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Abstract

We define Hochschild (co)homology, motivated by ideas from Algebraic Topology. We
then prove it is equivalent to (Ext)Tor of bimodules. We prove that it is Morita invariant and

finally give some geometrical meaning to the Hochschild (co)homology.
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1 Introduction

The aim of this project is to introduce and study Hochschild (co)homology. We assume knowl-
edge of algebras, rings and modules; tensor products appear everywhere. Most of the assumed

topics are covered in [1]. In general we do not assume commutativity.

The idea or motivation for Hochschild (co)homology comes from algebraic topology. Given
a geometric object (topological space) we can associate to it a collection of groups, these groups
contain a lot of information about the underlying space. One collection is the homotopy groups
T, but we will take the simpler homology groups as our motivation. One way to define these is
to give the topological space a delta complex structure and define maps d,, from n-simplices to
(n — 1)-simpliies It turns out that d,, o d,,+1 = 0 for all n, but not all elements which are killed by
d,, are in the image of d, 1. Informally these elements represent the “holes” in the space. We
want to take this idea and abstract it to non-geometrical objects.

We will do this for k-algebras by defining an infinite collection of bimodules C,, and maps
dy : Cp — Cy_1 such that d,, o d,+1 = 0 (called a complex). Next we take the homology of this
complex, which is the quotient kerd,,/Imd, 1. As in the topological case, these groups will
contain a lot of information. We can also define related cohomology groups. It turns out that
these groups will still contain ”geometrical” information.

The project is about defining and studying these groups, the basic outline is,

First: We define the Hochschild complex and Hochschild (co)homology and then show that it is
equivalent to related (Ext) Tor groups. Some homological algebra is assumed, but we will recap
Ext and Tor briefly. Using this description we can then calculate Hochschild (co)homology for

polynomial algebras. The Koszul resolution is also covered in this section.

Second: We take a short diversion into basic category theory, and look at Morita equivalence
for rings, proving necessary and sufficient conditions for two rings to be Morita equivalent. We

then show that Hochschild (co)homology is a Morita invariant.



Third: We take a closer look at Hochschild homology and its relationship to Kéhler differen-
tials if R is commutative. We also show the relationship between deformations and Hochschild

cohomology.

There is quite a lot of algebraic manipulation, especially in the proof that Hochschild homology
is a Morita invariant, and in the section on differentials. This can be skimmed over without
affecting understanding that much. A lot of this report is based on [9] and [6]. For a differ-
ent viewpoint, [5] covers a lot of the theory but assumes more background knowledge. I will

reference more closely in the actual sections.

2 Definition of Hochschild (co)homology

2.1 Basic Definitions

Motivated by n-simplices from Algebraic Topology we define,

Definition 2.1. A presimplicial module C' is a collection of modules C,,, n > 0, with maps, d; :

C,—=Ch11=0,...,nsuchthatd;d; = d;_1d; for 0 <i < j <n.

The d; are the generalization of the maps from a simplex to its faces. One can also define
a simplical module, for this we need extra maps s; : C,, — C,,; satisfying s;s; = s;415; when
i < j and extra relationships between the s; and d;. These s; are generalizations of the inclusion
of a simplex into a higher dimensional one. However we will not require these maps so a

presimplicial module is sufficient.
Lemma22. Ifd =" ,(—1)'d; thendod = 0.
Proof. We have dod = 7, 3" (—1)"*/d;d; and we can split it into two parts, i < j, and i > j.
We have
S (=1)did; + > (1) did;.

i<j 127

Then use d;d; = dj_1d; for i < j to get

S (=1)Hd;_ydi + > (1) did;

i<J 127



now with j — 1 > i in the first sum, these two sums then differ by a sign so they cancel. O

This shows that a presimplicial module is a chain complex. We also want maps between
presimplicial modules and to know when two maps give the same maps on homology, these

are straight forward generalizations from the normal definitions.

Definition 2.3. A map of presimplicial modules f : C — C’ is a collection of maps f, : C,, — C},
such that f,,_1d; = d; fn.
A presimplicial homotopy between two presimplicial maps f,g : C' — C’ is a collection of maps
hi : C,, = C,, | such that,

- dihj =hj_1d; 1<

- dihi =d;hi—1 0<i<n

- dihj =hidi—1 i>j+1

- doho = f,  dpyrhn =g.
Lemma 2.4. If h is a presimplicial homotopy between f and g then Y (—1)h; is a chain homotopy
between f and g, i.e. dh + hd = f — g.

Proof. Very similar to Lemma 2.2 this time using the properties of h;. O

Now we can set up Hochschild homology.
Let k be a field and R be a k-algebra, M a bimodule over R. Consider the module M @ RQ --- ® R =
M @ R®", where @ = ®y, and maps d; : M ® R®" — M @ R®"~1, given by,

do(m@Tr1 Q- QTp) =Mmri@ra @ -+~ 1y,
di(m@r1 @ - @7r,) =mMRTIQra® -+ @riTit1 Q- @1y

dy(MTr1 Q- QTy) =T,mMAOT; Q-+ @ Tp_1.

It is easy to check that this is a presimplicial module.

Definition 2.5. The Hochschild complex C'(R, M) is the complex

L MOR L MRS S MRS M 0



with C,(R,M) = M @ R®" and d = " ,(—1)%d; called the Hochschild boundary.
If M = R we write C,,(R) instead of Cy,(R, R).

Definition 2.6. The Hochschild homology of R with coefficients in M, H, (R, M), is the homology

of the Hochschild complex
H,(R,M)=kerd: MQR®" - MQR®"'/Im d: M ® R®"*! — M ® R®".

If M = R, we write HH,,(R).

We can also define Hochschild cohomology using the complex

0 — M % Homy(R, M) % Homy,(R®2, M) % - % Homy (R®™, M) % Homy (R®" 1, M) % - ..
where 6 = Y7 (—1)%0; is given by

(Gof)(r1 @ @1p) =71f(r2®@ - @1p)

(5if)(rl®"'®7"n):f(7“1 ®7"2®"'®7"z‘7“i+1®"-®7“n)

(67lf)(r1 K- rn) = f(rl K- Tn—l)rn-

Note that this is not the dual complex, however it is similar as it is composed of Hom modules.
By taking the cohomology of this complex we get the Hochschild cohomology of R with coeffi-
cients in M, denoted H"(R, M), and again if M = R, we write HH"(R).

The most important case is HH,, (R) and HH"(R) but the theory is not more complicated in
the general case, so we will mainly work with H, (R, M) and H"(R, M). We will however do
calculations for HH,,(R) and HH"(R).

2.2 Basic properties

In general the Hochschild homology groups are not R-modules, but we can define an action of
Z(R)on C,(R,M) givenby z- m®@mr ® - - Qr, = zm®r; ® - -- ® r,. This action commutes
withdasz-d,(m®ri ® - Q1) = 2r-1mMOr Q@ - Q@Tp_1 = 1 2M T @ -+ Q Ty =

dp(z-m®@mr ® -+ ®@1ry). This makes H, (R, M) into a left Z(R)-module. We can also give it a



right Z(R) actionby m @7 ®@ -+ ®@rp -2 =mz@r, @ --- @ ry,.
Lemma 2.7. The two Z(R)-module structures on H,(R, M) are equivalent.

Proof. Defineamap h; : Cp,(R, M) = C,,(R, M) by mRri®- - -®ry, = mQry - 7,Q2Q741 - ®
rn. These maps form a presimplicial homotopy as d;h; = h;_1d; for i < j and d;h; = h;jd;_,
for i > j + 1 directly. The identity follows for d;h; = d;h;—1 as z is in the centre. Finally

doho(mRTr1®- - Qr,) =mzr Q-+ Qry, and dpt1h,(MOTI Q- Q1) = 2mAT Q- - Qry,. O

In particular, if R is commutative then H, (R, M) is an R-module. Similarly H*(R, M) is also
a Z(R)-module, via z - f = zf. Again the two possible actions are equivalent. Another property

is;
Lemma 2.8. H,.(R,—)and H.(—, M) are functors.

Proof. Given a bimodule homomorphism f : M — N, we get an induced map f, : H.(R, M) —
H.(R,N) givenby f,(m®@ri---@mr,) = f(m)®r1--- @ry,. Itis clear that (fog), = fi« 0 g«
and that id, is the identity map, so H.(R, —) is a covariant functor from R-bimodules to Z(R)-
bimodules.

Now if we are given a k-algebra map f : R — S and an S-bimodule M, we can make M
into a R-bimodule by r - m = f(r)m. Then we can define f. : H.(R,M) — H.(S,M) by
Gn(mMri® - @ry) =m® f(r1) ®--- & f(r,). Again the two functor properties are satisfied,

so we have a functor from k-algebras to groups. O

Note that if M = R then we can also get a functor H H,(—) from k-algebra to k-modules.

