
Moduli space of genus g stable maps

Bradley Doyle

Supervisor: Dr. Cristina Manolache - Imperial

LSGNT mini project II

June 29, 2018

Abstract

We construct the moduli space of genus g stable maps and use it to prove Kontsevich's

formula for rational plane curves, we also introduce Gromov-Witten invariants and provide a

sketch of recursion for Pr. We use the Hilbert scheme in our construction and give a detailed

proof of the existence of the Hilbert scheme, we work mainly with Pr and only look at GW

invariants in the genus 0 case, we also provide some Mathematica code for calculating GW

invariants.
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1 Introduction

We want to study curves, in speci�c, we want to ask questions about the number of curves that
satisfy certain geometric conditions, for example, going through a point, of being incident to a
higher dimension subspace, etc.
To answer questions like this in a systematic way it is useful to try and �nd a geometric space
whose points represent curves, called a moduli space. We can then hopefully translate the incidence
conditions to geometric subspaces and do intersection theory in the moduli space to try and answer
the questions.

As a trivial example of this, consider (directed) line segments in R2, one way we can describe
a line segment is by giving its start and end points, we can package that as a vector (s1, s2, e1, e2)
where the line segment starts at (s1, s2) and ends at (e1, e2). If we allow line segments with no
length then we �nd that R4 parametrizes line segments. If we want to consider all line segments
that start at a point (a, b) we can translate this into the condition of lying in a 2 dimensional plane
in R4, and we have the same condition for all line segments ending at a given point.
If we then want the answer to the trivial question of how many line segments start at a given point
and end at another given point we need to �nd the intersection of 2 linear subspaces of codimension
2 in R4, this is just a single point.

We also see that if we know the dimension of the moduli space, then for us to expect a �nite
number of curves we need to intersect subspaces whose codimensions sum to the dimension of the
moduli space, if we also know what the codimension of a condition is, then this allows us to calculate
how many conditions we need to apply.
In many simple situations it is relatively easy to calculate the "expected" dimension, as there is a
straightforward way of parametrizing "nice" objects, and the "nice" objects should be dense in the
moduli space, that enables us to �nd how many conditions we need to impose, even if we do not
know what the moduli space actually is.

To do intersection theory we need a complete space and it turns out that the "nice" objects often
form a noncomplete moduli space, so we need to compactify the moduli space in such a way that
every point still corresponds to a curve, but we might have to allow "bad" curves, it is easy to see
that we will need singularities as it is easy to �nd a family of curves that depend on a parameter t,
such that the curve is smooth for all t 6= 0, but is not smooth if t = 0. (xy = t)

It can turn out that the compacti�cation can increase the dimension, but in the situations we
will consider that will not happen. We will be interested in maps from marked curves into a �xed
space, often Pr, we will have to allow maps from a reducible source with mild singularities, called
stable maps, see Section 3 for the details. This compacti�cation is by Kontsevich [9].

We will use the Hilbert scheme in our construction of the moduli space, so in Section 2 we will
construct it. Finally we will study some of the enumerative properties of the moduli space in Sec-
tion 4. We will prove Kontsevich's formula for rational plane curves which gives a recursive formula
for the number of degree d rational planar curves. Then we will de�ne Gromov-Witten invariants
and prove some basic results about them including a sketch of recursion for Pr.

These moduli spaces are normally talked about as stacks, but we will not use that language, we
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assume many introductory results from scheme theory, including results about �atness and base
change, the main results used will be stated, see Hartshorne [5] or Vakil [14] for details. For an
introduction to the moduli space of stable maps in the genus 0 case see [8], this book has a lot of
motivation and intuition, for proofs see the notes [3].

2 The Hilbert Scheme

The �rst (or key) step in showing that there is a moduli space of stable maps is to show the existence
of a simpler object, the Hilbert scheme which is informally the collection of all closed subschemes
of a given scheme.
This section is based on [13] and [12], (which is also section 5 of the book [2]).

2.1 Representable functors and the Hilbert functor

There are two key ideas for the topic of representable functors.

First, given a speci�c collection of geometric objects, it would be good if we could give that collec-
tion some geometry. This sounds rather vague but for a concrete example, the projective line P1

C is
the information of all lines in C2, but P1

C is more then just the set of lines in C2. In general if given
some collection of geometric objects, we can give that collection a "natural" scheme structure, then
we can use geometric tools to analyse and study the collection, and we can talk about two objects
being "close" or "connected", or the tangent space to an object, etc.
The second idea is actually Yoneda's lemma, this tells us that maps from any scheme into a scheme
X contains the same information as the original scheme X.

Putting these two ideas together we get the following de�nition, which is in more generality then
just for schemes.

De�nition 2.1. Let F : C→ Set be a contravariant functor, we say that F is representable if there
exists an object X of C and η ∈ F(X) such that αη : Hom(−, X)→ F(−) is a natural isomorphism
of functors, where αη(f) = F(f)(η).

We say that X represents F.

This is equivalent to giving X and an isomorphism α : Hom(−, X) → F(−). (Yoneda, η =
αX(idX)).
As usual we get that X and η are unique up to unique isomorphism.
Many objects can be de�ned as representable functors, for example projective space, grassmannians,
the �bre product and many more.

We also have closely related concepts of �ne and coarse moduli spaces.
From now on Sch/S is the category of schemes over S, an object is a scheme X and a map X → S,
a morphism is a map X → Y , such that the triangle formed using the maps to S commutes, when
talking about objects we will drop the map to S.
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De�nition 2.2. A coarse moduli space for F : Sch/S → Set is a pair (M,β) where M is a scheme
(over S) and β : F(−)→ Hom(−,M) is a natural transformation such that the following properties
hold.

1) For any algebraically closed �eld k we have βSpec k : F(Spec k) → Hom (Spec k,M) is an
isomorphism.

2) If we have (M ′, β′) satisfying 1) then we have a unique morphism f : M →M ′ such that

F(−) Hom (−,M ′)

Hom (−,M)

β′

β f◦

commutes.

If β is isomorphism (i.e, if there is a ε ∈ F(M) such that βM (ε) = idM and if βT (x) = βT (y) then
x = y for any T ) then in fact F is representable by M , and we call M (and β) a �ne moduli space.

Part one of the de�nition says that the underlying set of points is the correct one. However it is
possible that there is no universal family, where the universal family is the element ε ∈ F(M) that
maps to idM . It is universal because given any family E over Z we get a map Z →M , and we can
pullback ε to Z along this map, this pullback is isomorphic to our original family E.
Part two says that M is universal.

Now we have done the basic setup we can talk about the Hilbert functor.

We want to be able to describe all subschemes of a given scheme X over S, informally we want the
collection of all subschemes of X packaged together in a natural way.
For notation given a �bre product

X ×S Y X

Y S

f
′

πY π

f

where X and Y are schemes over S, we write XY for the �bre product X ×S Y , and if we have a
sheaf E on X, we denote its pullback along f

′
by EY .

The most common situation for us will be when X is projective space over S.

De�nition 2.3. Let X be an S scheme, an algebraic family of closed subschemes of X/S parame-
terized by T is a closed subscheme Z ⊂ XT .
The family Z is called �at if the induced map Z → T is �at.

De�nition 2.4. Let X be a �nite type scheme over S, where S is Noetherian.
Let HilbX/S (T ) be the set of �at algebraic subschemes of XT parametrized by T .



6 Moduli space of genus g curves

We have that HilbX/S is actually a contravariant functor as given T
′ → T and Z ∈ HilbX/S(T )

we can pullback Z to Z ×T T ′ and get an element of HilbX/S(T
′
).

Looking at the de�nition of �atness does not explain why we require it, but �atness will be used
many times. One way to think about �atness is as an algebraic version of continuity (without it,
the moduli spaces are huge and can be more badly behaved), the following result also provides some
motivation.

Lemma 2.5. Let X → S be projective, then for an algebraic family Z parametrized by T we have
a Hilbert polynomial PZt associated to the subscheme Zt of PNS for any geometric point t of T .
If T is connected then Z is a �at family if and only if PZt is independent of t.

From now on assume that X → S is projective, we want to show that HilbX/S is representable.
Using the above lemma we see that if it is representable it will be a collection of open and closed
subschemes indexed by Hilbert polynomials. Let HilbPX/S be the subfunctor of HilbX/S where the
�at families have Hilbert polynomial P . (F is a subfunctor of G if F(X) ⊂ G(X) for all X, and the
inclusion of functors is a natural transformation.)
It is therefore su�cient to show that HilbPX/S is representable, before we do so we need a few more
results.

2.2 m-regularity

The �rst result we need is a re�ning of the vanishing of cohomology after twisting enough.

De�nition 2.6. Let F be a coherent sheaf on Pn, we say that it ism-regular ifH i (Pn,F(m− i)) = 0
for all i > 0.

We will sometimes just write H i(F) if the space is clear enough. It is also known as Castelnuovo-
Mumford regularity, as the de�nition was �rst given by Mumford, based on ideas of Castelnuovo.

Proposition 2.7. Let F be an m-regular sheaf on Pn, then we have

1) F is m′-regular for all m′ ≥ m

2) H0 (F(m′))
⊗
H0 (OPn(1))→ H0 (F(m′ + 1)) is surjective for m′ ≥ m

3) F(m′) is generated by global sections for m′ ≥ m

Proof. We will show this by using induction on n.
If n = 0 all the 3 statements hold.

