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Abstract

The Fano plane has a strong claim on being the simplest symmetrical object with inbuilt

mathematical structure in the universe. This is due to the fact that it is the smallest possible

projective plane; a set of points with a subsets of lines satisfying just three axioms. We will

begin by developing some theory direct from the axioms and uncovering some of the hidden

(and not so hidden) symmetries of the Fano plane. Alternatively, some projective planes can

be derived from vector space theory and we shall also explore this and the associated linear

maps on these spaces.

Finally, with the help of some theory of quadratic forms we will give a proof of the surprising

Bruck-Ryser theorem, which shows that if a projective plane has order n congruent to 1 or 2

mod 4, then n is the sum of two squares. Thus we will have demonstrated fascinating links

between pure mathematical disciplines by incorporating the use of linear algebra, group the-

ory and number theory to explain the geometric world of projective planes.
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1 Introduction

Projective planes are geometrical objects that consist of a set of elements called points and sub-

sets of these elements called lines constructed following three basic axioms which give the re-

sulting object a remarkable level of symmetry. In this paper we will introduce projective planes

both axiomatically and in the form of vector spaces, study properties of the simplest projective

plane and end with a proof of the Bruck-Ryser theorem which fundamentally links number

theory with projective geometry.

To begin thinking about projective geometry let us imagine the standard Euclidean plane

with the addition of points at infinity which are defined as the intersection of parallel lines

and a line at infinity connecting the points at infinity. The relation of lines being parallel to

each other is an equivalence relation and so to each equivalence class of parallel lines there is

assigned a unique point at infinity. This effectively closes the Euclidean plane and is called

the completion of the plane, and it is easy to show that this new collection of points and lines

satisfies the projective plane axioms. This is an example of the general relationship between

affine planes and projective planes, where an affine plane can be completed to form a projective

plane by the inclusion of the points and a line at infinity and any projective plane can be turned

into an affine plane by removing any line and all points on it.

This inclusion of points at infinity creates a fundamental difference between affine and pro-

jective planes when invariants under transformation are considered. In Euclidean geometry the

transformations of rotation or translation give invariants such as angle or distance however in

projective geometry these are not invariant. Instead, projective transformations maintain the

structure of the plane as the information of points being on a particular line and lines intersect-

ing at a point are preserved, with a quantity called the cross ratio invariant. These concepts are

not mentioned in our paper but would provide useful further reading, as projective geometry

can also be described using coordinate systems and the cross ratio used to prove results like

the Fundamental Theorem of Projective Geometry. Once you have this theory established, pro-

jective geometry can then be used to analyse objects and spaces projected onto one another, as

well as the geometry of optics and distortion of images whilst still retaining the original.

The biggest result considered in this paper is the Bruck-Ryser theorem about orders of pro-

3



jective planes. The order of a projective plane is related to the number of points (and equiv-

alently the number of lines) in the plane and there are interesting number theoretical results

describing whether a projective plane of a certain order exists or not. We will show using vector

spaces over finite fields that for all integers n there exists a projective plane of order pn for p

prime and indeed all known finite projective planes have prime power order. However, the

existence of projective planes for other orders is still researched, the smallest order currently

without an answer being 12. Bruck-Ryser goes some way to restricting the possible orders, for

example ruling out the possibility of a plane of order 6, and hence we will present a proof of it

here.

For a basic introduction to projective geometry see [2].

2 Basic Defintions and results

Let’s start with the definition of a projective plane.

Definition 2.1. A Projective plane P is an ordered pair of sets (p(P ), l(P )), whose elements are

called points and lines, respectively, and a relation between these sets, called incidence,

satisfying the following axioms:

(I) Given any two distinct points, there is exactly one line incident with both of them.

(II) Given any two distinct lines, there is exactly one point incident with both of them.

(III) There are four points such that no line is incident with more than two of them.

We say that a projective plane is finite if the number of points of the plane is finite.

From now on, when it is convenient, A,B, .. will be points and li will be lines, also AB will

denoted the unique line incident to both A and B. A incident to l will be denoted A ∈ l and

similarly, A not incident to l is denoted by A /∈ l. Finally the unique point incident to both l1

and l2 is l1 ∩ l2.

The first thing that we will show about projective planes is that there are at least four distinct

lines.
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Lemma 2.2. A Projective plane has at least four distinct lines such that no three are incident at the same

point.

Proof. By axiom (III) there are four points A,B,C,D and then by (I) there is a line AB,BC,CD,

and DA, incident to each pair (A,B), (B,C), (C,D), (D,A) and each line is unique, otherwise

there would be three points incident to one line, contradicting (III).

Definition 2.3. Let F be a statement about points and lines in a projective plane. The dual

statement F ′ of F is the statement where the words points and lines are swapped.

Given this definition, we have the following dual axioms:

(a) Given any two distinct lines, there is exactly one point incident on both of them.

(b) Given any two distinct points, there is exactly one line incident with both of them.

(c) There are four lines such that no point is incident with more than two of them.

Theorem 2.4. These two sets of axioms are equivalent.

Proof. We see that (I) = (b) and (II) = (a). Let us assume the first set of axioms holds. Then

by lemma 2.2 we have that the dual axioms hold. Now let’s assume the dual axioms hold.