In a similar way, one can show that H*(R, —) is a covariant functor, but this time H*(—, M) is
contravariant. Given f : R — S, we define f* : H*(S, M) — H*(R, M) by f"(¢)(r1®---®ry,) =
¢(f(r1) ® --- @ f(rp)). For this reason HH*(—) is not a functor. (It wants to be covariant and
contravariant at the same).

We can also calculate the low degree Hochschild (co)homology for general R and M.

Starting with homology, in degree 0 we have, RQ M 4 M — 0, where dm®@r) = mr —rm.
So Ho(R, M) = M/{mr — rm} = M/[R, M], also known as the module of coinvariants of M. If

R is commutative then HHy(R) = R.



Next we have M @ R®2 4, M®Ri> M,withd(m®r; ®ry) =mri @ro—mQerire + rom®ry,

so we have
Hi(R,M)={mer|mr—rm=0}/{mr @rs —m@rirs + ram @ r1}.

It is not clear if this represents anything useful, but note that if R is commutative, then d :
R® R — R is the zero map, so has full kernel, and the relation r @ st = rs ® r 4+ sr @ s looks

like a product rule. For more details see Section 6.1.

Now turning to cohomology, in degree 0, we have 0 — M % M ® R, where (0m)(r) = mr—rm,
so H'(R,M) = {m |mr —rm = 0 Vr € R} also know as the invariants of M. In particular
HH°(R) = Z(R), the centre of R.

For HY(R, M), we have (6f)(r ® s) = rf(s) — f(rs) + f(r)s, so a function f : R — M is in the
kernel if f(rs) = rf(s) + f(r)s, i.e. if f is a derivation. By the above work, the functions in
the image are just functions such that f(r) = mr — rm, these are known as inner derivations,
therefore H'(R, M) = Derivations/ Inner derivations.

There is also an interpretation for H H? and H H3, see Section 7 for more details.

3 Relationship with Tor and Ext

While the Hochschild complex can be useful for general theory, it is not very useful if we want to
calculate H;(R, M) for given R and M. In this section we will show that Hochschild homology
is equivalent to a specific Tor group, similarly Hochschild cohomology is equivalent to a specific
Ext group.

This section is mainly based on [9, Ch 1.1].

3.1 Derived functors basics

Recall that a functor F' is additive if it induces a group homomorphism between hom(A, A’) and
hom(F'(A), F(A")). From now on, all functors are additive.

It is clear that functors take complexes to complexes, as F(¢,,) © F(¢nt1) = F(Ppn 0 pny1) =



F(0) = 0 (as F is additive). However there is no guarantee that a functor will take an exact
sequence to another exact one. It turns out to be sufficient to look only at how short exact se-
quences transform.

For example consider the functors N — Hompg(M,N) or N — Hompg(N, M), from left R-
modules to the category of Abelian groups. They are covariant and contravariant respectively,

we write Homg (M, —) and Hompg(—, M). If
0USVE W0
is a short exact sequence of modules. Then,
0 — Homp(M,U) 2= Homp(M, V) 2 Homp (M, W)
is exact and so is
0 — Homp(W, M) 25 Hompg(V, M) 2% Hompg (U, M).

So in general Hom is only left exact.
Similarly the tensor products M ®r — and — ®pr M are covariant functors from right/left R-

modules to Abelian groups. They are right exact i.e
URrM 25 Vg M 25 W M — 0
is exact whenever we started from a short exact sequence,
0-5USV S W o,

We want a way to turn this partial sequence into a long exact one. If we have a right exact

covariant functor F' then we want a series of functors L; I’ such that

o> L,FU)—» L,FV)—= LFW)— - = L1F{U) - LiF(V) - LiF(W) —



FU) - FV)=FW)—=0

is exact. L;F is called the left derived functor of F.
The way that L;F' is constructed is to take a projective resolution of M. This works as the

category of modules has enough projectives.

=P, -P_1—=--—>P P —-M=0

Then apply F to get

= F(P,) = F(Pyo1) = - = F(P) — (Py) — 0.

Note that we forget A at the end. This sequence is no longer exact in general, define L; (M)
as the i*" homology group. One can show that this does not depend on the choice of projective
resolution and thatamap f : M — M'induces a map on the projective resolutions and therefore
amap f. : LiF(M) — L;F(M’). One can also show that we have the wanted long exact
sequence. If we started with a left exact covariant functor G then we take an injective resolution
instead and get the right derived functor of G. Similarly if we have a contravariant left/right
exact functor then we take a projective/injective resolution.

In the special cases of Hom and ® we write Ext’;(N, M) for R* Hom(N, M) and Tor’ (N, M) for
L,N Qgr M. One can also show that it does not matter whether we take a resolution of N or M

in these cases. In the case of Tor it is also sufficient to take a flat resolution. For more details see

[6, Ch.2-3].

3.2 The bar complex

Let R be a k-algebra then R°? is the opposite algebra of R. (The underlying set is the same, but the
multiplication is 7 - s = s7). R®* = R® R°P is called the enveloping algebra. R is a left R°*-module
by (s®t)r = srt and in general, given a bimodule M we get a left R°-module by (s®@t)m = smt,

and a right R°-module by m(r ® s) = smr.

10



Definition 3.1. The bar complex C**"(R) is the complex

where C2*" = R®"+2 and d' = 37" ' (~1)’d; where the d; is the map from Definition 2.5.

Lemma 3.2. Let R be a k-algebra . Then C**" (R) is a resolution of the R® module R.

Proof. We haveamap d = y: RQR — R, r ® s + rs. Now define S : R®" — R®"*! by
M@ Ty = 11 ®- -1, Wehave (d's+sd)(r1@- 1) =d (1@r1@- 1)+ (1) rm @
e RTTI @ @) =T @y (1) 1R @ @i @ @1 + Y (—1) T ®
M Qrri1 Q@ Q@rp=r1 - Qrp.

So the identity map is homotopic to the zero map and therefore the complex is exact. O
This resolution is called the bar resolution.
Theorem 3.3. For any R-module M, we have H, (R, M) = Tor,ffe (M, R).

Proof. We have that R is free as a k-module, so R®" is also free, and therefore R®"2 =

R®R®"® R =~ R®™ @ R*is free as an R°-module. Therefore the bar complex is a free, therefore
projective resolution of R as an R°-module. To calculate the homology groups Tor® (M, R) we
tensor the resolution with M as a right R°-module over R°. In degree n we have M @ pe R¥"+2 =
M ® R®™ and the map 1, ®d' becomes d. (m®Re (ro®r Q- @rpi1) H 1Mo @ri®- - -y

under the isomorphism.) O

In a very similar way can show that H" (R, M) = Extg. (R, M).
This shows that we can define Hochschild (co)homology in two different ways,
1%! - using presimplicial modules, motivated by Algebraic Topology.
24 - as the (co)homology of bimodules using derived functors.
We therefore have two different ways of thinking about Hochschild (co)homology and we can
use which ever is more useful for calculations or proofs, each way of thinking brings its own

techniques and ideas.

11



3.3 Two examples of Hochschild (co)homology

Now that we have seen that we can use Tor and Ext to calculate Hochschild (co)homology
we can calculate some examples. Note we do not have to use the Bar resolution, any projective
resolution will do. In particular if we can find a finite or periodic resolution then we can actually
find all the Hochschild groups.

First consider k[z], we want a projective resolution of k[z] as a k[z]® module. We have that
klz] ® k[y] = Ek[z,y] and we have the natural map p : k[z,y] — k[z] from Lemma 3.2. This map

has kernel generated by x — y. This gives us the projective resolution
0 — klz,y] = k[z,y] & k[z] — 0.
Next we tensor with k[z] over k[z, y] and get
0 — k[z] % klz] — 0.

The map becomes 0 as « and y both have the same action on k[z]. This gives us that H Hy(k[z]) =
HH,(k[x]) = k[z] and HH;(k[z]) = 0 for i > 1. By applying Homy)c (—, k[x]) we get that
HHO(k[z]) = HH!(k[z]) = k[z] and HH"(k[z]) = 0 fori > 1.

This can be generalized to deal with polynomials in n variables see Section 4.

Next, let R = k[z]/(z"),letu = 2®1—1®z and letv = 3" 2"~ @ ', Then we have a free
resolution of R

S RELRLRYS..CB RS RO.

To see this note that (2" ® 1 —1® 2")/(z ® 1 — 1 ® x) = v. Tensoring with R over R° gives R
in each degree and the maps are @ = z — z = 0 and © = nz"~!. Using Theorem 3.3 we have
that HH,(R) = R, this agrees with Section 2.2. As the rest of the resolution is 2-periodic, the
homology will also be 2-periodic. We have Im% = 0 and ker@ = R. Now assume that n is
not a factor of char(k). Then as & = na""?, the kernel is (z). The image is (z"'). Together
these give H Ho;(k[z]/(z")) = (z) and HHy;—1 = R/(z™~ ') for i > 0. These are isomorphic as

R-modules by « : (z) — R/(z"~') which sends hz to the image of h under the quotient map.

12



(R is commutative, so H H,(R) is an R-module).
One can do a very similar thing to get the same result for HH* (k[z]/(z™)). This example is

from [6, Ex 9.1.4].