Assume n > 0, �rst we note that we have the exact sequence

0→ OPn(−1)→ OPn → OH → 0

for a generic hyperplane H ∼= Pn−1. As H is generic we get the following exact sequence

0→ F(k − 1)→ F(k)→ FH(k)→ 0



Bradley Doyle - LSGNT 7

by tensoring with F(k). Looking at part of the associated long exact sequence we get

H i (F(m− i))→ H i (FH(m− i))→ H i+1 (F(m− i− 1))

this shows that FH is also m-regular, and therefore 1), 2), 3) hold for it as dimH < n.
Another part of the long exact sequence gives us

H i (F(m− i))→ H i (F(m− i+ 1))→ H i (FH(m− i+ 1))

again for i > 0. The �rst term is zero by m-regularity and the third term is zero by the induction
assumption, therefore H i (F(m− i+ 1)) is zero, and so F is (m + 1)-regular. By iterating this
process we get 1).

To show 2) consider the diagram.

H0 (F(k))
⊗
H0 (OPn(1)) H0 (FH(k))

⊗
H0 (OH(1))

H0 (F(k + 1)) H0 (FH(k + 1))

i

α β

j

By the induction assumption, for k ≥ m we have that β is surjective. We also have the following
two sequences.

H0 (F(k))→ H0 (FH(k))→ H1 (F(k − 1))

H0 (OPn(1))→ H0 (OH(1))→ H1 (OPn)

In the �rst sequence the �nal term is zero by 1) which has been shown already. The �nal term
of the second sequence is zero by standard results, therefore both of the maps at the start of the
sequences are surjective. As i is the tensor product of these maps it is therefore also surjective.

The diagram commutes and therefore j ◦ α is also surjective.
We also have that ker j = H0(F(k)) and therefore ker j ⊆ Imα.

Let b ∈ H0 (F(k + 1)) and let a be any lift of j(b) to H0 (F(k))
⊗
H0 (OPn(1)), then b = α(a) +

(b− α(a)), this shows that H0 (F(k + 1)) = Imα+ ker j.

Putting these together we get that H0 (F(k + 1)) = Imα and therefore 2) is proved.

To prove 3), note that we already have the result for k >> 0 by Serre, then use 2) to see that
the global sections of F(k + 1) are expressible in terms of the global sections of F(k). We can
continue to reduce k this way until k = m, this shows 3).

Proposition 2.8. Let P be a Hilbert polynomial, then there exists an integer m depending on P
such that any closed subscheme, Z, of Pn with Hilbert polynomial P has an m-regular ideal sheaf
IZ .

Proof. We will show this by using induction on n.
Again n = 0 is trivial, so assume n > 0, let IZ be denoted by I, and let H be a generic hyperplane,
then as above we get the exact sequence

0→ I(−1)→ I→ IH → 0
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We have that IH is an ideal sheaf of OH so by the induction assumption there is a m1 such that IH
is m1-regular. We also have that the Hilbert polynomial of H is expressible in terms of the Hilbert
polynomial of Z using the long exact sequence. (H has Hilbert polynomial P (t)− P (t− 1)). So in
fact m1 depends on P .
Looking at the following part of the associated long exact sequence

H i−1 (IH(k + 1))→ H i (I(k))→ H i (I(k + 1))→ H i (IH(k + 1))

we get that H i (I(k)) ∼= H i (I(k + 1)) for i > 1 and all k ≥ m1 − i as IH is m1-regular. Using Serre
vanishing we get that in fact these cohomology groups must be zero and therefore I is m1-regular
apart from the vanishing of H1 (I(m1 − 1)).

Therefore all we need to do is �nd an m ≥ m1 depending on P such that H1(I(m− 1)) = 0.
To do this consider the exact sequence

H0 (I(m+ 1))
jm−−→ H0 (IH(m+ 1))→ H1 (I(m))→ H1 (I(m+ 1))→ 0

for m ≥ m1 − 2. This shows that h1 (I(m)) ≥ h1 (I(m+ 1))
If this was an equality we would have jm is surjective and by looking at the proof of Proposi-
tion 2.7 part 2) we see that jm surjective implies that jm+1 is also surjective and therefore that
h1 (I(m+ 1)) = h1 (I(m+ 2)) = · · · .
By Serre vanishing these must all be zero, and therefore the h1(I(m)) form a strictly decreasing
sequence to zero.
This implies that H1 (I(l)) = 0 for all l ≥ m1 − 1 + h1 (I(m1 − 1)).
So all we need to do is �nd such an l that depends only on P .
We have the exact sequence

H0 (OZ(k))→ H1 (I(k))→ 0

for all k ≥ 0. We also have

H i (OPn(k))→ H i (OZ(k))→ H i+1 (I(k))

which shows that H i (OZ(k)) = 0 for all i ≥ 1 and k ≥ m1 − 2. (recall that I = IZ)

Putting these two facts together gives us that h1 (I(m1 − 1)) ≤ P (m1 − 1) (m1 depends on P ,
so m depends on P .) Therefore if we let m = m1 − 1 + P (m1 − 1) we have the wanted result.

2.3 Flattening strati�cation

If we have a non-�at sheaf over a base S, we need to be able to divide up the base into pieces, above
which our sheaf is �at, before we do this we �rst recall several results on �atness.

Theorem 2.9 (Base change for �at sheaves). Let F be coherent on PnS, �at over S, then
if for some i ≥ 0 we have that dimK(s)H

i (Pns ,Fs) = d for all s ∈ S we then have that Riπ∗F is
locally free of rank d and

(
Ri−1π∗F

)
s
→ H i−1 (Pns ,Fs) is an isomorphism for all s ∈ S.

This is just one part of a more general theorem about base change for �at sheaves, see for ex-
ample [5, III, Theorem 12.11]. The main way we will use it is when we twist the sheaf F enough
so that all the higher cohomology is zero and therefore the dimension of the zeroth cohomology is
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determined by the Hilbert polynomial of F. In this case we get that πS∗F(l) is locally free of rank
P (l) (P the Hilbert polynomial of F , l >> 0) and the base change map is an isomorphism for all i,
however only i = 0 is non-trivial.

We also have a result on base change for when F coherent on PnS is not necessarily �at over S.

Lemma 2.10. Consider the following diagram, and let F be coherent on PnS

PnT PnS

T S

πT π

Then there exists m such that for all m′ ≥ m we have that the base change maps(
π∗F(m′)

)
T
→ πT ∗FT (m′)

are isomorphisms for any T → S.

We also have the maps associated to the higher direct images are isomorphisms, but they are
all zero, so the above maps are the only non-trivial ones.

Lemma 2.11 (Generic �atness). Let F be coherent on PnS and assume that S is an integral scheme
then there exists a non-empty open U ⊂ S such that FU is �at over U

Lemma 2.12. Let F be coherent on PnS, then F is �at over S i� πS∗F(l) is locally free for all
l >> 0.

Proof. sketch only;
If F is �at this follows from base change above, if the converse holds let F̄ =

⊕
i≥l πS∗F(l). This is

�at over S and F = ˜̄F, where M̃ is the sheaf on PnS associated to M . Going from M to M̃ preserves
�atness so we get that F is �at.

De�nition 2.13. Let F be coherent on PnS .
A �attening strati�cation for F over S is a �nite disjoint collection, Si, of locally closed subschemes
of S, whose union as a set is S, such that for g : T → S we have that FT is �at if and only if g−1Si
is open and closed in T .

If T is connected, this says that T → S factors through one of the Si.
To help us �nd �attening strati�cations we need a de�nition that is motivated by the ideal generated
by the minors of a matrix.

De�nition 2.14. Let n be a positive integer, let S be a scheme, and F a coherent sheaf on S. Let

E2
f−→ E1 be a locally free presentation of F, where Ei is locally free of rank ei.

We have an induced map
e1−n∧

E2
⊗ e1−n∧

E∗1 → OS

given by x1 ∧ · · ·xe1−n ⊗ g1 ∧ · · · ∧ ge1−n 7→ g1 (f(x1)) · · · ge1−n (f(xe1−n)).
Let the image of this map be Fn (F), if n ≥ e1, then we let Fn (F) = OS . This is known as the nth

Fitting ideal.
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One can show that this doesn't depend on the choice of locally free presentation.

Lemma 2.15. Let F be coherent on S, and let n > 0, then F is locally free of rank n if and only if
Fn−1(F) = 0 and Fn(F) = OS.

Proof. Sketch only;
If F is locally free of rank of rank n then we have the presentation 0→ F and the result follows.

To show the other implication, reduce to the a�ne local case and assume that E2
f−→ E1 is a

free presentation of F. Then f can be thought of as a matrix and we have that Fi(F) is the ideal
generated by the (e1 − i)× (e1 − i) minors of f .
The assumption that Fn(F) = OS (and being a local ring) tells us that f has an invertible e1 − n
minor, we can use this minor to split o� part of the presentation and be left with a presentation
which has e1 = n. Then we use Fn−1(F) = 0 to get that F is locally free of rank n. (The map f
must be 0, this is easy to see using both perspectives, either all the 1× 1 minors are 0, or any dual
map on the image of f is zero).