By (c) there exist four lines such that their points of intersection are all distinct. Suppose for

contradiction that three of these points are collinear on a new line. Then this contradicts (I), as

there are two distinct lines through two of the points. (based on ideas from [3, page 4]).

Hence for any statement about projective planes, the dual statement is also true. This greatly

simplifies later proofs and is also one of the beautiful symmetric properties of projective planes.

Theorem 2.5. Let P be a finite projective plane, then there exists an integer t ≥ 2 such that,

(i) Given any point of P there are exactly t+ 1 lines incident.

(ii) Given any line of P there are exactly t+ 1 points incident.

We say that t is the order of the projective plane P .
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Proof. Consider a point A and a line l with A /∈ l, we can always do this by (III). Then by (I)

there are the same number of points incident with l as lines incident with A. Now pick another

point B /∈ l, again can always do this by (III). The number of lines incident with B is the same

as the number of points incident with l, which is the number of lines incident with A. Now A

and B were arbitrary therefore this holds for every point of P .

The other half of the proof holds by duality, or a very similar argument.

Corollary 2.6. Let P be a finite projective plane of order n, then the number of points (and lines) of P is

n2 + n+ 1.

Proof. Pick any point of P , by 2.5 there are n + 1 lines incident to it, each line has another

n points incident to it, which are all unique by (I). Therefore the total number of points is

(n+ 1)n+ 1 = n2 + n+ 1.

The proofs of 2.5 and 2.6 are influenced by [1, page 9] .

Definition 2.7. Let P be a finite projective plane of order n, then P has n2 + n + 1 = N points

and lines. Let P1, P2, . . . , PN be the points, and l1, l2, . . . , lN be the lines. Then we define the

incidence matrix A of P to be the N by N matrix such that aij = 1 if and only if the line li is

incident to the point Pj and 0 otherwise; here the rows represent the lines and the columns the

points. This matrix represents the incidence relation between the points and the lines of the

plane.(This definition comes from [3, pages 7-8] - note, sometimes the transpose of A is called

the incidence matrix, this makes no difference, because of duality).

An incidence matrix is another way to represent finite projective planes, it is very useful for

computers. We will use this form of representation later on when proving a result first shown

by R. H. Bruck and H. J. Ryser (from now on known as the Bruck-Ryser theorem). But first,we

present a proposition that we will use later on.

Proposition 2.8. LetB = AAT with A an N×N incidence matrix. Then bij = 1 and bii = n+1, i 6= j.

Proof. Consider the ij-entry of B, this is
N∑

k=1

aika
T
kj =

N∑
k=1

aikajk. Since A is an incidence matrix,

there are 2 cases to consider, if i = j and if i 6= j. When i 6= j then the rows (representing the

lines) are different and so have one point in common, giving the sum to be 1. If they are the

same line, then as each line has n+ 1 points on it,the sum will also be n+ 1.
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3 The Fano Plane

In this section we look at the smallest possible projective plane, as well as introducing some

more definitions.

We see that the smallest projective plane is of order two and has seven lines and points.

Each line has three points incident to it, and each point is incident to three lines. In fact there is

only one projective plane of order two up to isomorphism, called the Fano plane. It is usually

represented as in Figure 1. The dots are the points, and the straight lines, plus the circle, are the

lines.

Figure 1: The Fano plane.
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3.1 Isomorphism and Automorphism

Definition 3.1. Let P1 = (p(P1), l(P1)) and P2 = (p(P2), l(P2)) be two projective planes. An

isomorphism from P1 to P2 is a pair of bijections π : p(P1)→ p(P2) and λ : l(P1)→ l(P2) which

respect the incidence relation. Clearly the inverses π−1, λ−1 form an isomorphism from P2 to

P1.

Theorem 3.2. Let P be a finite projective plane of order two, then P is isomorphic to the Fano plane.

Proof. Let P have seven points, label them 1, 2, ..., 7. By theorem 2.5 each line has three points

incident to it and each point is incident to three lines. Without loss of generality, say the lines

incident to 1 are the lines containing {1, 2, 3}, {1, 4, 6}, {1, 5, 7}. There must be two other lines on

2 and one of these must be on 4, so again without loss of generality one of them is {2, 4, 7} and

the other is {2, 5, 6}. Now 4 must be on one more line, {3, 4, 5} and now {3, 6, 7} is another line

as no two of these points already lie on a line. Hence it is only possible to construct a projective

plane of order 2 in one way up to renumbering of the points, so there is only one projective

plane of order 2.

Definition 3.3. An automorphism of a projective plane P is an isomorphism of the plane to

itself. All the automorphisms of P form a group, with respect to composition, this group is

denoted Aut(P ).

Theorem 3.4. Let P be the Fano plane, then |Aut(P )| = 168.

Proof. Let the points of P be {1, 2, 3, 4, 5, 6, 7}, and let ϕ be an automorphism of P, we will con-

sider the possible options for ϕ.