4 Koszul resolution and polynomial calculations

We want to calculate HH,(k[x1,...,z,]). To do this we will find a specific finite resolution of
rings which can be used to explicitly calculate Tor and Ext, and therefore the Hochschild groups.

Mainly based on [6, Ch 4.5].

4.1 Koszul complex

Let R be a k-algebra, let x = (1, ...,2,) be a sequence of central elements in R. (i.e. all the z;

are in the centre of R).

Definition 4.1. Set K, (x) to be the free R-module generated by the symbols e;, Ae;, A--- A €i,
forl <ip <ig <+ <ip <.
Define dj, : K,(x) = Kp_1(x) by e;; Aejy, A--- Aei, — zpes, N--- Aég, A--- Ae;,. Where, as

usual, the hat means that that term is left out.

This is a presimplicial module (this follows from the fact that the x; are central), so by setting
d= Zzl(—l)’”ldk (the index is out by 1), we have that d o d = 0, so this is a complex, called
the Koszul complex and denoted by K (x). Note that K,(x) = A” R™.

As an example, consider K (z,y), this is the complex

0o r, g W g
Where the maps are written as matrices and the bases are {e; Aey }, {es, e, } and {1} respectively.
If we consider K (z — y), we get 0 — R =% R — 0, note that for R = k[z,y] the first 3 terms

are exactly a projective resolution of k[z], so this is a generalization of that resolution.

In general the Koszul complex is not exact, but there is a type of sequence for which it is.

13



Definition 4.2. Let M be a finitely generated R-module, a regular sequence on M is a sequence

of elements z1, ..., z, such that z; is not a zero divisor on M, i.e. zym = 0 implies m = 0, and
x; is not a zero divisor on M /(z1,...,z;—1)M.
Theorem 4.3. Let x = (1, ...,,) be a reqular sequence on R, then K (x) is exact except at the 0t

degree where the homology is R/(x1, ..., zn)R.

For the proof see Appendix A, the proof is not difficult but it is long and does not use tech-

niques that are used later.

Corollary 4.4. K(x) is a free resolution of R/(x1,...,zn)R.

4.2 Hochschild (co)homology of polynomials

We now have enough tools to calculate the Hochschild (co)homology of polynomials in n vari-
ables. By Theorem 3.3, HH;(R) = Tor® (R, R). So we need to calculate k[z1,. . .,2,]¢ and then
find a projective resolution of k[z1, ..., z,).

We have that k[z1,...,z,]¢ = klz1,...,2.] Qr klz1, ..., 2n] = k[z1,..., 20, 91,...,ys). Call
this R. Now we have a natural surjective map R — k[x1,...,x,] which has kernel gener-

ated by x; — y;. (We are identifying the « and y variables). This makes k[z1,...,z,] into a

R-module and we have k[z1,...,2,] & R/(x1 — y1,22 — Yo2,...,Tn — Yn)R. It is clear that
(1 —y1,%2 — Y2, ..., Ty, — Yy ) is a regular sequence, so by Corollary 4.4
npn 4 n—1pn 4 d 1pn d
0> A"R" = A"""R"—= .- 5> ANR"—> R—k[z1,...,2,] = 0
is a free resolution of k[z1,...,z,]. We then tensor the resolution by k[z1,...,z,] over R. We
have A’PR" Qg klx1, ..., 2y = APk[x1, ..., z,]". The maps all become 0 as (z; — y;) acts as 0 on
k[x1,..., ], so the complex becomes
n n 0 n—1 n 0 0 1 n 0
0—= A"k[x1,...,x,]" = A" klxy, ..., xn]” = - = NE[xy, ..o 2" = klz1,...,20] — 0.
The homology of this is clearly A'k[z1, ..., z,]" in degree i. In effectively the same way,

Extl(k[r1, ..., 20, k[z1, ... 20]) = Ak[z1,...,2,)" (As Homg(R, M) = M, and in a very

14



similar way all the maps become 0).

This shows that HH; (k[x1,. .., 2,)) = HH (k[x1,...,2,]) = Nk[x1,...,2,]" for 0 <i < nand
HH;(k[z1,...,2,]) = HH (k[x1,...,2,]) = 0 fori > n.

This example is from [6, Ex 9.1.13]. Note that for polynomials HH;(R) = A'H H1(R), this is a

special case of a more general result, see Section 6 for more details.

5 Morita invariance

We want to know when two rings have the same collection of modules, i.e. when they have
equivalent categories. We will then show that swapping a ring for another equivalent ring
does not change the Hochschild (co)homology. This whole section is high on definitions, but is
relatively straightforward, it is mainly a combination of [7, Ch. 7] and [2, Ch 6.4]. Basic category

theory is assumed, see for example [8, Ch. 1] for more details.

5.1 Module categories

Recall that a natural transformation n : F' — G between two functors is a collection of functions

n(A) : F(A) — G(A) for each A, such that

F(f)

F(A) F(B)

n(A)l ln(B)

aa) Y% q()

commutes for any f: A — B.

If n(A) is an isomorphism for each A, we call 1 a natural isomorphism and write F' ~ G.

Definition 5.1. Two categories &7, # are equivalent, denoted &/ ~ 2, if there exist two functors

F:of - PBandG: B — o/ suchthat GoF ~14,FoG~1p.

We only consider one type of category here, the category of all left R-modules and module
homomorphisms, g.#, and the category of all right R-modules and module homomorphisms,

A r. The goal is to work out when are two such categories equivalent for different rings. There

15



is a first case that we will do now. We write M,,(R) is the ring of all n x n matrices with entries

in R.
Theorem 5.2. Let R be any ring, set S = M,,(R), then p.# ~ s.# for any n.

We will explain this proof in almost full detail to show that this result can be done without
many technical results, but after this we explain the proof in a more general way and then return

to more general theory rather than algebraic manipulations.

Proof. We need to construct two functors, F' : p.# — s.# and G : s.# — r.#, such that there
is a natural transformation between their composition and the identity map.

Let M € g.# and define F(M) = M™ where M (™ is elements of the form (m1,...,m,) m; €
M. Then M™ is a left S-module with the action being matrix multiplication on the left. Let
¢ : M — N be a module homomorphisms, set F'(¢)(mq,...,my) = (¢(m1),...,d(my)). Itis
easy to see that F'(¢) is a S-module homomorphism and that F' is a functor.

To go the other way, let U € g.#, set G(U) = e11U, where e;; is the matrix with a 1 in the first
row and first column and 0 everywhere else. Then e;,U is a left R-module with action induced
by multiplication by rI,, as we have ri,e; U = ei1r[, U C eU. For ¢ : U — V, we have
d(e11U) = e119(U) C e11V. So set G(¢) to be the map induced by ¢. Again G is a functor.
Consider now (Go F) (M) = G(M®™) = e;; M which consists of elements of the form

(m,0...,0) m € M. This is clearly isomorphic to M in a natural way. The other way is

slightly less clear.

Consider (F o G) (U) = (e11U)™. To show this is isomorphic to U, consider the map ¢ : U —
(enU)(") defined by ¢ (u) = (e11u, €124, . . ., e1,u). This is well defined as e1; = e11€1;. Itisan S-
module homomorphism as ¥(re;;u) = (e117e;;u, €127€454, . . ., e1pre;;u) = (0,...,re1;u, ..., 0),

with rejju in the "

position. However re;;(e11u, ..., e1pu) = (0,...,7e15u,...,0) again with
re1;u in the i*" position by simple matrix multiplication. Now as elements of the form re;; gen-
erate S we are done.

To show % is injective, assume (u) = 0. Then e;ju = (ejie1j)u = ej1(erju) = 0,500 =
Y- ejju = u. For surjectivity, let (e11u1,...,e11u,) € (e11U)™, then 9(e11uq + eayup + --- +
En1lln) = (€11U1, €11U2,  ** , E11Uy).

Finally, ¢ is a natural transformation asif f : U — U’ then we have (o f)(u) = (e11f(u), ..., e1nf(u).
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On the other hand, (F(G(f)) o ¥)(u) = F(G(f))(enu,...e1pu) = (f(ennu),..., f(ernu)) =
(e11f(u),...,e1nf(u)), as f is a module homomorphism.

Sowehave GoF ~1, yand FoG~1,_ 4 O

Almost exactly the same proof will show that .#r ~ .#s. This proof is based on [7, 17B].

The above proof seems very specific to the situation but it can be phrased in a way that gives us
an idea for when two rings have equivalent module categories.
Consider R®™ as a column vector, it is a left S-module and right R-module, and F is effectively
R®" ®p —. We can also consider R®" as a row vector, it is a left R-module and right S-module,
then G is effectively R®" g —. (As €115 picks out the top row). We have R®" @ g R®"™ =~ S and
R¥" ®g R®™ = R. To see this think about multiplying a row vector with a column vector both
possible ways.

This shows that R®" ® p — and R®™ ®g — are inverse category equivalences.

Definition 5.3. If p.# ~ g.# for two rings R and S, we call the rings Morita Equivalent.

