rank, Lemma
5.1 tells us that we can also calculate the geometric NCCR's on this open subset.
On this subset it is clear that the geometric one described in terms of SαV ∗ and the algebraic one
described in exactly the same terms are the same, similarly for the other one. In Section 4 we
showed that all four NCCR's mentioned in that section are equivalent. Using this equivalence, we
get that the two algebraic ones are equivalent as they are both equivalent to the geometric one.
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