There are 7 possible options for ϕ(1), and then 6 options for ϕ(2) Without loss of generality,

assume 3 is incident to the same line as 1 and 2 are incident to. Then we have 1 choice for ϕ(3)

seeing as it has to be incident to the same line as ϕ(1) and ϕ(2). Next there are 4 choices for

ϕ(4), and this is the final choice that needs to be made, all the other points have their map-

ping decided by the incidence relations. We can now see that there are 7 × 6 × 4 = 168 ways

of picking ϕ, each of these are unique and are isomorphic to the Fano plane by 3.2. Therefore

|Aut(P )| = 168.
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Figure 2: Automorphism options.

Proposition 3.5. There is an automorphism of the Fano plane that doesn’t leave any point fixed.

To prove this propsition we will use the following result from group theory.

Theorem 3.6 (Cauchy’s Theorem). Let G be a finite group, and let p be a prime that divides the order

of G, then there is an element of order p.

Proof. Let G be any finite group, |G| = n and let p be a prime dividing n, and consider the set

X = {(x1, x2, . . . , xp)|xi ∈ G, x1x2 . . . xp = eG}.

Then |X| = np−1 because the first p − 1 elements can be any element from G, and xp =

(x1x2 . . . xp−1)−1. Now define an equivalence relation ∼ on X , where (a1, . . . , ap) ∼ (b1, . . . , bp)

if (b1, . . . , bp) is a cyclic permutation of (a1, . . . , ap), i.e. ai = bj where j + k ≡ i (mod p) for

some fixed k and all i, j. Then either all the xi are the same (xpi = eG), and these equivalence

classes are of size one, or xi 6= xj for some i 6= j and the equivalence classes are of size p. There-

fore s+ tp = np−1, where s, t are the number of equivalence classes of size 1,p respectively. Now

p divides n, therefore p divides s, and s ≥ 1 seeing as xi = eG for all i, is an equivalence class of

size one.

Proof of 3.5. |Aut(P )| = 168 = 7× 24, therefore by 3.6 there is an element of order seven, and an

automorphism of order seven can’t fix any points.
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Figure 3: An automorphism that leaves no point fixed.

3.2 Ovals

The natural object of study after objects defined by linear equations, or lines, in the Euclidean

space are quadratic sets. In the Euclidean plane, theses correspond to the well-known conic

sections. In the projective plane, the non-degenerate quadratic sets correspond to ovals (see -

[6, page 144]). Here we will look at ovals in the Fano plane.

Definition 3.7. An oval (also called a super-oval or hyper-oval) on the Fano plane is a set of

four points such that no line is incident with more then two of them, denoted O.

Proposition 3.8. There are 7 ovals in the Fano Plane.

Proof. We will show this by counting all the possible ovals, each oval has four points, so all we

need to do is find the number of ways to pick each point. Label the points of the oval {1, 2, 3, 4}.

We see that there are seven ways to pick 1, six ways to pick 2, and now even though there

are five remaining points, one of them is incident to the line incident to both 1 and 2, so there

are only four ways to pick 3. Once the first three points have been picked, the fourth point

is decided, there is only one place for it to go. The reason for this is, we have four remaining

points, but three of these are collinear with one of the pairs {1, 2}, {1, 3}, {2, 3} (if two of those

pairs met at the same point, there would be two lines incident to two points, contradicting (I)).

10



So we see that there are 7×6×4×1 ways of picking the points to create an oval, however some

of these will create the same oval, seeing as {1, 2, 3, 4} is the same oval as {4,2,1,3} for example.

There are 4! ways of ordering four items, so

7× 6× 4× 1

4× 3× 2× 1
= 7

different ovals in the Fano plane.

After finding some examples of ovals, and the fact that we have seven ovals, and seven lines,

we wondered if there was a relationship between lines and ovals. In fact there is, every oval is

related to a line in a certain way, and the reverse also holds.

Theorem 3.9. Let the points of the Fano plane be labelled {A,B,C,D,E, F,G}, thenO = {A,B,C,D}

is an oval if and only if Oc = {E,F,G} is a line l.

Proof. (if)

Assume O = {A,B,C,D} is an oval, then by (I), between each pair of points there is a unique

line, four points means six pairs and therefore six lines. By 2.6 we have that there is a seventh

line l in the Fano plane. Next we show that the points incident to l are disjoint from O. With-

out loss of generality, consider the lines l1, l2, l3 such that A ∈ li, i = 1, 2, 3. We have B,C,D

incident to l1, l2, l3 respectively, and a third unique point of each line by (I) (if it wasn’t unique,

there would be two lines incident to A and that point). So we have three more points E,F,G,

now sufficient to show that EF = FG, but this clearly holds, because we have seven lines in

the Fano plane by 2.6, and six of them are incident to two points of O, now both EF and FG

can be incident to at most one point of O. Therefore EF and FG must both be line seven which

implies EF = FG = l and l ∩O = ∅.

(only if)

Let l = {A,B,C}, then by (II) each other line must be incident with one and only one ofA,B,C,

this implies that no three of {D,E, F,G} can be collinear (be incident to the same line). There-

fore {D,E, F,G} is an oval.

So we see that most questions that can be asked about ovals can be answered by looking at

the complementary line. The next proposition is a clear example of this.
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Proposition 3.10. LetO1 andO2 be any two ovals on the Fano plane, then there exists an automorphism

ϕ of the Fano plane such that ϕ(O1) = O2.