If a property is preserved by Morita equivalence it is called Morita invariant.

Note: We will show later that if p.# ~ g.#, then also .#r ~ .#g, that is the reason why
there is no need to talk about left (right) Morita equivalence. Before going on to the more general

case, we need a few more definitions.

Definition 5.4. Let N be a left R-module, then it is a generator if Hom(N, —) is faithful, i.e. if it

does not kill non-zero morphisms.
We have that R and R®* are examples of generators.

Definition 5.5. Let M be a left R-module, let M* = Hom(M, R) be the dual module. Then the

trace module, denoted tr(1), is the submodule of R generated by

{f(m) forme M, fe M"}.

There is a nice equivalent definition of being a generator that uses the trace module.

Proposition 5.6. Let N be a left R-module, then the following are equivalent,
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1) N is a generator.

2) tr(N) = R.

3) Ris adirect summand of @ P for some indexing set I.
4) every M € r. is a surjective image of @ P.

Proof. 1) = 2)

Assume tr(N) # R. Thenn : R — R/tr(N) is non zero, and then as N is a generator, there exists
a ¢ € Hom(N, R) such that 7 o ¢ is non zero, but then ¢(N) ¢ tr(N) which can not be true.

2) = 3)

By 2), there are g; € N* such that }_ ¢;(N) = R (in fact we can pick a finite number of g;). This
givesusamap ¢ = (g1,...,9n) : P@---@® P — R that is surjective. Then as R is projective, we
haveamap ¢ : R — P®--- @ P such that ¢ o 1) = 1p, therefore 1 is a section and R is a direct
summand of P& --- @D P.

3) = 4)

We have that M is the surjective image of a free module, so compose that map with some
"power” of the map into R.

4) = 1)

Let f : M — N be non zero, then as M is some surjective image of &©; P, we must have that the

composition is non-zero on some factor. O

Condition 4) gives some justification to the name generator, and the next Lemma explains

their significance for us.

Lemma 5.7. Let F,G : ro# — s be two functors that are right exact and preserve direct sums. If
there exists a natural transformation n, between them, such that n(N) : F(N) — G(N) is an isomor-

phism for N a generator, then 1) is a natural isomorphism.

Proof. Let M be any left R-module, then by Proposition 5.6 we can construct an exact sequence
@, N <> M — 0. In fact we can extend this by one term to the left by considering N EN

ker(a) — 0. Combining we get (®, N — P, N — M — 0. Apply F' and G to get a commutative
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diagram
F@;N) — F(P,N) — F(M) —— 0

lm an JH(M)

G(D, N) — G(®,N) — G(M) — 0

Now as F, G both preserve direct sums, and 7(N) is an isomorphism, we get that 7; and 7. are

both isomorphisms, then apply the 5-lemma to get that n()/) is also an isomorphism. O

5.2 Morita Equivalence

We have already seen that any ring is Morita equivalent to all of its matrix rings, we want to
find a way to describe the other ways two rings can be Morita equivalent.

In general given a bimodule we can get a functor (& or Hom), it turns out that the converse
is partially true, by adding a condition on the functor we can realize it using a bimodule. One

of these situations is right exact functors preserving direct sums in module categories.

Theorem 5.8 (Eilenberg-Watts). Let ' = N Qr — : po#l — g4 for some (S, R)-bimodule N. Then
F is right exact and preserves direct sums. The converse also holds, any right exact functor that preserves

direct sums is naturally isomorphic to tensoring by a bimodule.

Proof. The first property is a well known fact about the tensor product, the important part is the
converse.

The idea that is key to this proof is simple, give F'(R) a right R-module structure, this is done
by looking at the endomorphisms of R and sending them through F' and using the fact that R
has a natural right action. The actual details which follow are slightly technical.

Let F': p.## — s.# be right exact and preserve direct sums.

First: define ¢,, : R — M by ¢,,,(r) = rm. This is a homomorphism of left R-modules. We
get an induced map F(¢,,) : F(R) — F(M). Now define o™ : F(R) x M — F(M) by
oM (F,m) = F(¢n)(F). If we set M = R, then we get a right R-module structure on F(R)
as 7(rir2) = afi(F,rire) = F(¢ryr,)(7) and (7ri)r2 = (F(¢p,)(F)re = F(¢r,) o F(¢r, )(F) =
F(¢r, © ¢p)(F). Now ¢, © ¢y, (1) = trima = ¢ryr, (t) so the result follows. It is a bimodule as
(s7)r" = F(¢r)(sT) = sF () () = s(77").

So we have a map o™ : F(R) x M — F(M), this map is clearly bilinear and o™ (7r',m) =
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M (F(¢)(7),m) = F(pm) o F(¢p)(F) = F(prrm)(7) = oM (F,7'm) so it lifts to a map o™ :
F(R)®r M — F(M). This is a natural transformation as given f : M — M’ we have 7 @ m
7 ® f(m) = F(dsum))(7). Going the other way round we have 7 ® m — F(¢n)(7) — F(f) o
F(m)(7) = F(6m)) (7). The final step follows as f(é(r)) = f(rm) = rf(m).

As this map is clearly an isomorphism for M = R and R is a generator, by Lemma 5.7, we get

that F ~ F(R) Qg —. O

This proof is based on [11], in this paper there is also a similar condition for when functors

are equivalent to Hom(M, —) for a bimodule M.
Corollary 5.9. For any rings R, S the following are equivalent,

1) There exists functors F' : .t — s M ,G : g M — p.# which are right exact and preserve direct

sums, and such that Go F ~ 1, 4.
2) There exist two bimodules, RQs, s Pr such that Q ®s P = R.

Proof. Given the functors F' and G, by Elienberg-Watts, we have that ' ~ PQpr —, G ~ Q Qg —,
for some P, Q. Consider Go F ~ (Q®s P)®pr — : p# — p#.Wehavethat Go F ~ 1, 4, so
(Q®s P)®r R = R, which shows that Q ®s P = R.

Conversely, define F' = P ®p —, G = Q ®s —. Then by Elienberg-Watts, we have that both F, G

are right exact and preserve direct sums, also as Q ®s P = Rwehavethat Go F ~1, . [

Note: In the above situation, we also get functors F = —Q®rQ : #r — Ms and G’ =
— Qs P: Mg — Mp,suchthat G'oF’ ~ 1 4,. We now have enough results to prove conditions

for two rings to be Morita Equivalent.
Theorem 5.10. Let R, S be two rings, then the following are equivalent,

1) ﬂ) RL%Z S%

Cl,) %R ~ %S-
2) There exist a pair of bimodules rQs, s Pr such that Q ®s P = R, and PQr Q = S.

Proof. 2) = 1)
Define F : g/ — s# by F(M) = PQrM and G : s.#4 — r# by G(N) = Q®s N. Then
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(FoG)(N)=PQr(Q®sN)=S®sN=N,and (GoF)(M) =Q®s(PROrM)=RQpr M =
M. Similarly F’ = —®r Q,and G’ = — Qg P give category equivalences between .# and .#s.
1)a) = 2)

There exist F' : .l — s and G : s — p# suchthat FoG ~ 1, yand Go F ~ 1, 4.
Category equivalences preserve categorical definitions so are exact (therefore right exact) and
preserve direct sums so we can apply Corollary 5.9 twice to get 2). (By following the proof of
Corollary 5.9 it is clear that the same P, ) will work for both directions).

The note gives us that a) and a’) are equivalent. O

5.3 The Morita Context

Having seen the conditions for when two rings are Morita equivalent, we wish to describe P
and @ more concretely, in doing so, we will also set up what we need to show that Hochschild

(co)homology is a Morita invariant.

Let R be any ring, P any right R-module, then we can define Q = Hompg(P, R), it is the dual
of P, and another ring S = Endg(P), the R-endomorphisms of P. By letting S act on the left
of P, we get a left S-module which is in fact a (S, R)-bimodule as s(pr) = (sp)r, because s is a
R-homomorphism.

We can also turn @ into a (R, S)-bimodule, first let (rq)p = r(gp), this works as R is a (R, R)-
bimodule, then set (¢s)p = ¢(sp), again as P as a (S, R)-bimodule.

Note: gs € Qas (gs)(pr) = q(s(pr)) = q((sp)r) = q(sp)r = ((gs)(p))r, and we have the bimodule

property, ((rq)s)p = (rq)(sp) = 7(q(sp)) = r((gs)(p)) = (r(gs))p.

Lemma 5.11. In the above notation, we have well defined homomorphisms o : Q ®s P — R, and

B:PQrQ — S.

Proof. First, note that as we have s Pg and Qs both tensor products make sense, and are (R, R)
and (5, S)-bimodules respectively.