Proposition 2.16. Let F be coherent on PnS.
Then there exists a �attening strati�cation indexed by Hilbert polynomials such that for any T → S,
FT has Hilbert polynomial P if and only if T → S factors through SP .

Proof. We will prove this by �rst proving it for n = 0 and then deducing the result from this case.

If n = 0, we have F coherent on S, and we have the Fitting ideals, Fi(F), let Ui = V (Fi−1(F)) \V (Fi(F))
locally closed. Lemma 2.15 says that FT is locally free of rank i if and only if T → S factors through
Ui.

Now let n > 0, then generic �atness says that there is an open, non-empty subset V ⊂ Sred
such that FU is �at over U . (To apply generic �atness we need S to be integral and it might not
be, so to do this restrict to one irreducible component and then take the reduced subscheme struc-
ture.) As S is Noetherian, we �nd �nitely many Ui. (Once we have found U1, consider Sred\U1 and
repeat).
This gives us �nitely many subschemes Ui of S, whose union as a set is S such that FUi is �at over
Ui. This gives us that only �nitely many Hilbert polynomials appear as the Hilbert polynomials of
the �bres, re-index the Ui by the Hilbert polynomials Pi that appear.

Now we can �ndm >> 0 such that all the �bres arem-regular (for us what we need isH i (Fs(l)) = 0.
for all l ≥ m.)

This is done by �rst �nding mPi such that FUPi
is m-regular. This can be done by a very sim-

ilar arguement to Proposition 2.8, or by simply using Serre vanishing and base change.
Using Lemma 2.10 we �nd that for each UPj there exists a m

′
Pj

such that for

PnUPj
PnS

UPj S

πUPj
πS



Bradley Doyle - LSGNT 11

we have an isomorphism

(πS∗F(l))UPj

∼= πUPj ∗
FUPj

(l)

for all l ≥ m′Pj
and the higher pushforwards are all zero (and therefore also isomorphisms).

Now let m ≥ maxi,j{mPi ,m
′
Pi
}.

Then we have

H0 (Pns ,Fs(l)) ∼=
(
πUPi ∗FUPi

)
s

(by base change)

∼=
(

(πS∗F(l))UPj

)
s

(by above isomorphism)

= (πS∗F(l))s

for all l ≥ m, and we also have that all the higher cohomology on the �bres is zero.
Therefore for Fs, it's Hilbert polynomial for any s ∈ S is determined by h0 (Fs(i)) for i = m,m +
1, . . . ,m+ n.
Then for any l ≥ m+ n let

F̄l =
l⊕

i=m
πS∗F(i)

This is a coherent sheaf on S so it has a �attening strati�cation by Fitting ideals. Let this strati�-
cation be {SlP }.
By construction the Hilbert polynomial of F is constant in SlP , and it is P .
We have that

(
F̄l
)
Sl
P
is locally free by properties of the strati�cation, and therefore when l ≥ i ≥ m

we have that (πS∗F(i))Sl
p
is also locally free. This implies that we have

· · · ⊇ Sl−1
P ⊇ SlP ⊇ Sl+1

P ⊇ · · ·

and therefore by Noetherianess this stabilizers (each SlP has the same underlying subset) and we
get locally closed subschemes SP of S whose union is S such that (πS∗F(i))SP

is locally free (of
rank P (i)) for all i ≥ m.
Therefore by Lemma 2.12 we have that in fact FSP

is �at over SP with Hilbert polynomial P on
each �bre.

2.4 The Hilbert functor is representable

Now that we have the above collection of results we can go ahead and show that the Hilbert functor
is representable.

Theorem 2.17. The functor HilbPX/S is representable for X → S projective, S Noetherian, by a

projective scheme HilbPX/S over S.

We will prove this result in three steps, �rst we will �nd a natural transformation from the
Hilbert functor to the Grassmannian functor in a special case. Second we will show this natural
transformation corresponds to an embedding. Third and �nally we will reduce to the special case.

The �rst step is to prove the following
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Proposition 2.18. There exists an injective morphism of functors

α : HilbPPn → GrassP (m) (π∗OPn(m))

Where P is a Hilbert polynomial and m is a large enough integer.

Proof. Let m be at least as large as the integer we �nd in Proposition 2.8, we have the exact
sequence.

0 IZ OPn
T

OZ 0

Twist it by m and apply πT ∗ this gives us

πT ∗OPn
T

(m) πT ∗OZ(m) 0

This is as R1πT ∗IZ(m) = 0 (by Proposition 2.7 and base change for �at sheaves).
We have the �bre product diagram

PnT Pn

T Z

πT π

and we have πT ∗OPn
T

(m) ∼= (π∗OPn(m))T therefore we have a surjective map (π∗OPn(m))T →
πT ∗OZ(m).
We also have that πT ∗OZ(m) is locally free of rank P (m) (again by base change for �at sheaves)
therefore we have an element of GrassP (m) (π∗OPn(m)) (T ).
Base change also gives us that this is a natural transformation of functors, therefore we have the
map α.

We want to show that α is injective, so let Z give us an element of HilbPPn(T ), apply α to get

0 πT ∗IZ(m) πT ∗OPn
T

(m) πT ∗OZ(m) 0

Pull this back to PnT to get

πT
∗πT ∗IZ(m) πT

∗πT ∗OPn
T

(m)

We also have the natural map

πT
∗πT ∗OPn

T
(m) OPn

T
(m)

and composing these two map we get
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πT
∗πT ∗IZ(m) OPn

T
(m)

The image is the sheaf generated by the global sections of IZ(m), so by Proposition 2.7, part 3)
the image of this map is just IZ(m). This shows that we can recover Z from it's image under α,
therefore α is injective.

The next step is to prove that the image is a locally closed subfunctor, in this situation it means
that the image looks like Hom(−,W ) whereW is locally closed in the Grassmannian scheme. There
is a general notation of what it means to be a closed/open/locally closed subfunctor, but the above
is enough for our needs, it implies that as the Grassmannian is representable, the Hilbert functor is
represented by a locally closed subscheme.

Proposition 2.19. Let α be as above, then the image of α is equal to the subfunctor Hom (−, GP )
where GP will be de�ned in the proof.

Proof. We have that the Grassmannian functor is representable by a schemeG = GrassP (m) (π∗OPn(m)).
(i.e. Hom(−, G) ∼= GrassP (m) (π∗OPn(m)) (−).)
There is also universal quotient (π∗OPn(m))G → Q which gives us

0 K (π∗OPn(m))G Q 0

Pull the inclusion back to PnG and compose with the natural map as in the previous proof to get

πG
∗K OPn

G
(m)

The image is IY for some closed subscheme Y of PnG.
By Proposition 2.16 the sheaf OY has a �attening strati�cation, let GP be the part indexed by P .
Then given an element Z of HilbPPn(T ) we get an element of GrassP (m) (π∗OPn(m)) (T ) and therefore
a map j : T → G, by the universality of Q we have that the pullback of Y along j is Z. Now Z is
�at over T with Hilbert polynomial P , therefore by the de�nition of the �attening strati�cation j
factors through GP , and we have that the image of α lies in Hom(−, GP ).

Given a map T → GP we have that YGP
is �at over GP , so the pullback to T is also �at, and

therefore gives an element of HilbPPn(T ).
This gives us a map β : Hom(−, GP )→ HilbPPn(−) and by construction it is an inverse to α.

The two results above show that HilbPPn is representable by a quasi-projective scheme over Z. If
we have a DVR and Z is �at over the complement of the closed point, then it extends uniquely to a
�at subscheme over the DVR by [5, III, Proposition 9.8]. This tells us that in fact it is also proper
by the valuation criterion for properness.
We can now prove Theorem 2.17.

Proof of Theorem 2.17. Let X be projective over S and �x a closed embedding X ⊂ PnS . First we
want to show that it is su�cient to consider PnS . We assume that HilbPPn

S
is representable by H, with
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Z being the universal subscheme of PnH . We also have maps

(π∗IX(m))H →
(
π∗OPn

S
(m)

)
H

πH∗OPn
H

(m)→ πH∗OZ(m)

coming from the normal short exact sequences, here m is large enough for the second map to be
surjective, and such that we have the isomorphisms from Lemma 2.10.
Base change gives us that

(
π∗OPn

S
(m)

) ∼= πH∗OPn
H

(m) so we can compose the maps, call it γ.
Now let t : T → H, we can pullback γ along t. Using base change we �nd that ((π∗IX(m))H)T

∼=
πT ∗IXT

(m) and that (πH∗OZ(m))T
∼= πT ∗OZT

(m), using both these isomorphism we have that

t∗(γ) : πT ∗IXT
(m)→ πT ∗OZT

(m)

By the construction of γ we have that t∗(γ) = 0 i� πT ∗IXT
⊂ πT ∗IZT

i� IXT
⊂ IZT

i� ZT ⊂ XT .
This show that the zero locus of γ represents HilbPX/S .
Therefore it is su�cient to consider X = PnS .