Proof. Let O1 and O2 be any two ovals of the Fano plane, then by 3.9 there are two lines l1 and

l2 associated with respectively O1 and O2. Now using a similar argument as in 3.4 we see that

we can pick any two points incident to l1 and always be able to map them to any two points

incident to l2. Therefore by 3.9 we have O1 is mapped to O2.

Proposition 3.11. The subgroup of Aut(P ) which maps O to itself is isomorphic to S4

Proof. Let O be any oval in the Fano plane, and let H be the subgroup of Aut(P ) that maps

O to itself. First note that if an automorphism fixes three non-collinear points it is then the

identity. Therefore we see that H is isomorphic to a subgroup of S4 (all automorphisms are just

permutations of the four points of O). Now by 3.9 there is a complementary line l, and if O is

mapped to itself, so is l, therefore can look at automorphisms ϕ that map l to itself. Pick any

two points A,B ∈ l, then there are three choices for ϕ(A), and two choices for ϕ(B), these two

points fully determine l. Finally by a similar argument to 3.4 ϕ is determined by a third point

C 6∈ l, this point can be mapped to any of the four points of O. Therefore there are 3×2×4 = 24

different automorphisms in H . We have H isomorphic to a subgroup of S4 and |H| = |S4|,

which implies H ∼= S4.

4 Projective Geometry with fields

4.1 Constructing Projective Planes from fields

Constructing projective planes from the axioms, while possible, is a rather difficult task. In this

section, we will show that for every field, we can define a projective plane corresponding to the

field. This gives many important examples of projective planes.

Definition 4.1. Let F be a (commutative) field and let V be a three-dimensional vector space

over F . The projective plane P(F )V over F is defined as follows. The set of points of P(F )V are

the one-dimensional linear subspaces of V , and the set of lines of P(F ) are the two-dimensional

linear subspaces of V . A point p of P(F )V is incident to a line l of P(F )V if p is contained in l.
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Remark 4.2. We will show later that this definition is, in fact, independent of the vector space

chosen. That is, if V and W are two different three-dimensional vector spaces over F , then

P(F )V and P(F )W are isomorphic projective planes.

Proposition 4.3. P(F )V is a projective plane.

Proof. Let U,W be distinct points in P(F )V . Since U,W are one-dimensional subspaces of V ,

where V is a three-dimensional vector space over F , we can write U = 〈u〉, W = 〈w〉 for some

u,w ∈ V , u,w are linearly independent (otherwise U = W ).

Let l = span(u,w). Clearly, U,W ⊂ l. Suppose l′ is another line containing U and W , then it

must contain u,w as elements. Since l′ is two-dimensional, we have l = l′.

Now let l1, l2 be two distinct lines in P(F )V . Let l1 = span(u1, w1), l2 = span(u2, w2). Note that

if dim(l1 ∩ l2) = 0, then u1, w1, u2, w2 is a set of linearly independent vectors, contradicting the

fact that dim(V ) = 3. If dim(l1 ∩ l2) = 2, then l1 = l2. Hence we must have dim(l1 ∩ l2) = 1.

This point is unique as any point contained in l1 and l2 must be contained in l1 ∩ l2 and any

one-dimensional subspace of a one-dimensional space must be itself.

Finally, take three linearly independent vectors - say e1, e2, e3, and consider the four points

〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2 + e3〉. Suppose there exists a line l that contains three of the points. If

l contains 〈e1〉, 〈e2〉, 〈e3〉, then since e1, e2, e3 are linearly independent, dim(l) ≥ 3. Otherwise,

l contains e1 + e2 + e3, ei, ej where i, j = 1, 2, 3, i 6= j. We can obtain the remaining ek from

e1 + e2 + e3 − ei − ej , hence l also contains e1, e2, e3.

Since dim(l) = 2, it follows that such a line cannot exist. Hence we have found four distinct

points such that no three are collinear.

We now show that this if V and W are three-dimensional vector spaces over F , then P(F )V

and P(F )W are isomorphic.

Proposition 4.4. Let V,W be n-dimensional vector spaces over F and φ : V → W be an injective

F -linear map from V to W . Then φ is a bijective F -linear map and there is a one-to-one correspondence

between subspaces of V and subspaces of W .

Proof. Note that any injective linear map between finite-dimensional vector spaces maps ba-

sis to basis. Indeed, let {vi}ni=1 be a basis for V . Then {φ(vi)}ni=1 is a set of n vectors. Since

13



∑n
i=1 ciφ(vi) = φ(

∑n
i=1 civi) and φ maps zero to zero, we have that {φ(vi)}ni=1 is linearly inde-

pendent. Since W is n-dimensional, it follows that {φ(vi)}ni=1 is a basis.

Let U be a subspace of V of dimension m, then since φ maps basis to basis, φ(V ) also has di-

mension m. Since φ is invertible,the reverse direction is proved by considering φ−1.

Hence for three-dimensional vector spaces V and W and their corresponding projective

planes P(F )V and P(F )W , φ maps points to points and lines to lines.