For o defineamap @Q x P — R, (¢,p) — g¢p, this map is clearly linear in both arguments and
(gs)p = q(sp), so this map lifts to a map from @ Qg P, this map is a (R, R)-homomorphism as

(rq)p = r(gqp), and q(pr) = (qp)r-
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For 3, the same argument works, as pq defines an element of S by (pq)p’ = p(gp’). We have

((pr)a)(»") = (pr)(gp") = p(r(gp’)) = p((rq)(p")) = (p(rq))(p’), so the map lifts. Finally one can

show that the map is an (5, §)-homomorphism using a similar argument. O
We can sum up all the above properties by saying that we have a ring R® Q & P & S which

R
we think of as @ with the standard matrix operations. This ring is called the Morita Ring
P S

associated with Pg, we call (R, P, Q, S; «, B) the Morita Context associated with Pg.
For an example consider P = R®", then Q = R®". We also have S = Endg(R®") = M, (R);
this is exactly the set-up used in Theorem 5.2.

In the rest of this section, we work in some fixed Morita Context.
Proposition 5.12.

1) Pg is a generator iff o is surjective.

2) Pris finitely generated and projective iff 3 is surjective.

Proof. 1) The map « has image ¢(p) for p € P, ¢ € Q = Hompg(P, R). In other words, Im(«) is
the trace module, so the result follows by Proposition 5.6.
2) We have that S is surjective iff 15 = > p;¢;. This implies that p = (3" piq:) p = > pigi(p) for

all p € P. This is true iff P is finitely generated and projective by the Dual Basis Lemma!'. [0
Corollary 5.13.

1) o surjective implies that o is an isomorphism.

2) p surjective implies that (3 is an isomorphism.

Proof. 1) Assume Y ¢;p; = 0, as « is surjective, we have 1 = 3" ¢/

'p;. Consider ) ¢q; ®s p; =

2(d5ps)a ®s pi = 34 (Pjai) ®@s pi = 2 q; s (Pjai)pi = 3 a5 ®s pPj(¢ipi) = 0.
2) Again, we have by assumption 1g¢ = > plq}, assume 3 p,;¢; = 0. Exactly the same argument

as above shows that > p; ®r ¢; = 0. =

In light of this result we make a definition,

1P is projective if and only if there exists {a; € P|i € I} and {f; € P*|i € I} such that foralla € P, f;(a) = O for
all but finitely many i and a = 3, ; ai fi(a), see [7, Sec. 2B]
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Definition 5.14. If M, a right R-module is finitely generated, projective and a generator, it is

called a progenerator.

So combining Corollary 5.13 and Theorem 5.10, we see that given a progenerator P, we get
Morita equivalent rings in the Morita Context. In this case, ) is also a progenerator as it is the
image of S under a category equivalence, and clearly S is a progenerator (category equivalences
preserve all “category theory” definitions). Note that R®" from the example is a progenerator.
If we start with a category equivalence, by Theorem 5.10, we can take our two functors to be
tensor products, and we get modules P and Q which are progenerators as they are the images

of § and R, these modules also have nice properties.
Proposition 5.15. Let P, (Q be as in Theorem 5.10. Then we have,
1) P~ Homg(Q, R) = Homg(Q, S)
2) Q = Hompg(P, R) 2 Homg(P,S)
3) R=Endg(P) = Ends(Q)
4) S = Endg(P) = Endgr(Q).

Proof. All eight statements follow from the fact that Hompg (M, F(N)) = Homg(G(M), N) and
other similar results. This is because we have an induced map Hompg (M, M) — Homg(F (M), F(M'))
which is an isomorphism as it has an inverse induced by G, by setting M’ = F(N) the fact fol-
lows. Similarly we also have Homp(G(A), B) = Homg(A, F(B)) and similar statements for
F'=-QrQ,and G' = — Qg P.

1) P 2 Homg(S, P) = Homg(S, F(R)) = Homp(G(S), R) = Homp(Q, R).

2) Q = Homp(R, Q) = Homp(R, G(S)) = Homs(F(R), S) = Homs(P, S).

3) Endg(P) 2 Homg(P, P) 2 Homg(F(R), F(R)) =2 Homg(R,G(F(R))) = R.

4) Endg(Q) = Hompg(Q, Q) = Homp(G(S5), G(5)) = Homs(S, F(G(5))) = 5.

The other statements following using F’ and G’. O

This shows that given the functors, we can create a Morita Context, it also show the full
symmetry between R and S, and between P and (). We can also get a category equivalence

between the category of bimodules using PQr — ®r Q.
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5.4 Hochschild (co)homology is a Morita invariant

Note that any categorical property is preserved by Morita Equivalence, including a module be-
ing projective, injective, faithful, finitely generated and Noetherian. Some of the ring properties
preserved include semisimple, left(right) Noetherian and left(right) Artinian. As seen above in

Theorem 5.2, commutativity is not preserved, however the centre of the ring is.
Lemma 5.16. The centre is a Morita invariant.

Proof. To prove this we want a way of describing the centre of p.# categorically. To do this,
call the set of all natural transformations from the identity functor to itself C. These natural
transformations can be added and composed, turning C' into a ring. We claim that this ring is
isomorphic to the centre of the ring R.

Construct 1 : Z(R) — C as follows, given r € Z(R) and M € g, let u (r) : M — M be the
left action by r. This is an element of C' as given any f : M — M’ we have that rf(m) = f(rm)
clearly. This map is injective as if pu(r) = 0, then consider M = R and the image of 1, we
get 0 = r. Now let v be any element in C. As v(s) = 7(1)s and for any » € R we have an
endomorphism ¢ — rt and therefore v(1)r = ry(1) (consider the image of 1 in the commutative
diagram). This shows that v(1) € Z(R). Now let M € r.#, we have a map R — M given

by the R action. As + is a natural transformation we get y(1 - m) = (1) - m, this shows that

v = p(y(1)). O

Remember that HH°(R) = Z(R), so if R and S are equivalent then HH°(R) = HH(S). In

fact this result generalizes massively.

Theorem 5.17. Let P and Q be as above. Then H;(R, M) = H;(S,P®r M ®r Q) and H (R, M) =
HY(S,PQ®r M Qg Q) for any R-bimodule M.

Proof. From the above work we have isomorphisms ¢ : PQrQ — Sand ¢ : Q®s P — R.
These maps satisfy ¢(p @ ¢)p’ = (pq)p’ = plgp’) = py¥(¢ @ p'), see Lemma 5.11, and also

99(p ® ¢') = ¥(q ® p)¢’. This is because (¢(pqg))p" = a((pg')p") = a(p(¢'P")) = (gp)(d'p") =
((gp)q")p", see the start of Section 5.3. Call these properties T.

We also have elements py, ... pt, q1 . .. ¢: such that (> ¢;®p;) = 1g and elements p, ... pL, q1, ... ¢}
such that ¢(}_p; ® ¢}) = 15.
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The idea for the rest of the proof is simple, use the special elements p;, ¢;, p}, ¢; to create maps
between the complexes. Then define a presimplicial homotopy between the maps. The details
are messy but none of the individual steps are difficult. We have tried to keep things as simple
as possible but at the same time we want to have a complete proof, therefore not all the steps
are shown, just the key ones.

We define o, : M @ R®™ — (PQr M Qr Q)  S®™ by

an(M®ry @ - -rp) = Zpk-o QRM R Gy @ O(Pr, @ T1qky) @ -+ @ O(Pk,, @ Ty )-

The sum is over all sets of indices (ko,...ky,) such that 1 < k, < ¢. We also have §, :

(POrMQ®rQ)®S®" — M Q R®" by,

Bu(p@rMBRIDs1® - 5,) = Y P(qf, @p)mip(q@pf,) @ (g, @ s1p],) @ -+~ @ (), @ snpf,)-

The sum is over all sets of indices (lo,...l,) such that 1 < [, < s. These are maps between
complexes as d;o, = a,—1d; and d;8, = Sn—_1d;. This follows by applying 1, the argument is
very similar to ones later on in this proof which are covered in more depth.

Define a map h; : M @ R®" — M @ R®"*! given by
hi(m@r @) = > map(qr, @) @ P(q), @ pro)r1tb(qe, @pi,) @ -

- @U(q),_, @ pr_ )T (ar, @ 1) @ U(q), @ pr,) @Tip1 @ - @1y,

Again the sum is over all sets (ko, . .. k) such that 1 < k., < tand (lyp,...l,) suchthatl <[, <s.
Claim: The h; are a presimplicial homotopy between (3, o a;,, and the identity map.

First: dohg = id.

We have doho(m@ri®---1,,) = do (3 m(qr, @ pj,) @ U(q, @ pry) @71+ @ 7n) = > map(qr,®
P )0(q], ® Pry) @ 71+ @ 7. Now 1 is an R-homomorphism so 9(qr, ® pj )¥(q], ® pr,) =

V(qry @ P, ¥0(q), @ Pro)) = V(qr, @ O(P), @ q1,)Pk,)- The second equality is . By taking the sum
over [y then over kg we get the identity map.