The �nal step is showing that in fact we can assume S = Z, we can do this as the Hilbert functor
interacts well with base change.
To see this, consider HilbPPn(T )× Hom(T, S), an element is a closed subscheme Z of PnT and a map
T → S. We have the diagram

PnT PnS Pn

T S Z

and (PnS)T = PnT so we have an element of HilbPPn
S
(T ).

Similarly an element of HilbPPn
S
(T ) is a closed subscheme of (PnS)T , this is the information of a map

T → S and a closed subscheme of (Pn)T , therefore we get an element of HilbPPn(T ) × Hom(T, S).
These procedures are inverse to each other so we have that

HilbPPn(−)× Hom(−, S) ∼= HilbPPn
S
(−)

If HilbPPn is representable by H we also have

HilbPPn(−)× Hom(−, S) ∼= Hom(−, H)× Hom(−, S) ∼= Hom(−, H × S)

This shows that H × S represents HilbPPn
S
.

Therefore it is su�cient to prove that HilbPPn is representable, but we have already shown this in
Proposition 2.19.

The above proof can be generalized to deal with quasi-projective schemes and to show that the
quotient functor is representable, however we do not need this level of generality, see [12, Section
5.6] for more details.
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3 Moduli space of genus g stable maps

This section is mainly based on [3], everything is over C for simplicity, for a more conceptual
construction, without proofs see [8].
Informally what we want to do is describe all maps from curves into a given space, that is a rather
vague idea so we will seek to make it a bit more concrete.
First of all there is the related idea of classifying all curves of a given genus, if one restricts to
smooth curves, this can be done and we get a coarse moduli space Mg. We can also allow marked
points on the curve, again one can �nd a coarse moduli space Mg,n of smooth genus g curves with
n marked distinct points, both spaces are smooth. (In fact Mg,n is a �ne moduli space if n is large
enough)
There is an issue with this space, it is not complete, one can not always take limits, and one can
not do intersection theory. We want a way to compactify this space in a natural geometric way,
it turns out that by allowing stable n-pointed genus g curves we can get a complete moduli space
Mg,n, one can also compactify Mg. For more details on Mg and Mg see [4], see [1] for Deligne and
Mumford's original paper on the irreducibility of Mg, see Knudsen [7] for Mg,n.

De�nition 3.1. A stable n-pointed genus g curve is a connected curve C with arithmetic genus g
that has only nodes as singularities, each rational component has at least 3 special points and each
component with genus 1 has at least one special point, where a special point is either a marked point
or a node (an intersection point between components).

The conditions for stability are equivalent to C having �nitely many automorphisms that �x
the marked points.
It turns out that Mg,n is projective, but not smooth, unless g = 0, in this case it is also a �ne
moduli space.

3.1 Stable maps

We don't want to just consider curves, we also want to look at their images in a given space, for us
we will restrict to looking at maps into Pn, however we will give the de�nition in more generality

De�nition 3.2. An n-pointed, genus g, quasi-stable curve (C, p1, . . . , pn, ) is a projective, connected,
reduced curve with arithmetic genus g, which has at worse nodal singularities, and such that the n
marked points pi are distinct and non-singular
A quasi-stable family of n-pointed, genus g, quasi-stable curves over S is a �at, projective map
π : C → S, with n sections pi, such that each geometric �bre is a n-pointed, genus g, quasi-stable
curve.
Let X be a scheme, a quasi-stable family of maps over S from n-pointed, genus g, quasi-stable
curves to X is the data (π : C→ S, p1, . . . , pn, µ : C→ X) where (π : C→ S, p1, . . . , pn, ) is a family
of n-pointed, genus g, quasi-stable curves over S, and µ : C→ X is a morphism.

We say two such families of maps

(π : C→ S, p1, . . . , pn, µ : C→ X) ,
(
π′ : C′ → S, p1, . . . , pn, µ

′ : C′ → X
)

are isomorphic if there exists an isomorphism of schemes α : C→ C
′
such that
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• π = π′ ◦ α

• p′i = α ◦ pi

• µ = µ′ ◦ α

If (C, p1, . . . , pn, µ) is a quasi-stable map to X, then the special points of an irreducible component
E ⊂ C are the marked points in E and the intersection points between E and other components of
C.
We say the map (C, p1, . . . , pn, µ) is stable if in addition we have that every irreducible component of
genus 0 that is mapped to a point by µ has at least 3 special points, and every irreducible component
of genus 1 that is mapped to a point by µ has at least 1 special point.
A family of maps (π : C→ S, p1, . . . , pn, µ) is stable if each geometric �bre is stable.

Lemma 3.3. A quasi-stable map (C, p1, . . . , pn, µ) is stable if and only if (C, p1, . . . , pn, µ) has
�nitely many automorphisms

Proof. As the automorphism needs to preserve the map µ, we only have to consider components
that are sent to a single point by µ.

If the genus of the component is at least 2, we have �nitely many automorphisms.
If the genus is 1 we have that the automorphisms are translations semidirect producted with a �nite
group, so having to �x a point removes the translations, so the automorphism group is �nite i� we
have to �x a point.
If the genus is 0, then there exists a unique automorphism of P1 sending 3 distinct points to 0, 1,∞,
so we have no automorphisms i� we have to �x at least 3 points.

This gives some motivation for the de�nition of stability.
We also have another equivalent condition for stability if X = Pr

Lemma 3.4. Let (C, p1, . . . , pn, µ) be a quasi-stable map to Pr, let ωC be the dualizing sheaf, then
(C, p1, . . . , pn, µ) is stable if and only if ωC (p1, . . . , pn)⊗ µ∗ (OPr(3)) is ample.

Proof. Let L = ωC (p1, . . . , pn)⊗ µ∗ (OPr(3))
This result is shown by checking that the degree of L is positive on each irreducible component
E ⊂ C.
If E has genus at least 2, or if µ doesn't contract E, then the degree is at least 1.
If E has genus 1 and µ contracts E, then the degree of ωC on E is 0 and each special point increases
the degree by 1, so L has positive degree if and only if there is at least 1 special point.
If E has genus 0 and is contracted by µ we have that that degree of ωC on E is -2, therefore L has
positive degree on E if and only if we have at least 3 special points.

Now let X be a scheme over C and let β ∈ H2(X,Z), then we say that µ : C → X represents β
if µ∗ ([C]) = β.

De�nition 3.5. Fix X and β as above, and de�ne the contravariant functor Mg,n (X,β) by setting
Mg,n (X,β) (S) to be the set of isomorphism classes of stable families of maps over S of n-pointed,
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genus g curves to X that represent β.
If X = Pr, write d for β corresponding to curves of degree d.

Theorem 3.6. The functor Mg,n (Pr, d) has a coarse moduli space

3.2 The moduli space of genus g stable maps exists

Before we can show that the moduli space exists we need a few more results.

Lemma 3.7. Let (C, p1, . . . , pn, µ) be a stable map, then L = ωC (p1, . . . , pn)⊗µ∗ (OPr(3)) is ample,
and there exists t depending on g, n, r, d, but not on C such that we have

• h1
(
C,Lt

)
= 0

• Lt is very ample.

Proof. By Lemma 3.4 the degree of L is at least 1 on each component and the degree of ωC is at
most 2g − 2, therefore if t ≥ 2g we have

degL−t ⊗ ωC = degωC − t degL ≤ 2g − 2− 2g < 0

So as we have h1
(
C,Lt

)
= h0

(
C,L−t ⊗ ωC

)
we get the �rst condition for t ≥ 2g.

To show the second condition, it is su�cient to show that H1(C,Lt⊗ IpIq) = 0 for all p, q ∈ C. (By
a long exact sequence we get that Lt separates points and tangents)
So equivalently we need to show that H0

(
C,ωC ⊗ L−t ⊗ (IpIq)

∗) = 0.
This is a straightforward adaptation of [6, Lemma 3.9].

Let γ : C̃ → C be the normalization at p, q, then we have the divisor D =
∑
pi +

∑
qi where

pi, qi map to p, q. As C has only node singularities, the degree of D is at most 4.
We have γ∗OC̃(−D) ⊂ IpIq and injections

Hom (IpIq,OC) ↪→ Hom
(
γ∗OC̃(−D),OC

)
↪→ γ∗Hom

(
OC̃(−D),OC̃

)
for details on the inclusion and injections see [6, Lemma 3.9].
This gives us

(IpIq)
∗ ↪→ γ∗OC̃(D)

We tensor with ωC⊗L−t to see that it is su�cient to prove that H0
(
C,ωC ⊗ L−t ⊗ γ∗OC̃(D)

)
= 0.

To do this we check that ωC ⊗ L−t ⊗ γ∗OC̃(D) has negative degree for each irreducible component
of C. We know that Lt has degree at least t on each component, and that the degree of γ∗OC̃(D) is
at most 4, we also have that the degree of ωC is at most 2g − 2 putting these all together we need
to have t > 2g − 2 + 4 for the line bundle to have negative degree.

Therefore for t ≥ 2g + 3 we have that Lt is very ample, and we have the vanishing of the �rst
cohomology group as well.