Let p(φ) : p(P(F )V ) → p(P(F )W ) and l(φ) : l(P(F )V ) → l(P(F )W ) be defined by p(φ(P )) =

φ(P ), l(φ(L)) = φ(L). By the previous proposition, p(φ) and l(φ) are bijective, hence the pair

p(φ), l(φ) defines an isomoprhism between P(F )V and P(F )W as projective planes.

Hence we can unambiguously define the projective plane over F , P(F ) as P(F )V for some three-

dimensional vector space V over F .

4.2 Order of Projective Planes over fields

Using this construction, we can construct a projective plane from any vector space over any

field. We now show that every finite field has order pn, where p is a prime, which would allow

us to show the existence of a projective plane of a prime power order.

Definition 4.5. Let F be a field. The characteristic of a field, char(F ), is the smallest positive

number (if exists) n such that n ·1 = 0, where n ·1 is defined to be 1 + . . .+ 1︸ ︷︷ ︸
n times

. If it does not exist,

we define char(F ) = 0.

Lemma 4.6. Let F be a finite field. Then char(F ) is prime.

Proof. Let n = char(F ). Suppose n = pq, then we have n · 1 = pq · 1 = (p · 1)(q · 1) = 0. Since F

is a field, it is an integral domain, hence either p · 1 = 0 or q · 1 = 0, contradicting the minimality

of n. Hence n is prime.

Lemma 4.7. Let char(F ) = p. The set F ′ = {0, 1, . . . , (p− 1) · 1} is a subfield of F of order p.

Proof. Since associativity, commutativity and distributivity are inherited from F , it suffices to

check closure and the existence of inverses for addition and multiplication.

Fix n,m ∈ {0, 1, . . . , p − 1}. If n + m < p, we have n · 1 + m · 1 = (n + m) · 1 ∈ F ′. Otherwise,
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let n + m ≡ m′ (mod p) where m′ ∈ {0, 1, . . . , p − 1}, then n · 1 + m · 1 = m′ · 1 ∈ F ′. Let

n′ ∈ {0, . . . , p− 1} such that n′ ≡ −n (mod p). Then n′ · 1 + n · 1 = 0.

Now let nm ≡ y (mod p), where y ∈ {0, 1, . . . , p − 1}. Then (n · 1)(m · 1) = y · 1 ∈ F ′.

Moreover, if m 6= 0, choose m′ ∈ {0, 1, . . . , p− 1} such that mm′ ≡ 1 (mod p). Then

(m · 1)(m′ · 1) = 1.

Lemma 4.8. Given a field F and a subfield F ′, we can view F as a vector space over F ′.

Proof. Define + as addition in fields and · (scalar multiplication) as multiplication in fields. Since

F is a field, (F,+) is an abelian group. Associativity and distributivity of scalar mulitiplication

are inherited from the axioms of a field.

Theorem 4.9. F has order pn for some n ∈ N.

Proof. Since F is finite, it must be a finite dimensional vector space over F ′. Let n = dim(F ),

v1, . . . , vn be a basis of F . Every element v ∈ F can be written uniquely as v =
∑n

i=1 aivi where

vi ∈ F ′. There are pn choices for the n-tuple (a1, . . . , an), hence |F | = pn.

So far we have shown that every finite field F has some prime power order. In fact, the

converse is also true - for every prime power pn, there exists a finite field Fpn of that order. To

prove the converse, we shall quote some basic results from field theory.

Definition 4.10. Let F,K be fields such that F ⊂ K and p(x) ∈ F [x]. Then K is called the

splitting field of p(x) if p(x) factors completely into linear factors in K[x] and p(x) does not

factor into linear factors over any proper subfield of K containing F .

Theorem 4.11. Let f(x) ∈ F [x]. Then the splitting field of f(x) always exists.

The proof of the above can be found in Appendix A.

Theorem 4.12. Fix p prime and n ∈ N, then a field of order pn exists.

Proof. Let F be a finite field of order p and let f(x) = xp
n −x ∈ F [x]. Let K be the splitting field

of f(x) and let S = {t ∈ K : tp
n − t = 0}. We claim that this is a field of order pn.

Since f(x) can be factored completely into linear factors over K, there are at most pn roots of
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f(x). To see that all roots are distinct, suppose λ is a repeated root of f(x). Then f(x) = xp
n−x =

(x − λ)2g(x). Taking derivatives on both sides (in the algebraic sense) gives pnxp
n−1 − 1 =

2(x − λ)g(x) + (x − λ)2g′(x). Since F has characteristic p, K has characteristic p (as it contains

F as a subfield). Hence we have −1 = 2(x− λ)g(x) + (x− λ)2g′(x), which is clearly false when

x = λ. Hence all roots are distinct, i.e. S contains pn elements.

It remains to check that S is indeed a field. Associativity, commutativity and distributiy are

inherited from K, hence it suffices to prove closure and the existence of inverses for both oper-

ations.

Let a, b ∈ S. Note that (a + b)p
n

=
∑pn

i=0

(
pn

i

)
aibp

n−i = ap
n

+ bp
n

since F has characteristic p.