Second: dy4+1h, = Bpn o ap.
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We have 3,00, (m@r1Q---1y,) = Bn O Pry QR M QR ity @ ¢(Dkey @ T1qky) @ -+ @ APk, @ TrGhy)) =
> U(q), @ Pro)mP (g, @ py,) @ Y(q), ® ¢(Pry, @ T14K,)P),) @ -+ @ U(q), @ A(Pk,, @ TnGry )Py, )-

Now 9(q),_, ® ¢(pr,_, @7igqr, )1y,) = V(q),_, @ P,V (Tiqr, @p7,) = (a7, @ Pr,_, )it (q, @), )-
(Using f and R-hom.) 1)
We also have that dy, 417, (m@71@- - - 10) = dpy 1 (30 My (qr, @p), ) @Y (q;, @pr, )71 (qr, @), )R- -+
@Y, @ Py )@k, @ D1) @U(q), @ pr,)) = Do U(q), @ pr, )M (qr, ® D7) @ (g, @

Pro)T1Y(q, @) @ - @Y(q | ® Pr,_,)Tnt(qk, @ p) ). Using the rearrangement in (1) and

n—1

relabelling the indices we get the desired result.

Third: d;h; = hjd;—1 wheni > j + 1.

This follows immediately without any need for rearrangement.

Fourth: d;h; = h;j_1d; fori < j.

This follows from the fact that ¥(q;, | ® p,_, )rit(ar, © p;,)¥(q, © pr)riv1¥(ae,, @ pp,, ) =
(g, , ®Pr,_y)ritit1¥ (g, ® P, ). Again by using  and R-hom.

Fifth: d;h; = d;h;—1 for 0 < i < n.

This follows in a very similar way to the fourth one. We have ¢(q;, _ ®@pr,_, )79 (qr, @p}, )1b(q], ®
pr:) = Y(q, , @ pr,_, )i

As all these hold, we have by Lemma 2.4 that /3, o a,, is homotopic to the identity map.

We also have a presimplicial homotopy from «, o 3, to the identity map given by
hi(p@rmMORqR 81 @ 8p) = ZP Qr M R PP, @ @1y) @ ¢(P1y @ Qi )510(P), @ @1,) @ - -

e ® ¢(pli—1 ® q;ci,l)si(b(p;ci ® qli) ® ¢(pli ® q;ql) D Si+1 Q- R Sp.

This is a presimplicial homotopy for the same reasons as h; by symmetry. The only difference
is that to show that d,, 1y, = o, 0 5, we need to use the fact that pr g m @r ¢ =pR/rTrMmr q
andp ®r M Orrq=pOr Mr QR q.

Together these give the result. O

This proof is based on [9, Thm. 1.2.7]. There is a different proof using bicomplexes in [6,
Thm. 9.5.6]. One can do something very similar to get the Morita invariance of Hochschild

cohomology.
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6 Kaihler Differentials

When we are working with commutative k-algebras we can give an interpretation for Hochschild
homology which uses language and ideas from geometry, especially manifolds. Here it is purely

algebraic. This section is based on [9, Ch. 1.3].

6.1 Derivations and Differentials

We have already seen derivations in Section 2.2, but will define them here. They are an algebraic

generalization of the derivative operation.

Definition 6.1. A derivation of R with values in M is a k-linear map D : R — M such that
D(rs) =rD(s)+ D(r)s Vr,s € R.
The module of all derivations is denoted Der(R, M), or Der(R) when M = R.

Any m € M defines an inner derivation, ad(m), given by ad(m)r = [m, r] = mr —rm. We can

also define a similar map to act on C,,(R, M)
ad(s)(mo®11 @+ Q1) =Y M @TI @ RTii1 @ [5,73] @Tig1 @+ D7
i=0

It is easy to check that ad(s) commutes with d, the Hochschild boundary. We can also calculate

what map it induces on Hochschild homology.

Lemma 6.2. Define h(s) : Cp,(R,M) — Cpt1(R, M) by

h(s)(m0®7"1®---®7“n):Z(—l)im()@ﬁ®---®ri®s®ri+1®---®rn.
i=0

Then we have dh(s) + h(s)d = —ad(s).

Proof. Set h;(s)(mo®r1®---@ry) = Me@r1 Q- - Qr;@sQr;41®- - -®ry,. Then h(s) = > (1) h;(s).
We have d;hj(s)(mo @ ri1 @ - ®@1y) =di(me@mM - QT @sQrjy1 Q-+ Qry) = (Mo ®
M - Qrrip1 Q@ QT Q@s®Tj41 Q- ®1y) fori < j. This is equal to h,;_1d;, and it is also
easy to check that d;h; = hj;d;_; for i > j + 1. By the same argument as Lemma 2.4, we get
dh(s) + h(s)d = doho — dypy1hn + >, (dih; — dihi—1).
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We have (dohg — dp1hn)(mMog @11 @ - @ 1p) =MpSRT Q- @Tp — M @11 ® -+ - @ 1y and
(dihi — dihi—) (Mo ®T1 Q@+ Q1) =MRT1I Q- Qri_1 QriSQ@Tip1 @+ QTp —My Q11 @
QT 1 QST QT ® - @ 1Tp. So dh(s) — h(s)d = —ad(s). O

So we get that ad(s) : H;(R,M) — H;(R, M) is homotopic to the zero map, this is clear
when R is commutative and M is such that mr = rm, called symmetric. We will need this
identity later.

Now let R be commutative.

Definition 6.3. A derivationd : R — M is universal, if for any other derivation § : R — N there

is a unique linear map ¢ : M — N such that § = ¢ o d. In diagram form,

Definition 6.4. The module of Kihler differentials is the module Q7 such thatd : R — Qp,; isa

universal derivation.

As usual for objects defined universally, Q}%I « is unique. We can describe it explicitly.
Consider the module generated by the symbols dr for r € R, add the relations dc = 0 for ¢ € k,
d(r+s) =dr+ds,d(rs) = sdr + rds for r, s € R, and define d by s — ds. By construction d is a
derivation, and if we have § : R — N any other derivation, define ¢ by dr — §(r).

There is also another more concrete way of describing Q}ﬂk, consider it : RQ, R — R where
u(r @ s) = rs. Let I be the kernel of 11, and consider I/I2. I is generated by r ® 1 — 1 @ r as an
R-module. Define 6§ : R — I/I? by §(x) equals the class of r ® 1 — 1 ® x. It is a derivation as
rd(s) +d(r)s=rs@1-r®@s+r®s—1®rs=d(rs). We have a unique map ¢ : Qp, — I/I?,
where ¢(dr) equals the classof r @ 1 — 1 @ r.

We can also defineamap ¢ : I /12 — Q}ﬂk, given by ¢ (r®1—1®r) = dr, so ¢ and ¢ are inverses.
This map is well defined as ¢((r®1—1@7)(s®1-1®s)) =d(rsR1 —r®s—s@r+1@rs) =
Ps(rel—10r)—(r®l—1®r)s) =sdr — (dr)s = 0.

The above calculation also shows that I/I? is a symmetric bimodule.

Note: One can show that Der is a functor, and by definition of Q}%I . we have an isomorphism
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Hom Am}%l o M) = Der(R, M). This shows that Der is a representable functor, represented by
Ql

R|k®
As an example, consider R = k[z1,...,z,], polynomials in n variables. Consider the map
d:R— R", givenby §(f) = (%, RN %). This map is a derivation as the product rule holds.
This mean we have a unique map ¢ : Q}ﬂ . — R" sending df to (%7 R aann). Consider the

map ¢ : R" — Q}%lk defined by ¢(f1,..., fn) = >y fida;.
Claim: this map is an inverse to ¢. We have,
¢o(fr,..osfu) = 0O fidwi) = > o(fdxi) = (fi1,..., fn) by linearity, and ¢ o ¢(df) =

1&(57{1 S 8%) =3 %d:ﬂi. So sufficient to show that df = > %dxi-

This holds as d(z?) = xdx + zdz = 2xdz and by induction d(z™) = na" " ldx = %dm. We can
then repeatedly use d(gx;) = gdx; + x;dg to write everything in terms of the dx;.
This shows that Q}ﬂk ~@; | Rdz;, when R = k[zy,...,z,).

We can now give a description of H (R, M).
Lemma 6.5. Let R be commutative and M symmetric, then Hi(R, M) = M Qg Q}%I .

Proof. By earlier work in Section 2.2, we have that H, (R, M) = M @ R/{mri @ ro —m @ rirs +
rom @ r1}. We have a map m ® r — m ®pg dr, which is well defined as mry ®g dros — m ®r
d(rir2) + rem Qg dr; = 0 (swap 2 and m, use mr ®g ds = m ®g rds and use the relations

in Q!

Rj)- This map has an inverse, m ®@g dr — m @ r, again it is well defined by the quotient

condition. O

This agrees with our earlier work with polynomials in Section 4.2 where we saw that
HHy(k[z1, ..., 2n]) = k[z1,...,2,]". We can also find Qy,, for R = k(z)/(z"). By Section 3.3

we have HH;(R) = (). One can describe/write this as k[x]dz/(z", 2" 1dz).

We can also define higher degree differentials.
Definition 6.6. The R-module of differential n-forms is Q). = A Qg ;.