Lemma 3.8. Let π : C→ S be a �at family of quasi-stable curves, then we have
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• OS ∼= π∗OC

• Let N be a line bundle on S, then N ∼= π∗π
∗N

Proof. Sketch only;
The �rst result follows from base change and the fact that the geometric �bres of π are connected
and reduced.
The second result follows from the �rst result and the projection formula. (π∗OC⊗N ∼= π∗ (OC ⊗ π∗N))

Corollary 3.9. Let L,M be line bundles on C, then there exists a line bundle N on S such that
L⊗M−1 ∼= π∗N if and only if the following both hold

• π∗
(
L⊗M−1

)
is locally free

• π∗π∗
(
L⊗M−1

)
→ L⊗M−1 is an isomorphism.

Proposition 3.10. Let π : C→ S be a �at family of quasi-stable curves.
Let L,M be line bundles on C such that L and M have the same degree on any geometric �bre when
restricted to any irreducible component of that geometric �bre.
Then there exists a unique closed subscheme T → S such that

• There exists N on T such that LT ⊗M−1
T
∼= π∗N

• If (W → S,N′) is another pair such that LR ⊗M−1
R
∼= π∗N′ then W → S factors through T .

Proof. If we were in the special case that S is reduced and that L and M had the same degree on
any �bre, i.e. that Ls ∼= Ms for any s ∈ S, then the scheme S itself satis�es the conditions, as base
change gives us that π∗

(
L⊗M−1

)
is locally free of rank 1, so it is enough to show that the natural

map

π∗π∗
(
L⊗M−1

)
→ L⊗M−1

is an isomorphism, but this follows from the assumptions as we can check �brewise.
If we are in a more general situation more has to be done, the idea is that it is su�cient to check for
S = Spec Y a�ne. (To reduce to this case we use uniqueness to glue together the result on an a�ne
open cover.) In this case it is possible to describe the objects more explicitly and get the wanted
closed subscheme. (It is closed as we have that Ls ∼= Ms i� we have that dimH0

(
Cs,Ls ⊗M−1

s

)
= 1

which is a closed condition.) For the full details see [11, part 10].

We now have enough results to prove that the functor Mg,n (Pn, d) has a coarse moduli space.

Proof of Theorem 3.6. Let (C, p1, . . . , pn, µ) be a stable map from an n-pointed, genus g curve to
Pr, which represents d.
Let L = ωC (p1, . . . , pn)⊗ µ∗ (OPr(3)) by Lemma 3.4 L is ample and by Lemma 3.7 there exists a t
such that Lt is very ample for all C.

Let e = degLt, this depends on g, n, d and t only not on C, we then have that h0
(
C,Lt

)
= e−g+1
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by Riemann-Roch. (h1
(
C,Lt

)
= 0 by construction of t).

Pick an isomorphism h0
(
C,Lt

) ∼= Ce−g+1 = W . We then get an embedding

i : C ↪→ P (W )

and a map α : C → P (W )× Pr, given by (i, µ). We also get n points in P (W )× Pr which are the
images of the sections pi.

Now let Hg be the Hilbert scheme of genus g curves in P (W ) × Pr with multidegree (e, d) and
let Pi be the Hilbert scheme of a point in P (W )× Pr.

We have that the stable map (C, p1, . . . , pn, µ) is associated to a point in Hg × P1 × · · ·Pn = Ng,n.
Not all points in Ng,n correspond to stable curves, let I ⊂ Ng,n be the closed subscheme containing
elements (C, x1, . . . , xn) such that xi ∈ C for each i.
There is an open subset U of I such that

• C is quasi-stable

• C → P(W ) is a nondegenerate embedding

• The points xi are in the non-singular locus of C inside P(W )

and such that the two line bundles OP(W )(1) ⊗ OPr(1)|C and ωtC (tp1 + · · ·+ tpn) ⊗ OPr(3t + 1)|C
have the same degree on each irreducible component.
Using Proposition 3.10 we �nd J a closed subscheme such that the line bundles above are equal.
(We have a family π : C → U where the �bre of π at (C, x1, . . . , xn) is (C, p1, . . . , pn, µ) where the
pi come from the xi and the map µ comes from α, this is well de�ned by the conditions above.
We have two line bundles on C which on the �bres are the two line bundles above, we get J from
Proposition 3.10 and above J , the two line bundles di�er by a pullback of some bundle on J , when
we look at these line bundles on the �bres (C, p1, . . . , pn, µ) they become isomorphic as they di�er
by a trivial bundle.)
By construction J is the locus of stable maps.

We have a PGL(W ) action on P(W ) and it induces an action on P(W ) × Pr and then on Hg

and on Pi, it preserves the conditions above, so we get a PGL(W ) action on J .
When we look at two stable maps in the same orbit, i.e g · (C, x1, . . . , xn) = (C ′, x′1, . . . , x

′
n) the

action of g induces an isomorphism C → C ′ that is in fact an isomorphism of stable maps, we also
have that action has �nite stabilizers by Lemma 3.3.
Therefore J/PGL(W ) = Mg,n (Pr, d) is the moduli space of stable maps of n-pointed, genus g
curves to Pr that represent d.

If X is a projective variety then Mg,n (X,β) has a coarse moduli space that is in fact a closed
subscheme of Mg,n (Pr, d), if X is a convex scheme and the genus is 0, then more can be said, see
[3] for the details. This is also more naturally phrased using stacks.
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4 Properties and Gromov-Witten invariants

Now that we have constructed the moduli space of genus g curves we will look at a few properties
that it has, we will mainly consider the genus 0 case, as the higher genus moduli spaces are not as
well behaved. First we will consider a few maps from the space, and the dimension in the genus 0
case. Then we will de�ne and study Gromov-Witten invariants, again only in genus 0. These are
numbers that are associated with the moduli space and have enumerative signi�cance.
There are a number of useful maps from Mg,n (Pn, d).
First of all we have natural transformations

αi : Mg,n (Pr, d) (−)→ Hom(−, X)

which are de�ned as, let Cµ = (π : C→ S, p1, . . . , pn, µ) be an element of Mg,n (Pr, d) (S), then let
αiS (Cµ) = µ ◦ pi.
It is a natural transformation as given f : T → S, and Cµ, we have that Cµ pullsback to(
πT : CT → T, p1, . . . , pp̄i , µ ◦ f̄

)
, where f̄ is the lift of f and p̄i is the unique map T → CT we get

such that pi ◦ f = f̄ ◦ p̄i. (p̄i comes from the universal property of the �bre product.)
Then this element is sent to µ ◦ f̄ ◦ p̄i = µ ◦ pi ◦ f .
As Mg,n (Pr, d) has a coarse moduli space, Mg,n (Pr, d), we get unique evaluation maps

ρi : Mg,n (Pr, d)→ X

We also have forgetful maps
Mg,n (Pr, d)→Mg,n

that arise from the universal property of Mg,n, and there are forgetful maps.

Mg,n (Pr, d)→Mg,n−1 (Pr, d)

We will give a slightly informal arguement to �nd the dimension of M0,n (Pr, d).
If we just consider maps P1 → Pr, we can describe them by giving r + 1 homogeneous polynomials
of degree d, this space has dimension (r + 1)(d + 1) − 1. (We subtract 1 because rescaling does
nothing in projective space.) We still need to deal with automorphisms of P1, these have dimension
3. Some of these maps have non-trivial automorphisms (as maps), but there is an open set that is
automorphism free, if we restrict to the automorphism free ones, we can take the quotient of these
maps by the automorphisms of P1 and get a space of dimension (r+ 1)(d+ 1)− 4. In fact this is a
�ne moduli space for automorphism-free maps P1 → Pr of degree d.
As this space is an open dense subset of M0,n(Pr, d) we get that the dimension of M0,n(Pr, d) is
(r + 1)(d+ 1)− 4 + n. (Each mark adds one dimension.)

Remark 4.1. For higher genus, this type of dimension count does not work as the subset of au-
tomorphism free maps is no longer dense, the compacti�cation can add components with higher
dimension.
For example considerM1,0

(
P2, 3

)
, the automorphism free curves from P1 have dimension 9 (dimen-

sion of smooth conics in P2), but the boundary has a component that consists of an elliptic curve
contracted to a point, and a rational curve with a degree 3 map, glued at a point. This is M1,1 and
M0,1

(
P2, 3

)
. These spaces have dimension 1 and 9 respectively which shows us that this component

has dimension 10. (There is a zero dimension space of genus 1 curves.)



Bradley Doyle - LSGNT 21

4.1 The boundary of M0,n(Pr, d)

We want to describe the extra maps that we have added in the compacti�cation, we will only
consider the genus 0 case, these extra maps form the boundary.
This section will have few if any proofs, for the details see [3] or [8].
The extra maps in M0,n(Pr, d) are made up of maps from reducible curves, and in fact we can
describe them naturally using boundary divisors.

De�nition 4.2. Fix n, r and d, then let A ∪ B be a partition of {1, . . . , n} and let dA + dB = d,
where dA, dB ≥ 0.
Let D (A,B; dA, dB) be the locus of stable maps µ : C → Pr such that

• C is the union of two curves CA, CB that meet at a point

• The marks associated to A lie on CA, and similarly for B.

• µ|A represents dA, and µ|B represents dB

we call D (A,B; dA, dB) a boundary divisor.

The union of all the D(A,B; dA, dB) is a divisor called the boundary.
We also have a map

M0,A∪{x} (Pr, dA)×Pr M0,B∪{x} (Pr, dB)→ D(A,B; dA, dB)

where the �bre product is over the evaluation maps associated to x.