Hence (a+ b)p
n − (a+ b) = ap

n − a+ bp
n − b = 0. If p > 2, then (−a)p

n − a = −apn

+ a = 0. If

p = 2, then we have −1 = 1 since 1 + 1 = 0. Hence (−a)p
n

+ a = ap
n

+ a = ap
n − a = 0. Hence

−a ∈ S.

Let a, b ∈ S. Then (ab)p
n − ab = (ab)p

n − apn

b + ap
n

b − ab = ap
n

(bp
n − b) + b(ap

n − a) = 0.

Moreover, if a 6= 0, then a−1 ∈ S as (a−1)p
n − a−1 = a−p

n−1(a− apn

) = 0.

Hence S is a field of order pn.

Remark 4.13. In fact, any two finite fields of the same order are isomorphic. See [9, page 5].

Corollary 4.14. There exists a projective plane of order pn.

Proof. Let Fpn be a finite field of order pn and V be a three-dimensional vector space over Fpn .

Consider the projective plane P(Fpn). Fix a two dimensional subspace U in V . Then U =

{au + bv : a, b ∈ Fpn} for some linearly independent vectors u, v ∈ U . Notice that when a 6= 0,

au + bv and u + b
av define the same point in the projective plane, hence it suffices to count the

number of choices of u+cv for c ∈ Fpn , which is pn. Adding the case when a = 0, corresponding

to the point 〈v〉, gives pn + 1 points passing through the line U . Hence P(Fpn) has order pn.

Corollary 4.15. The Fano plane is isomoprhic to P(F2).

Proof. By 4.14, P(F2) has order 2. By 3.2, P(F2) is isomorphic to the Fano plane.

So far we have only seen examples of projective planes that are constructed from vector

spaces over fields. This construction can be generalised where we consider a vector space over
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a skew field - see [6, pages 55-59]. Projective planes constructed from fields and skew-fields

have the advantage of being able to use tools from linear algebra to study their structure.

However, not all projective planes are constructed from vector spaces over fields or skew

fields - see [7] for an example of a projective plane of order nine not constructed from fields

or skew-fields, hence more effort has to be done if one wishes to classify all projective planes.

As of right now, all known projective planes have prime power order. This naturally leads to

the question whether every projective plane has prime power order. This is as of now an open

problem, but in the next section we will discuss a theorem (Bruck-Ryser) which gives a partial

result to the problem.

5 Bruck-Ryser

In this section we aim to prove the Bruck-Ryser theorem about non-existence of certain orders

of finite projective planes. The original first proof can be found at [10], we will prove it based

on [1, page 10-14] and [5], rewritten with added details.

Theorem 5.1 (Bruck-Ryser). Let P be a projective plane of order n, then if n ≡ 1 or 2 (mod 4), we

have n is the sum of two squares.

To prove Bruck-Ryser, we will use incidence matrices, plus five facts from number theory.

Lemma 5.2. The following identities hold,

(a21 + a22)(x21 + x22) = (a1x1 − a2x2)2 + (a1x2 + a2x1)2 (1)

and

(a21 + a22 + a23 + a24)(x21 + x22 + x23 + x24) = y21 + y22 + y23 + y24 (2)

where

y1 = a1x1 − a2x2 − a3x3 − a4x4,

y2 = a1x2 + a2x1 + a3x4 − a4x3,

17



y3 = a1x3 + a2x1 + a4x2 − a2x4,

y4 = a1x4 + a2x1 + a2x3 − a3x2.

Proof. The proof is a long algebraic exercise, but requires no tricks, so we will not prove it

here, however we note that if a = a1 + ia2,x = x1 + ix2, then the fact that ‖a‖‖x‖ = ‖ax‖

(where ‖a‖ is the normal norm in C) gives us (1) straight away. Similarly (2) can be found by

looking at a norm on another mathematical structure, the quaternions. (The quaternions are an

extension of C, with not only i, but also j, k, with i2 = j2 = k2 = ijk = −1, a general element is

q1 + iq2 + jq3 + kq4, q1, q2, q3, q4 ∈ R, for more details on quaternions see [11]).

Lemma 5.3. Let p be a prime, then if there are two integers x, y such that,

x2 + y2 ≡ 0 (mod p)

then p is the sum of two squares.

Proof. Let r be the smallest integer such that there exist x, y such that x2 + y2 = rp, now assume

r > 1, (if r = 1 then the proof is already finished). Now let u ≡ x (mod r) and v ≡ −y (mod r),

where |u|, |v| ≤ r
2 . Then

u2 + v2 = x2 + y2 = 0 (mod r)

so u2 + v2 = sr for some s < r. Now

(u2 + v2)(x2 + y2) = r2sp = (ux− vy)2 + (vx+ uy)2 by identity (1),

and

ux− vy = x2 + y2 = 0 (mod r), so ux− vy = αr,

similarly

vx+ uy = −yx+ xy = 0 (mod r), so vx+ uy = βr.
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Both of these imply that

(ux− vy)2 + (vx+ uy)2 = (αr)2 + (βr)2 = r2sp,

therefore

α2 + β2 = sp,

with s < r, but r was minimal, which is a contradiction, so r = 1.

Lemma 5.4. Let p be a prime, then if there are four integers x, y, u, v such that

x2 + y2 + u2 + v2 ≡ 0 (mod p)

then p is the sum of four squares.