As an example, for R = k[x1,...,z,], we have Ql}‘c\k = A'R", and for R = k(z)/(z"), we

have Ql}w@ =0fori > 1.
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6.2 Relationship between Differentials and Hochschild Homology

We have already seen that Hy (R, M) = M ®pr Q}%lk and for polynomial rings, H H,,(R) = Q%
by Section 4.2. We will look at the relationship between H H;(R) and %, in general.
For now R is not assumed to be commutative.

Definition 6.7. Let o € S,, then o acts on C,,(R, M) as

O'(m@'l"l Q- ®7‘n) = m@ro_,l(l) & - ®7‘0_71(n).

Extend linearly to get an action of k[S,,] on C,,(R, M) and define the antisymmetrization element

€y, As

€n = Z sgn(o)o.

OESy

Definition 6.8. Lete¢, : M ® A"R — C,,(R, M) be the map given by,
MOTIAArp = en(MOT] Q-+ @ 1y).

This is a misuse of notation but it is clear what we mean. We want to know how ¢,, and d,

the Hochschild boundary, interact. To do this we need a another map.

Definition 6.9. The Chevalley-Eilenberg map, § : M @ A"R — M @ A"~'R, is given by

5(m®7"1/\---/\7“n)22(—l)i+1[m,n]®r1/\~--/\ﬁ/\~-~/\rn
i=1

+ D (FD)TIm@ [ ATLA AT A AT A ATy,
1<i<j<n

Proposition 6.10. Let R be any k-algebra , M any R-bimodule then the following square commutes,

MQ@A'R —=— C,(R, M)

I |

MA" 'R =% C,_(R, M)

Proof. By induction on n,

forn =1, wehavee; = 1and d(m®r) = mr—rm. Wealso have ¢g = 1 and §(m®r) = mr—rm,

30



SOdO€1 26005.
Now we claim that €,11(m @711 A -~ Arp As) = (=1)"h(s)ep(m @71 A -+ Ary), where h(s) is

the map from Lemma 6.2. To see this calculate both sides

€nt1(Mri A~ ATy As) = Z sgn(o)o(mM@mM & - Qr, ® s
oESn11

(=) h(s)en(m @71 A Ary) = Y (=1)"sgn(o)h(s)o(m @ @ @ 1y)
g€Sy,

= Z (—1)"sgn(a) Z(—l)i(m 029 TU—1(1)® e ® To—1(i) R sR To—1(i+1) R ® Tg—l(n)).

cES, %

Now to move the s to the first position (straight after the m) requires i swaps, so a sign change
of (—1)°, then to move back to the end requires another n swaps, a sign change of (—1)". So
both extra signs cancel out, and we get the desired relationship.

Now assume the result for n, consider n + 1. We have

dent1(m@ri A Arp As) = (=1)"dh(s)en (Mm@ Ty A~ ATy)
= (—1)"(—ad(s) — h(s)d)en(m @ TL A+ ATy)
=—(—1)"ad(s)en(m @11 A+ Ary) — (=1)"h(s)en—10(m @11 A+ ATy)

=—(—D)"ad(s)en(m@r1 A Arp) + (Mm@ r1 A= Ary) As).

Where the 1% and 4*" lines come from the earlier claim. The 2"¢ line follows from Lemma 6.2
and the 3" line follows from induction assumption.

Now consider €,(6(m@ri A~ Arp, AS)) =€, (d(Mm@ri A Arp) As)+ (=1)"e,([m, s] @ r1 A
cATR) > (1) e, (Mm@ [y, S| AT A AT A ATy,). Tt is therefore sufficient to prove
that —ad(s)e,(m@ri A Ary) =€, (Im,s] @i A Ary) + >0 (=) e (m @ [ry, 8] Ay A

AT A Ary). We have

—ad(s)e,(mri A Arp) = — Z sgn(o)ad(s)o(mri ® --- Q@ ry)
oeSy

= — Z sgn(o)[s,m] @ r,-1(1) @ -+ @ To-1(n)
g€Sy
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- Z sgn(o) Zm@wa*l(l) ® ®To-1(i1) ® [8,To-1(5)] @+ @ To-1(n)
oceS, i=1

=ep([m,s]@ri A Ary)

n

~

+ Z(—l)“‘len(m @ [Py SJATL A ATy A v ATy).
i=1

O

Note that if R is commutative and M is symmetric, then clearly § = 0, and therefore doe,, =

Proposition 6.11. For R a commutative k-algebra and a symmetric bimodule M we have a map
€nt M, — Hp(R,M).
R

Proof. Take the homology on both sides, as 0 = 0 and by Proposition 6.10, d o €, = 0, we get a
map €, : M @ \" R — H, (M, R). Itis sufficient to see that m@zy A+ —mz@yA--+ —my®
xA--- gets sent to an element in the image of d. It turns out that — )" _sgn(o)o(m®@z@y®---)

where ¢ is such that ¢(1) < ¢(2) is in the preimage of d, so the map is well defined. O
We can also construct a map going the other way.

Lemma 6.12. Let 7, : C,(R,M) —» M Qg Q’}i‘k be given by, m,(M @ r Q@ --- @ 1y) = M

dT1dT2 . d’l"n. Then Ty © d=0.

Proof. mpd(m®@ri®---@ry) = mp(mri®@re®- - @1, —mrira@- - Qrp+-- -+ (=1)"r,mer; ®
@ Tp_1) = mrydry ... dry, — md(rire) .. dry + mdrid(rars) ..o dry + - 4 remdry Lo dry .
Now apply the derivation property to get

mridrs ...dr, —mridrs...dr, — mrodridrs . ..dr, +mradridrs...dr, + ...

It is clear that all the terms cancel. O

Proposition 6.13. For R a commutative k-algebra and a symmetric bimodule M we have a well defined
map

Tn : Ho(R, M) — M%Q%‘k.
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Proof. This follows from the above Lemma directly. O
Note that 7, is surjective, in fact we can say more than that.
Theorem 6.14. We have =, o €,, = nlid.

Proof. Consider e, (m @ dry ... dry) =m0y (3 ,cq sgn(o)o(m@r @ - @ry)) =

Yopes, SEN(O)Mdre—1(1)dro-1(ay ... dro-1(n) = Y eg SgN(0)%dry ... dry.

The result now follows as |S,,| = n!. O

This shows that if Q C &, then we have that M Qg Q%‘k is a direct summand of H,,(R, M).
(As €,/n! is a section of 7). In the polynomial case the direct summand is in fact the whole
of HH,(R), but for the case of truncated polynomials we only get the zero module as a direct
summand.

By adding an extra condition one can strengthen this result.

Theorem 6.15 (Hochschild-Kostant-Rosenberg). Let R be a smooth k-algebra, then the antisym-

metrisation map €, : Q. — HH,(R) is an isomorphism for all n.

A commutative k-algebra is smooth? if it is flat over k and if for any maximal ideal m of R,
the kernel of the localized map fim : (R®% R),,-1 () — Itm is generated by a regular sequence
in (R ®]€ R)Hil(m).

Note: This also shows that k(z)/(2™) can not be smooth.

7 Deformations

In this section we want to describe an interpretation for H H 2(R). This is based on [4] and [10,
3].

2This definition of smooth and the statement and proof of the HKR theorem come from [9, 101-102]
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7.1 Motivating example

T T
— % —4x? + 3z + 1

Consider a general cubic az® + bx? + cx + d. 10 8

One would expect it to have 3 roots, but if we

ot
T
|

pick the cubic z? then it only has the single root

z = 0. There is a way to fix that, we slightly ’ B
deform the cubic by adding a small term. =57 )
1T 0 1 2 3 4
- —y=x"3 ‘ ‘ ' —y=x"3
o001 | Y = X3 -0.0035x —y =x"3 - 0.0035x

05

0.0005 [

-0.0005

051

-0.001

-0.0015 > . : 1
-0.1 -0.05 0 0.05 0.1 -1 -0.5 0 05 1

The effect of subtracting 0.0035z to x3.

By deforming the cubic by ex for any small value of ¢, the geometry has been changed locally

around = = 0, so that there are now 3 roots, but on a large scale, the geometry is still the same.

7.2 Deformations of algebras

Let R be a k-algebra, we will "deform” it by ‘deforming’ the multiplication. Let rxs = rs+ef(r, s)
be some new multiplication, we want to think of € being small, the way we will do that is by

declaring that €? = 0. One can make this more formal.
Definition 7.1. The dual numbers are kle]/(e?).

Now consider R®y, k[e]/(e?) =2 R@® eR, we want a multiplication on R@® R that can be
thought of as a deformation of R, so set (11 + era)(s1 + €s2) = 1151 + €r152 + erasy + €f(r1, $1).
There is no need to consider a 7455 term as €2 = 0. It follows that f : R®; R — R determines

the new multiplication.
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Definition 7.2. An infinitesimal deformation of R is a k-algebra R ®y, k[e]/(€?) such that rx s = s

mod e.

By the above, an infinitesimal deformation is determined by f : R® R — R, however not

all such functions will give an associative multiplication.