Lemma 4.3. The above map is an isomorphism if A and B are not empty, if both A and B are
empty and dA = dB = d/2 then it is two to one, in all other cases it is birational.

Using this lemma we can show that D(A,B; dA, dB) is codimension 1. We have that

dimD(A,B; dA, dB) = dimM0,A∪{x} (Pr, dA)×Pr M0,B∪{x} (Pr, dB)

= dimM0,A∪{x} (Pr, dA) + dimM0,B∪{x} (Pr, dB)− r
=(r + 1)(dA + 1)− 4 + nA + 1 + (r + 1)(dB + 1)− 4 + nB + 1− r
=(r + 1)(d+ 2)− 6 + n− r
= dimM0,n (Pr, d)− 1

This lemma also gives us a recursive structure on the boundary, which will turn out to be very
useful.
There are also special boundary divisors that have nice properties.

De�nition 4.4. Let 1 ≤ i, j, k, l ≤ n be distinct integers, then let

D(i, j|k, l) =
∑
i,j∈A
k,l∈B

D(A,B; dA, dB)
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Lemma 4.5. We have

D(i, j|k, l) ∼ D(i, k|j, l)

Proof. Sketch:
We have the forgetful map M0,n (Pr, d) → M0,n and there is also another forgetful map M0,n →
M0,4. Let the 4 marks that are not forgotten be i, j, k, l then D(i, j|k, l) is the inverse image of a
point in M0,4

∼= P1, as any two points in P1 are equivalent we get the result.

4.2 Example of plane rational curves of degree d

We consider the problem of �nding the number of curves of degree d through a given number of
points in P2.
First of all we have that there exists 1 line going through any two distinct points, and it is a classical
result that there exists a unique conic passing through 5 general points.

If we restrict to smooth curves of degree d then the question becomes relatively straightforward.
The space of curves of degree d in P2 is the dimension of k[x, y, z]d, which is the number of mono-
mials of degree d in 3 variables, but we need to subtract one, because scaling by a constant does
nothing. Therefore the space of curves of degree d has dimension d(d+3)

2 . Smooth curves form an
open subspace, and the condition of going through a �xed point is a hyperplane, as we have assumed
the points are generic, we get that the intersection of d(d+3)

2 generic hyperplanes is a point. There-

fore we have 1 smooth degree d curve through d(d+3)
2 generic points. (If we increase the number of

points we would expect 0 solutions, if we decrease we would expect an in�nite number of points.)

For a more interesting question we consider rational curves, the degree genus formula for smooth
curves tell us that g = (d−1)(d−2)

2 and if we allow nodes, each one drops the genus by 1. A node is

a codimension 1 condition, so the space of rational curves of degree d has codimension (d−1)(d−2)
2 .

This gives us a space of dimension

d(d+ 3)

2
− (d− 1)(d− 2)

2
= 3d− 1

So if we look at the number of rational curves of degree d going through 3d − 1 general points we
expect the answer to be �nite. Let Nd be the answer.
Another way to see this is using the fact that the dimension of M0,0(P2, d) is 3(d+ 1)− 4 = 3d− 1,
so informally, we would expect to need 3d− 1 conditions to get a �nite subset of curves.

We are going to consider the space M0,3d(P2, d), for d ≥ 2, where we denote the marks by
l1, l2, p1, p2,m1, . . . ,m3d−4. We have 3d evaluation maps and let L1, L2 be two lines in P2, and
P1, P2,M1, . . . ,M3d−4 be 3d−2 points in Pr, the lines and points are generic. (This means that the
two lines meet in one point, the other 3d−2 points are all distinct and do not meet either line, and no
3e points lie on a curve of degree e, where we allow the point L1∩L2 as one of the possible 3e points.)

Consider the subspace

Γ = ρ−1
l1

(L1) ∩ ρ−1
l2

(L2) ∩ ρ−1
p1 (P1) ∩ ρ−1

p2 (P2) ∩ ρ−1
m1

(m1) ∩ · · · ∩ ρ−1
m3d−4

(M3d−4)
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One can show that in this case the ρi are �at, so the codimension is preserved, and by gener-
icness the intersections have the right codimension as well. We have the codimension of Γ is
1 + 1 + 2(3d− 2) = 6d− 2.
We also have that the dimension of M0,3d(P2, d) is 3(d + 1) − 4 + 3d = 6d − 1, therefore Γ is a
curve, it can also be shown that Γ lies in the locus of automorphism free curves and intersects the
boundary divisors transversally.

We want to calculate

Γ ∩D(l1, l2|p1, p2)

Γ ∩D(l1, p1|l2, p2)

using Lemma 4.5 we see that both intersections will give us the same number.

First we consider Γ ∩D(l1, l2|p1, p2), this consists of curves CA, CB of genus 0 and maps µA, µB of
degree dA, dB such that dA + dB = d, µA(CA) and µB(CB) meet in a given point and µA(li)(Li) ∈
Li, µB(pi) = Pi and µ(mi) = Mi, where muA, µB are the restriction of µ, and the mi are distributed
across CA and CB.
If dA = 0 then all the mi have to lie on CB as else we would have an Mi ∈ L1 ∩ L2. This gives us
3d − 2 marked points on CB and we also have the point µ(CA) = L1 ∩ L2, therefore this divisor
intersects Γ at Nd points.

If dB = 0, then we would have P1 = P2, so dB ≥ 1.
If dA, dB ≥ 1 and sum to d we have to give 3dA − 1 points to CA and 3dB − 3 points to CB as else
we would have without loss of generality, µ(CA) a curve of degree dA going through at least 3dA
general points.

There are

(
3d− 4

3dA − 1

)
ways of picking the 3dA − 1 marks for CA, then the rest go to CB.

We also have NdA choices for the image of CA and NdB choices for the image of CB. We also need
to pick l1, l2, the lines Li meet the image of CA in dA places so there are dA choices for each li, we
also need to pick the intersection point of µ(CA) and µ(CB), there are dAdB choices for this point,
therefore we have

Γ ∩D(l1, l2|p1, p2) = Nd +
∑

dA+dB=d
dA,dB≥1

(
3d− 4

3dA − 1

)
d3
AdBNdANdB

Next we look at Γ ∩D(l1, p1|l2, p2).
If dA = 0 then we would have P1 ∈ L1 which can not happen, similarly we need dB ≥ 1 as well.
For dA, dB ≥ 1 we need to give 3dA−2 marks to CA and 3dB−2 marks to CB, for the same reasons
as earlier.

We have

(
3d− 4

3dA − 2

)
choices for the marks on CA, and we have NdA choices for the image of CA and

NdB choices for the image of CB. We have to pick l1 and l2, there are dA, dB choices respectively,
�nally we have to pick the intersection point, again there are dAdB choices.
Altogether this gives us

Γ ∩D(l1, l2|p1, p2) =
∑

dA+dB=d
dA,dB≥1

(
3d− 4

3dA − 2

)
d2
Ad

2
BNdANdB
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Theorem 4.6. We have a recursive formula to calculate Nd.

Nd =
∑

dA+dB=d
dA,dB≥1

(
3d− 4

3dA − 2

)
d2
Ad

2
BNdANdB −

(
3d− 4

3dA − 1

)
d3
AdBNdANdB

Proof. This follows from the formulas above and Lemma 4.5.

Here are the �rst few values

d 1 2 3 4 5 6 7 8 9

Nd 1 1 12 620 87,304 26,312,976 14,616,808,192 13,525,751,027,392 19,385,778,269,260,800

Before the discovery of this formula, Nd was know up to N5, N4 was found in 1873 by Zeuthen.

4.3 Gromov-Witten invariants

One can take the ideas above and create a more general theory, which we will now brie�y do.
This section is based o� [3, Section 7] and [8, Chapter 4].
Let r ≥ 2, g = 0 and let γ1, . . . γn be elements of the cohomology ring, H∗ (Pr,Z) of Pr. We have the
evaluation maps ρi : M0,n (Pr, d)→ X, and we use them to get cohomology class ρ∗1(γ1), . . . , ρ∗n(γn)
on M0,n (Pr, d).

De�nition 4.7. Let d ≥ 0, let γ1, γn be cohomology class in Pr, then the Gromov-Witten invariant
of degree d associated with the classes γ1, γn is

Id(γ1 · · · γn) =

∫
M0,n(Pr,d)

ρ∗1(γ1) ^ · · ·^ ρ∗n(γn)

The notation means that we evaluate the homogeneous component of highest codimension on the
fundamental class, if the γi are homogeneous then it will be zero unless the sum of the codimensions
of the γi is equal to the dimension of M0,n (Pr, d). These numbers have enumerative signi�cance.