Proof. The proof is basically the same as 5.3, but using identity (2).

Lemma 5.5. Every natural number is the sum of four squares.

Proof. By 5.2 it is sufficient to prove for prime numbers (seeing as all integers are products of

primes and identity (2) can be applied multiple times). Note that 2 = 11 + 12 + 02 + 02, so can

consider only odd primes p.

If −1 is a quadratic residue modulo p, (m is a quadratic residue modulo p if there exists an

integer x such that x2 ≡ m (mod p)), then there exists an integer x such that x2 ≡ −1 (mod p).

Therefore x2 + 1 ≡ 0 (mod p) and by 5.3, p is the sum of two squares.

If −1 is not a quadratic residue, then let m be the smallest positive quadratic non-residue, we

then have that both −m and m− 1 are quadratic residues (non-residue×non-residue = residue,

m is minimal and m > 1, because 1 is a quadratic residue). Therefore there exists x, y such that

x2 ≡ −m (mod p), y2 ≡ m− 1 (mod p), this implies that x2 + y2 + 1 ≡ 0 (mod p), and by 5.4, p

is the sum of four squares.

Lemma 5.6. If nx2 = w2 + y2 has a solution in integers then n is the sum of two squares.

Proof. First consider the case where n is square-free, n = p1p2 . . . ps for some distinct primes pi.

Then w2 + y2 ≡ 0 (mod pi), therefore by 5.3, pi is the sum of two squares, and so is n (apply
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the identity (1) multiple times). If n is not square-free, then n = m2r where r = q1q2 . . . qt, qj

distint primes. By the above r can be written as the sum of two squares, r = a2 + b2. Therefore

n = m2(a2 + b2) = (am)2 + (bm)2.

Now we are finally ready to prove Bruck-Ryser.

Proof of 5.1. Let P be a projective plane of order n, LetN = n2+n+1 be the number of points and

lines of P , and let A be an incidence matrix of P . Consider z = Ax where x = (x1, x2, . . . , xN )T .

Then by 2.8,

zT z = xTATAx = xTBx + nxT Ix

where B is the matrix of one’s and I is the identity matrix. Therefore

z21 + z22 + . . .+ z2N = w2 + n(x21 + x22 + . . .+ x2N )

where w = x1 + x2 + . . .+ xN . The next step is to add nx2N+1 to each side,

z21 + z22 + . . .+ z2N + nx2N+1 = w2 + n(x21 + x22 + . . .+ x2N + x2N+1)

Now n ≡ 1 or 2 (mod 4), therefore N + 1 ≡ 0 (mod 4), and by 5.5 we have that n = a21 + a22 +

a23 +a24. Applying identity (2) to each group of four xi’s, we get yi’s that are linear combinations

of the xi.

z21 + z22 + . . .+ z2N + nx2N+1 = w2 + y21 + y22 + . . .+ y2N + y2N+1

Now by definition, the zi are also linear combinations of the xi. We must have that there is a zi

and a yj such that both contain some multiple of x1. Without loss of generality, assume they are

z1, y1. Set z1 = y1 if the coefficient of x1 is different in z1 and y1, if not set z1 = −y1. Then we get

x1 in terms of the other xi, and the z21 and y21 terms cancel out. Continue doing this, each time

expressing xj in terms of the xk, where k > j, in such a way that without loss of generality z2j

cancels out y2j . We get in the end,

nx2N+1 = w2 + y2N+1 (3)
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with w, yN+1 being some rational multiple of xN+1. Now there were no conditions on xN+1 so

we can pick it in such a way that both yN+1 and w are integers. (xN+1 is the product of the two

respective denominators of w, yN+1). Therefore (3) has integer solutions, and by 5.6, n is the

sum of two squares.

The orders of projective planes which Bruck-Ryser deals with are 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22,

25, 26 . . . and of those 6, 14, 21, . . . are not the sum of two squares. Therefore there is no projec-

tive plane of order 6, 14, 21. However Bruck-Ryser does not prove that if n is the sum of two

squares then there is a projective plane, in fact it has been proved that there is no projective

plane of order 10 - see [8].

It has been conjectured that all finite projective planes have prime power order, currently the

first possible counter-example is 12.
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A Appendix - Rings and Fields

In this subsection we will develop the tools needed to prove that for a field F and a polynomial

p(x), the splitting field of p(x) always exists. The following proofs are influenced by [9] and

[12].

All rings considered in this section are assumed to be commutative and with unity.

Theorem A.1. Let R be a ring and I be an ideal. Note that (R,+) is an abelian group and (I,+) is a

subgroup of (R,+). Any subgroup of an abelian group is normal, hence R/I = {a + I : a ∈ R} is a

well-defined group under addition. Define multiplication on R/I by (a+ I)(b+ I) = ab+ I . This gives

R/I a ring structure.

Proof. We check that this multiplication is well-defined. It then follows from the ring axioms

that this muliplication satisfies the axioms for a ring.

Suppose a+I = a′+I ,b+I = b′+I , then we have a−a′ ∈ I and b−b′ ∈ I . We need to show that

ab+I = a′b′+I , i.e. ab−a′b′ ∈ I . Note that ab−a′b′ = ab−a′b+a′b−a′b′ = b(a−a′)+a′(b−b′).