Lemma 7.3. f as above gives an associative multiplication r x s, if f € keré : Hom(R & R, R), where

9 is the Hochschild coboundary map.

Proof. We calculate (r * s) xt and r % (s x t).

(rxs)xt = (rs+ef(r,s))xt =rst+ef(r,s)t + ef(rs,t). We also have r x (s xt) = r x (st +
ef(s,t)) =rst+erf(s,t) + ef(r, st). For these two to be equal we need that f(r, s)t + f(rs,t) =
rf(s,t) + f(r, st). Rearranging we get r f(s,t) — f(rs,t) + f(r, st) — f(r, s)t = 0 which is exactly
the condition that d f = 0. O

Definition 7.4. A infinitesimal deformation is trivial if there exists a k[e]/(¢*) automorphism ¢

of R® k[e]/(€?) such that ¢ = id mod e and the following diagram commutes

2 (

9 (R K[/(2))?

(R® K]/ (€))

Where - is the multiplication with f = 0.
Definition 7.5. A k-algebra R is rigid if there are no non-trivial deformations.

Assume f is a trivial deformation, then there exists ¢ such that ¢(ry + ers)d(s; + €s2) =
&((r1 + erg) * (s1 + €s2)). Expanding the LHS, we get,
P(r1 + er2)d(s1 + €s2) = (r1 + €d1(r1) + erz)(s1 + ed1(s1) + €s2) = r1s1 + er1gu(s1) + erisy +
€p1(r1)s1 + erasi.
Expanding the RHS we get
d(ris1 +e(rise +r2s1) +ef(r1,51)) = ris1 +edi(ris1) + e(risz +ras1) + ef (r1, 51).
Equating the two we get
f(ri,s1) = rid1(s1) — ¢1(ris1) + d1(r1)s1 = (5¢1)(r1, 81).

This, along with Lemma 7.3 proves;
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Theorem 7.6. H H?(R) is the group of all infinitesimal deformations of R, quotiented by trivial defor-

mations.
Corollary 7.7. If HH?*(R) = 0 then R is rigid.

WRONG!!! As an example, consider R = k|z, y], by Section 4.2 we have that H H? (k[z, y]) =
k[z,y]. So every polynomial p € k[z,y] defines a deformation. The multiplication is f x, g =
fa+ep(f,9)

We also know by Section 3.3 that HH?(k[z]/(z")) = k[z]/(z"~!) (as a module). So in the case
when n = 3, we have the deformed multiplication given by,

o Ilxat =21t

o v X1 =a?

o v %1% =¢c(ax +b)

o 22 %1% = e(ax® + bx)

Where * is k[e]/(€?)-linear and commutative. This gives us k[z, €]/(e?, 23 — e(a + bx)) instead of
k[z]/(x3). Note that this is very similar to the motivational example given at the beginning of
this section. In general we have that k[z,€]/(e?, 2™ — €f) is a deformation of k[z]/(z") for f a

polynomial of degree n — 2.

7.3 Higher order deformations

The infinitesimal deformations that were dealt with above were of the form rxs = rs+efi(r, s),

they are also known as first order deformations.

Definition 7.8. A n'" order deformation is an associative multiplication on R ® k[e]/(e"*1) of the

formrxs=rs+ Y . € fi(r,s), where fi: RQ R — R.

Given a first order deformation we want to know when it extends to a second order one.
(Note: changing €2 = 0 to €3 = 0 and adding €? f»(r, s) to the multiplication does not change the
associativity for the e terms).

Letrxs = rs+ efi(r,s) + €2fa(r,s), then (r xs) xt = (rs + efi(r,s) + €2 fa(r,s)) xt = rst +

efi(r, )t + €2 fa(r, s)t + efi(rs,t) + €2 f1(f1(r,s),t) + €2 f2(rs,t). We also have that r x (s x t) =
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rx(sttefi(s,t)+€ fa(s,t)) = rstter fi(s,t)+e*r fa(s,t) +efir, st)+€ fi(r, fi(s, b)) +€ fa(r, st).
As noted above the € terms already satisfy the associativity condition, so for this multiplication
to be associative we require r fo(s, t)— fo(rs, t)+ fa(r, st)— fa(r, s)t = fi(f1(r,s),t)—fi(r, fi(s,1)).
The LHS is ¢ f2 so fo exists if the RHS is a Hochschild coboundary. If we set h(rq,r2,73) =
fi(fi(ri,m2),r3) — f1(r1, fi(re,73)) then one can check that §» = 0, this follows by using the
properties of f; (use the fact that 6 f; = 0).

This shows that we can use any first order deformation of R to get an element of H H?(R), this
element is called an obstruction. If this obstruction is zero then this deformation extends to a

second order one. We have therefore proved.
Theorem 7.9. If HH?(R) = 0 then all first order deformations extend to second order ones.

We can go further and consider extending an n'" order deformation.
Given an nt" order deformation Yo €' f;, where fo(r,s) = rs, we want to know when it ex-
tends to a (n + 1)** order deformation.
Assume it extends to 37" ¢ f; we need this to be associative, as before we only need to con-
sider the terms with coefficient €"*!. After doing the calculations and rearranging we get
Ofn+1 = F(f1,..., fn) where F is some function. One can show that 6F = 0, for a proof
see [4, Section 5]. This shows that again we have that an obstruction to extending an n‘" order

deformation to a (n + 1)*" one is a class in HH?(R).

For a general introduction on infinitesimal deformations and deformations in general see [3].
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A Kozsul Exactness Proof

Proof of Theorem 4.3. 1t is clear that the image of d : R™ — Ris (x1,...,2,)M. This gives us the
result for degree 0. For x = z;, we have 0 — R Iy R — 0, and as we have assumed that z; is
not a zero divisor, the x; action on R is injective. This is the base case.
Now assume that K (x1, ..., z,_1) satisfies the induction assumption.

Consider K (z1,...,Tn—1) ® K(z,) this is the double complex

O%R@R%(/\"an 1)®R (/\”3Rn 1)@3*%..
(-1 @a, e e,
0—>R®R&>(/\"2R" 1)®R (/\MRn 1)@3%...
—— (MR @R L (AR @R L Ro R —— 0
l(—l)zmn J—l@xn Jl@xn
— (MR R L (AR @R L Re R —— 0

Above and from now on in this proof all tensor products are over R, d’ is the map from
K(z1,...,2,-1). The homology of this double complex is the homology of the left-right di-
agonals (/\i R"’l) ®R® (/\iJrl R”’1> ® R. (It is easy to show that left-right diagonals form a
complex, the signs of the vertical maps are chosen for this reason).

Claim: the homology of the double complex is the homology of K (x1,...,zy).

Consider N'(R" '@®R) = &; N7 R" QN R = (N"'R" QRSN R*')®R. Under
this identification, the first ® R has basis dx,, and the second one has basis 1. The map
NT'TRHORBN RH®R — (N>R QRN ' R* 1) ® Ris given by
(d®1,(-1)"' @z, +d @1). Now this is the same as the map d from K (x1,...,,), as the first
d ®1and (-1)""! ® x, is for when the i-form contains dz,, and the second d’ ® 1 is for when
the i-form does not contain dzx,,.

Now in general if the rows are exact, then the homology is zero. To see this consider the sub
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diagram

hit11 hi
- — Cit1a ;

Vi+1,1 Vi, 1

hit20 hit1,0
Cit20 — Cit1p0

Where h; are the horizontal maps and v; are the vertical maps, note that the squares anticom-
mute. Now consider (¢; 1, ¢i+1,0) and assume this is sent to zero, i.e. (h;1(ci1),vi1(ci1) +
hit1,0(cit1,0) = (0,0). As the rows are exact, we can lift ¢; ; to e;41,1. Then we have v; 1(¢; 1) +
hz‘+1,0(0i+1,0) = Ui,l(hi+1,1(6i+1,1)) + hi+1(ci+1,0) = hi+1,0(ci+1,0 - Ui,l(ei+1,1)) by anticommut-
ing squares. So we can again lift to e, o such that h;+2 9(ei42,0) + vi,1(€i41,1) = ¢it1,0. This

shows that (61'_;,_171, 61'_;,_270) is a lift of (Ci71, Ci+170).

By assumption K (z1, ..., %,—1) is exact everywhere apart from degree 0. So we get that K (z1, . ..

is exact everywhere apart from degree 1 and 0. For degree 0, the image is clearly generated by
(x1,...,2y,). So we only need to show exactness at degree 1.
The proof of exactness above can be adapted to show that if the rows are exact apart from the

end, then one can replace the final term in the rows by the cokernel, and that the degree 1 ho-

mology depends on the final vertical map only. In our case we have R/(z1,...,2,_1)R =%
R/(x1,...,2,-1)R, by the fact that (z1,...,z,) is a regular sequence, this map is injective, so
the degree 1 homology is 0. O

One can adapt the proof of the exactness of the double complex if the rows are exact to a

general bounded bicomplex. The same result holds for columns.
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