Proposition 4.8. Let γi be as above, and let Γi be subvarieties of Pr that correspond to γi by
Poincare duality.
If the codimensions of the Γi add up to the dimension of M0,n (Pr, d) = e and the Γi are generic
then we have

Id(γ1 · · · γn) = #ρ−1(Γ1) ∩ · · · ρ−1
n (Γn)

Proof. Sketch, we assume the γi are Chern classes (for example, Γi linear subspaces).
Let γi = Z(si), where si is a regular section of Ei, a vector bundle of rank ei, then we have that
γi = cei(Ei).
Consider

∩ρ−1
i (Γi) = ∩ρ−1

i (Z(si)) = ∩Z(ρ∗i si)
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By assumption this scheme has the correct codimension, e =
∑
ei and therefore it corresponds to

the chern class ce (
⊕
ρ∗iEi). We have

ce (
⊕
ρ∗iEi) =^ cei (ρ∗iEi) =^ ρ∗i (cei(Ei)) = ρ∗1(γ1) ^ · · ·^ ρ∗n(γn)

so we get the wanted result

For a full proof see [3, Lemma 14], or [8, Lemma 4.1.3].

This shows that Id(γ1 · · · γn) is the number of pointed maps P1 → Pr that represent d and such that
ρi(pi) ∈ Γi. (One can show that the intersection lies in the locus of smooth curves with no auto-
morphisms.) In particular we have that any rational curve of degree d incident to the Γi appears, in
fact one can show that if all the classes have codimension at least 2 then the curve intersects each
Γi once and the inverse image of those points are the marks. Therefore in this case, Id(γ1 · · · γn) is
the number of rational curves incident to the Γi.
For an example, in P2 we have that Id(h

2 · · ·h2) = Nd, where h corresponds to a hyperplane, and
there are 3d− 1 classes appearing.

Note that Id(γ1 · · · γn) is invariant under reordering the γi, and is linear.
We can also say something about simple GW invariants.

Lemma 4.9. For d = 0, the GW invariants are non-zero only if n = 3 and the codimensions sum
to r.

Proof. We have that M0,n (Pr, 0) = M0,n×Pr and that each ρi is the projection π2 onto the second
factor. We then have

Id(γ1 · · · γn) =

∫
M0,n×Pr

π∗2 (γ1 ^ · · ·^ γn)

=

∫
Pr

γ1 ^ · · ·^ γnπ2∗
(
M0,n × Pr

)
If n < 3 then M0,n (Pr, 0) = 0, and if n > 3 then M0,n has positive dimension, so the pushforward
is zero, therefore we need n = 3, and we are left with

∫
Pr γ1 ^ · · · ^ γn, which is the classical

intersection number.

Lemma 4.10. If one of the classes is the fundamental class, then the GW invariant is non-zero
only if n = 3 and d = 0.

Proof. This is as if γn is the fundamental class, then ρ∗1(γ1) ^ · · · ^ ρ∗n(γn) is the pullback of a
class from M0,n−1 (Pr, d) and the �bres have positive dimensions, therefore for the same reasons as
above, Id(γ1 · · · γn) = 0. If d = 0 and n = 3 then there is no forgetful map.

Lemma 4.11. The only non-zero GW invariant with less then 3 marks is

I1(hr · hr) = 1

i.e. a unique line through 2 distinct points.
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Proof. Follows by dimension counting, we have dimM0,n (Pr, d) = rd + r + d + n − 3. This is at
least 2r+ n− 2 as d > 0, now the max possible codimension is 2r, and this max is the only way we
can reach the needed codimension.

Lemma 4.12. Let d > 0, if one of the classes is the hyperplane class h, then we have

Id(γ1 · · · γn · h) = dId(γ1 · · · γn)

Proof. We know that Id(γ1 · · · γn · h) is the number of n + 1-pointed curves representing d, and
incident to Γi and H, a generic hyperplane. The image will meet H in d places, therefore the result
follows.

This can be proved more formally using the fact that the map which forgets the last mark is
generically d to 1 when restricted to the preimage of the hyperplane.
These above results show that for P2, all the GW invariants follow from the knowledge of Id(h

2 · · ·h2).
We know from earlier that we must have 3d − 1 copies of h2 and therefore the knowledge of
Id(h

2 · · ·h2) = Nd is all we need to calculate any GW invariant. By Theorem 4.6, we only need the
value of N1 = I1(h2 · h2) = 1.

It turns out that this result generalizes to Pr.

Theorem 4.13. All the Gromov-Witten invariants for Pr can be found recursively, knowing only
I1(hr · hr) = 1 as an initial value.

We will provide a brief sketch of how this works.

We want to generalize the argument used to count rational curves, now one of the key steps was
that we could consider the curves CA and CB as e�ectively separate and work in moduli spaces
with smaller degree and less marks. To try and generalize we need a result about the cohomology
class of the diagonal in Pr.

∆ =
∑
e+f=r

he × hf

Where ∆ is actually the class of the diagonal, this is called the Künneth decomposition of the
diagonal. Using this and that the evaluation maps and restriction maps behave well with respect
to each other one can show that we have∫

D(A,B;dA,dB)
ρ∗1(γ1) ^ · · ·^ ρ∗n(γn) =

∑
e+f=r

IdA

(∏
a∈A

γa · he
)
IdB

(∏
b∈B

γb · hf
)

where γa are the classes that are associated with the marks in A, the he, hf appear because of the
glueing marks and the structure of the diagonal, for a proof see [8, Corollary 4.3.3]

Now given any GW invariant Id(γ1 · · · γn) we need to reduce it down to I1(hr · hr), so we will
assume that we have know how to deal with all GW invariants which have a smaller degree or less
marks.
By the above results we can assume that the codimension of each γi is at least 2.
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Rearrange the classes so that γn has the least codimension and write γn = α1 ^ α2, where αi
has strictly smaller codimension then γn.
Like in the rational curve case we look at M0,n+1 (Pr, d), with marks a1, a2, p1, . . . , pn−1. Consider
the class

ρ∗a1 (α1) ^ ρ∗a2 (α2) ^ ρ∗p1 (γ1) ^ · · ·^ ρ∗pn−1
(γn−1)

As earlier, this is the class of a curve and we then integrate this class against D(a1, a2|p1, p2).
Using the above equality we get that the integral is equal to a sum of products of GW invariants∑ ∑

e+f=r

IdA

(
αa · α2 ·

∏
a∈A

γa · he
)
IdB

(∏
b

∈ Bγb · hf
)

where the �rst sum is over all boundary divisors with a1, a2 ∈ A, p1, p2 ∈ B.
If dA, dB > 0 then we are done, so we only need to deal with the cases where dA = 0 or dB = 0. If
dA = 0, then by earlier results, all the other marks must be associated with B and we get

I0(α1 · α2 · hr−l1−l2)Id(γ1 · · · γn−1 · hl1+l2)

Where li is the codimension of αi. The I0 term is a known integer as it is an intersection in Pr
and Id(γ1 · · · γn−1 · hl1+l2) is some known multiple of Id(γ1 · · · γn) as γn has codimension l1 + l2 by
construction, therefore this is the GW invariant we are looking for. We also have the term

Id(γ3 · · · γn−1 · hm1+m2 · α1 · α2)I0(γ1 · γ2 · hr−m1−m2)

where the codimension of γi is mi, again the I0 term is known and the Id term is another GW invari-
ant with n marks, however by construction it has a term with lower codimension then the original
one, so we can iterate the above process, and each time we do this we get GW invariants that we
already know, and GW invariants with smaller minimum codimension, as soon as this codimension
reaches 1, we can remove that term by earlier results to get a GW invariant with a lower number
of terms, which we already know by assumption.

However this does not give us useful information yet, like in the rational curve case we also in-
tegrate against D(a1, p1|a2, p2), this will give the same answer.
Again we get an expression like above, but this time the only terms we need to consider are the
following ones.

I0(α1 · γ1 · hr−l1−m1)Id(γ2 · · · γn−1 · α2 · hl1+m1)

Id(γ1 · γ3 · · · γn−1 · hl1+m1 · α1)I0(γ2 · α2 · hr−m2−l2)

In both cases we know the I0 invariant and the Id invariant has a smaller minimum codimension
so iterating the process as above gives us an expression that involves only known GW invariants.
We then rearrange the equality given by the divisors so that we have Id(γ1 · · · γn) is equal to some
expression of GW invariants with lower degree or number of marks, therefore by assumption, we
can express Id(γ1 · · · γn) in terms of I0(hr · hr) = 1 and the recursion is proved.

As an example, I1(h2 · h2 · h2 · h2) = 2. (The dimension of M0,4

(
P3, 1

)
is 8 which is the sum

of the codimensions)
Applying the above algorithm we get consider the classes h2, h2, h2, h, h with the marks p1, p2, p3, l1, l2.
If we consider the intersection with D(l1, l2|p1, p2) we get a sum of products

IdA

(∏
γa · he

)
IdB

(∏
γb · hf

)
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where dA + dB = 1, e+ f = 3. We must have either dA or dB is 0.
If dA is zero, we have the classes h, h, he and the codimensions must sum to 3 so we have e = 1, the
other term is I1(h2 · h2 · h2 · h2) which is the value we are looking for.
If dB = 0 then we have I0

(
h2 · h2 · hf

)
which has total codimension 4 + e, and it needs to be 3,

therefore this term is zero.
Putting these together we get that the intersection with D(l1, l2|p1, p2) is I1(h2 · h2 · h2 · h2).