Since a− a′, b− b′ ∈ I , b(a− a′) ∈ I and a′(b− b′) ∈ I . Hence ab− a′b′ ∈ I .

Proposition A.2. Let R be a ring, I be an ideal of R. Then there is a one-to-one correspondence between

ideals in R that contain I and ideals in R/I .

Proof. Let π : R→ R/I be the canonical projection, i.e. π(a) = a+ I . Let

I = {J : J is an ideal in R containing I } and I ′ = {J : J is an ideal in R/I}. π induces a map

π′ : I → I ′ defined by π(J) = {a ∈ R/I : a = π(r)for some r ∈ J}.

We first check that this is a well-defined map from I to I ′. Let J be an ideal in R that contains I ,

we show that π(J) is indeed an ideal of R/I . Let a, b ∈ π(J). Then a = r + I, b = s+ I for some

r, s ∈ J . We have r + s ∈ J , hence r + s+ I ∈ π(J) and this addition is clearly abelian as (R,+)

is abelian. Hence (π(J),+) forms an abelian group. Next, let c ∈ R/I , i.e. c = t + I for some

t ∈ R. Then ca = (t + I)(r + I) = tr + I where tr ∈ J as r ∈ J . Hence ca ∈ π(J). Therefore,

π(J) is an ideal.

Define π−1 : I ′ → I by π−1(J) = {a ∈ R : π(a) ∈ J}, where J is an ideal in R/I . We

check that this is also a well-defined map. Let a, b ∈ π−1(J). Then a + I, b + I ∈ J . Hence
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a + b + I ∈ J , i.e. a + b ∈ π−1(J). This shows that (π−1(J),+) is an abelian group. Let r ∈ R.

ra + I = (r + I)(a + I) ∈ J , hence ra ∈ π−1(J). Hence π−1(J) is an ideal. Let i ∈ I , then

π(i) = I ∈ J . Hence I ⊂ π−1(J).

Since these two maps are inverses of each other, this shows that there is a one-to-one correspon-

dence between ideals of R containing I and ideals in R/I .

Proposition A.3. Let R be a ring. The only ideals of R are {0} and R if and only if R is a field.

Proof. SupposeR is a field. Let I be an ideal inR.Suppose I contains a non-zero element a, then

a−1a ∈ I , i.e. 1 ∈ I . Let x be any element in F , then x · 1 ∈ I . Hence I = R.

Now suppose the only ideals of R are {0} and R. Let r be a non-zero element in R and

consider the set {cr : c ∈ R}. This is clearly an ideal which contains a non-zero element, hence

this is equal to R. In particular, there exists c ∈ R such that cr = 1. Hence every non-zero

element in R contains a multiplicative inverse. This shows that R is a field.

Theorem A.4. Let R be a ring and M be a maximal ideal. Then R/M is a field.

Proof. By A.2, The ideals of R/M correspond to the ideals in R containing M . Since M is a

maximal ideal, the only ideals in R containing M are M and R. Hence the only ideals in R/M

are {M} and R/M (note that M is the zero element in R/M ). Hence R/M is a field.

Proposition A.5. Let F be a field, p(x) ∈ F [x] be an irreducible polynomial.

Then (p(x)) = {f(x) ∈ F [x] : p(x)|f(x)} is a maximal ideal.

Proof. Let I be an ideal containing (p(x)). Suppose it contains an element f(x) not in (p(x)),

then since p(x) does not divide f(x) and p(x) is irreducible, we have that hcf(f(x), p(x)) =

1. Since F [x] is an Euclidean domain, we know that there exists a(x), b(x) ∈ F [x] such that

a(x)f(x) + b(x)p(x) = 1. Since I is an ideal, it follows that 1 ∈ I . Hence I = F [x].

Theorem A.6. Let F be any field and f(x) ∈ F [x]. Then the splitting field of f(x) always exists.

Proof. We prove by induction on the degree of f(x). If deg(f) = 1, then F is the splitting field

of f(x). Suppose for every polynomial g(x) ∈ F [x] where deg(g(x)) ≤ n− 1, a splitting field for

g(x) exists. Let deg(f(x)) = n. Suppose f(x) does not factor completely into linear factors, then
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there exists an irreducible factor p(x) of degree at least 2. From A.5 and A.4,E1 := F [x]/(p(x)) is

a field. Note that by considering the canonical projection φ : F [x]→ F [x]/(p(x)), i.e. φ(f(x)) =

f(x) + (p(x)), and restricting the domain to F , F can be viewed as a subfield of F [x]/(p(x)).

Now let x̄ = φ(x). Then p(x̄) = φp(x) = 0 in F [x]/(p(x)). Hence E1 is a field containing F [x]

that contains a root of p(x). Denoting this root by α, we see that f(x) = (x−α)p1(x) in E1[x]. By

the inductive hypothesis, there exists a field E containing E1 such that f(x) factors completely

into linear factors. Let K be the intersection of all subfields Ei of E containing F such that f(x)

factors completely into linear factors in Ei, then K is a splitting field of f(x).
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