Next we intersect with D(l1, p1|p2, l2), again we have to only consider cases where dA = 0 or
dB = 0.
If dA = 0 then we have I0

(
h2 · h · he

)
and for the codimensions to work we must have e = 0, this

term is therefore 1, it is multiplied by the GW invariant I1

(
h2 · h2 · h1 · h3

)
, we can remove the h1

class in exchange for multiplying by d = 1.
If dB = 0 we get exactly the same thing as this is a symmetric situation. Therefore we get that

I1

(
h2 · h2 · h2 · h2

)
= 2I1

(
h2 · h2 · h3

)
So we now have to calculate I1

(
h2 · h2 · h3

)
. This time we get the classes h3, h2, h, h, intersect with

D(l1, l2|p1, p2).
If dA = 0 then we have I0(h · h · he)I1(h3 · h2 · h3−e). This is non-zero only when e = 1 and this
product is then I1

(
h2 · h2 · h3

)
.

If dB = 0 then as above the codimensions do not work and we get 0.

Intersecting with the other divisor D(l1, p2|l2, p2) we get
If dA = 0, we have I0(h3 · h · he)I1(h2 · h1 · h3−e) which is zero for all values of e.
If dB = 0 we have I1(h3 · h · he)I0(h2 · h1 · h3−e) which is non-zero if e = 3. The I0 term is 1, and
the other term is I1(h3 · h · h3) = I1

(
h3 · h3

)
which is our known initial value, 1.

Putting this altogether we get that

I1(h2 · h2 · h2 · h2) = 2

We see that while the recursion can be done, it is a long computation for even simple GW invariants.

There is some Mathematica code in Appendix A that can calculate any GW invariant of the form
Id (ha1 · · ·han). (Which is all GW invariants up to linearity).
Some examples are

• On P4 - I2

(
h3 · h3 · h3 · h3 · h4

)
= 2

• On P3 - I3

(
h2 · h2 · h2 · h2 · h3 · h3 · h3 · h3

)
= 30

• On P6 - I5

(
h4 · h4 · h5 · h5 · h5 · h5 · h5 · h5 · h5 · h5

)
= 15, 279

• On P5 - I4

(
h2 · · ·h2

)
= 3, 430, 726, 351, 753, 800, 000, there are 26 classes of codimension 2.

There is a more general theory of GW invariants for higher genus, but that requires the virtual
fundamental class, as Mg,n (Pr, d) has components with too high dimension. One can also talk
about axioms for GW invariants, these take some of the results that we proved above and turn
them into axioms, for example we want to have permutation invariance, to be able to "pull out"
a codimension one class, to be able to split into GW invariants on "smaller" moduli spaces, etc.
There are 9 axioms in total, see [10] for more details.
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A Appendix A

Here is the Mathematica code that calculates Gromov-Witten invariants using an algorithm that
is based on the recursion theorem. The notation is GW [r, d, {a1, a2, . . . , an}] is the GW invariant
Id (ha1 · · ·han) associated to Pr. This code can copied straight into a Mathematica notebook, the
explanation of the code follows afterwards.

In[1]:= GW[r_,d_,x_] := GW[r,d,x]= If[Total[x] == (r+1)*(d+1) - 4 + Length[x],GW[r,d,x,False,False,False],0]
GW[r_,0,x_, False,False,False] := If[Length[x] == 3 && x[[1]] + x[[2]] + x[[3]] == r, 1,0]
GW[r_,1,{i_,j_}, False,False,False]:=If[i==j==r,1,0]
GW[r_,d_,x_, False, False, False] :=If[MemberQ[x,0],If[Length[x]==3 && x[[1]] + x[[2]]+x[[3]]==r && d==0,1,0],GW[r,d,x, True, False, False]]
GW[r_,d_,x_, True, False, False] := GW[r,d,Sort[x], True, True, False]
GW[r_,d_,x_,True, True,False] := If[x[[1]] ==1 && d> 0, d*GW[r,d,x[[2;;Length[x]]]],GW[r,d,x,True,True,True]]
GW[r_,d_,x_,True,True,True] :=If[Length[x] ≥ 4,

Sum[

GW[r,a,Join[{1},{x[[2]]},x[[y]],{b}]]*

GW[r,d-a,

Join[{x[[1]]-1},{x[[3]]},{r-b}, x[[Complement[Range[4,Length[x]],y]]]]

]

,{b,0,r}, {y,Subsets[Range[4,Length[x]]]}, {a,0,d}] -

Sum[ GW[r,a,Join[{1},{x[[1]]-1},x[[y]],{b}]]*

GW[r,d-a,

Join[{x[[2]]},{x[[3]]},{r-b}, x[[Complement[Range[4,Length[x]],y]]]]

]

,{b,0,r}, {y,Subsets[Range[4,Length[x]]]}, {a,1,d}]

,

Sum[

GW[r,a,Join[{1},{x[[2]]},{b}]]*GW[r,d-a, Join[{x[[1]]-1},{x[[3]]},{r-b}]]

,{b,0,r},{a,0,d}] - Sum[

GW[r,a,Join[{1},{x[[1]]-1},{b}]]*GW[r,d-a, Join[{x[[2]]},{x[[3]]},{r-b}]]

,{b,0,r},{a,1,d}]

]

The explanation of what the code does is as follows.

In[2]:= GW[r_,d_,x_] := GW[r,d,x]= If[Total[x] == (r+1)*(d+1) - 4 + Length[x],GW[r,d,x,False,False,False],0]

This line checks that the codimensions of the classes add up to the dimension of the moduli space,
if they do not, it outputs 0, else it adds 3 dummy inputs which will be used later, all with the value
False. The ":= GW[r,d,x] = If[..." means that it will save the value of GW[r,d,x] when it calculates
it, this makes the program run quicker, at the cost of needing to store more values, however this is
not a large cost to pay as it does not take up much space.

In[3]:= GW[r_,0,x_, False,False,False] := If[Length[x] == 3 && x[[1]] + x[[2]] + x[[3]] == r, 1,0]

GW[r_,1,{i_,j_}, False,False,False]:=If[i==j==r,1,0]

These two lines deal with the two special cases that we already know the value of, when d is 0 and
when we only have 2 classes.
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In[4]:= GW[r_,d_,x_, False, False, False] :=If[MemberQ[x,0],If[Length[x]==3 && x[[1]] + x[[2]]+x[[3]]==r && d==0,1,0],GW[r,d,x, True, False, False]]

This line checks if one of the classes is the fundamental class, if it is, it outputs 0 unless the degree
is 0, the codimensions sum to r and there are only 3 classes. If the fundamental class does not
appear it sets the �rst dummy variable to True.

In[5]:= GW[r_,d_,x_, True, False, False] := GW[r,d,Sort[x], True, True, False]

This line sorts the classes so that they are ordered by increasing codimension, it also sets the second
dummy variable to True.

In[6]:= GW[r_,d_,x_,True, True,False] := If[x[[1]] ==1 && d> 0, d*GW[r,d,x[[2;;Length[x]]]],GW[r,d,x,True,True,True]]

This line checks if the �rst class is a hyperplane (we have already sorted the classes by codimension),
if it is not, it sets the third dummy variable to True, if it is, the value is set to d times the GW
invariant with the hyperplane class removed.

In[7]:= GW[r_,d_,x_,True,True,True] :=If[Length[x] ≥ 4,

Sum[

GW[r,a,Join[{1},{x[[2]]},x[[y]],{b}]]*

GW[r,d-a,

Join[{x[[1]]-1},{x[[3]]},{r-b}, x[[Complement[Range[4,Length[x]],y]]]]

]

,{b,0,r}, {y,Subsets[Range[4,Length[x]]]}, {a,0,d}] -

Sum[ GW[r,a,Join[{1},{x[[1]]-1},x[[y]],{b}]]*

GW[r,d-a,

Join[{x[[2]]},{x[[3]]},{r-b}, x[[Complement[Range[4,Length[x]],y]]]]

]

,{b,0,r}, {y,Subsets[Range[4,Length[x]]]}, {a,1,d}]

,

Sum[

GW[r,a,Join[{1},{x[[2]]},{b}]]*GW[r,d-a, Join[{x[[1]]-1},{x[[3]]},{r-b}]]

,{b,0,r},{a,0,d}] - Sum[

GW[r,a,Join[{1},{x[[1]]-1},{b}]]*GW[r,d-a, Join[{x[[2]]},{x[[3]]},{r-b}]]

,{b,0,r},{a,1,d}]

]

This is the most complicated "simpli�cation". Once it has already tried to apply all the above
simpli�cations it �nally expresses the GW invariant in terms of simpler ones using the idea of
intersecting with the two di�erent boundary divisors and then comparing. This is actually not too
bad, it sums over a, b and y, where a is the degree denoted dA in the proof of recursion, b is the
codimension of the extra class that comes from the gluing mark, and y is the information of which
marks go to the CA curve. The choice of α1, α2 is chosen as the hyperplane class, and a class with
codimension one less then the class with least codimension. (That class must have codimension at
least 2 as we have already dealt with classes with smaller codimension). When summing over the
divisor D(a1, a2|p1, p2), the term where the GW invariant associated to the situation where the CA
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curve has degree 0 gives us the wanted GW invariant, that is why that sum starts from a = 1. (This
sum is subtracted from the sum gotten from the divisor D(a1, p1|a2, p2)).
The recursion theorem shows that this algorithm will always terminate.
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