
LOWER BOUNDS FOR STEKLOV EIGENFUNCTIONS

JEFFREY GALKOWSKI AND JOHN A. TOTH

Abstract. Let (Ω, g) be a compact, analytic Riemannian manifold with analytic boundary
∂Ω = M. We give L2-lower bounds for Steklov eigenfunctions and their restrictions to
interior hypersurfaces H ⊂ Ω◦ in a geometrically defined neighborhood of M . Our results are
optimal in the entire geometric neighborhood and complement the results on eigenfunction
upper bounds in [GT19].

1. Introduction

Let (Ω, g) be an n+ 1-dimensional, compact C∞ Riemannian manifold with boundary M
and corresponding unit exterior normal ν. By some abuse of notation, we also let ν denote
a smooth vector field extension and γM : C0(Ω)→ C0(M) be the boundary restriction map.
Let D : C∞(M)→ C∞(M) be the associated Dirichlet-to-Neumann (DtN) operator defined
by

Df := γM∂νu (1.1)

where u solves the Dirichlet problem

∆gu(x) = 0, x ∈ Ω, u(q) = f(q), q ∈M. (1.2)

The operator D is an ellptic, first order, self-adjoint pseudodifferential operator (see for
example [Tay11, Section 7.11]) with an L2-normalized basis of eigenfunctions ϕj; j = 1, 2, ....
It is useful to work in the semiclasscial setting from the outset. Choosing h−1 ∈ SpecD, the
corresponding eigenfunction ϕh then satisfies the semiclassical eigenfunction equation

hDϕh = ϕh.

The harmonic extension, uh ∈ C∞(Ω), of a DtN eigenfunction ϕh is called a Steklov eigen-
function. Throughout the article, we will use the notation uh for these Steklov eigenfunctions
which have L2 normalized boundary restriction.

There has been a substantial amount of recent work devoted to the study of the asymptotic
behaviour of the DtN eigenvalues and both DtN and Steklov eigenfunctions, including the
asymptotics of eigenfunction nodal sets (see for example [BL15, GP17, GPPS14, HL01,
PST15, Sha71, SWZ16, Zel15, Zhu15, Zhu16] and references therein).

For large eigenvalues, Steklov eigenfunctions possess both high oscillation inherited from
the boundary DtN eigenfunctions and very sharp decay into the interior of Ω. As a conse-
quence, even though Steklov eigenfunctions decay rapidly, the oscillation implies that the
nodal sets have intricate structure. It has been conjectured [GP17] that the analogue of Yau’s
conjecture [Yau82, Yau93] for nodal volumes holds in the Steklov case. This was recently
proved for real-analytic Riemann surfaces in [PST15]. In the case of smooth manifolds, the
recent work [Dec21b, Dec21a] gives the best available polynomial upper and lower bounds
on the nodal volume. Despite these bounds on the nodal volume, it is likely that a typical
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high energy Steklov eigenfunction exhibits regions of fixed sign with inner radius uniformly
bounded from below [BG20].

The question of decay of Steklov eigenfunctions into the interior of M when (M, g) is real
analytic was first raised by Hislop–Lutzer [HL01] where they conjecture that the Steklov
eigenfunctions decay into the interior as e−d(x,∂Ω)/h. In the special case where dim Ω = 2 and
Ω is analytic, exponential decay with respect to d(x, ∂Ω) was proved in [PST15], the case of
general dimension and analytic Ω was handled in [GT19] where the authors prove that

sup
x∈Ω∂(ε0)

|∂αxuh(x)|ed(x,∂Ω)−Csup(Ω)d2(x,∂Ω)/h ≤ Cα (1.3)

where Ω∂(ε0) is a tubular neighbourhood of the boundary of width ε0 = ε0(Ω,M, g) > 0
and Csup is a constant depending on the second fundamental form of the boundary. Here,
ε0 > 0 is an h-independent positive constant that depends on the analyticity properties of
the boundary and is difficult to quantify explicitly.

In this article, we consider the complementary question of lower bounds on Steklov eigen-
functions. As in the case of [GT19], we restrict our attention to the case of analytic Ω
and M . Our first result is a lower bound for L2 restrictions of eigenfunctions in a small
ε0-neighbourhood of the boundary. In analogy with (1.3) we prove

Theorem 1. There exist a neighbourhood, Ω∂(ε0) of M = ∂Ω and constants Cj(ε0) > 0; j =
1, 2 such that for any connected component, N , of the boundary and any ε > 0 there are
C > 0 and h0 > 0 such that for h ∈ (0, h0(ε)] and 0 ≤ t ≤ ε0, and Ht := {x : d(x,N) = t},

et+C1(ε0)t2/h‖uh‖L2(Ht) ≥ Ce−C2(ε0) ε/h‖uh‖L2(N) − C1e
−1/(hC1)‖uh‖L2(M).

Here ε0 = ε0(M,Ω, g) > 0 is a possibly small constant (but independent of h) that is
the same in both the upper bounds (1.3) and lower bounds in Theorem 1 and is difficult to
quantify precisely.

Our second result extends eigenfunction lower bounds to an explicit geometric neighbour-
hood of the boundary. Specifically, we use Carleman estimates to “bootstrap” the local
result in Theorem 1 to the full geometric neighbourhood of the boundary.

To define the geometric tubular neighbourhood more precisely, let N be a connected
component of ∂Ω. We consider the map ϕN : N × [0, r)→ Ω given by

ϕN(x, r) = expx(−rν), r ∈ [0, r0), x ∈ N, (1.4)

where exp is the Riemannian exponential map induced by the metric g and −ν is the unit
interior normal to ∂Ω. By the collar neighbourhood theorem, for sufficiently small r0 > 0.
the map ϕN is a diffeomorphism onto its image ϕN([0, r0)). We let rmax,N be the maximal
choice of r0 with this property and set

ΩN(rmax,N) := ϕ([0, rmax,N)). (1.5)

We refer to ΩN(rmax,N) as the geometric neighbourhood of the boundary component N . In
the following, we sometimes abuse notation and just write ΩN for ΩN(rmax,N). See Figure 2
for a description of these domains for the annulus.

Theorem 2. Let Ω be an analytic manifold with analytic boundary, M = ∂Ω, and ΩN ⊂ Ω
(as in (1.5)) be the g Fermi neighbourhood of the connected component, N , of M and 0 <
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t < rmax,N . Then, for any tubular neighbourhood, UHt, of Ht := ϕN(N, t) and ε > 0, there
are h0 > 0 and C > 0 such that for h ∈ (0, h0],

‖eψN (t)/h uh‖L2(UHt )
≥ Ce−ε/h(‖uh‖L2(N) − e−1/Ch‖uh‖L2(M)),

where

ψN(xn+1) =

∫ xn+1

0

e
∫ s
0 Qsup,N (t)dtds, Qsup,N(t) := sup{Q(t, x′, ξ′) : x′ ∈ N, |ξ′|gt(x′) = 1},

gt is the metric induced on Ht, and Q(t, x′, ξ′) is the second fundamental form on Ht induced
by the inward pointing normal.

The examples of the disk, cylinder, and annulus in Sections 2.1-2.3 show that Theorem 2 is
optimal.

Remark 1. Notice that, although the right hand sides of the estimates in Theorems 1 and 2
have an error e−1/Ch with a constant C depending on the analyticity properties of Ω and M ,
these do not cause losses in the estimates when ‖uh‖L2(N) � e−1/Ch‖uh|M‖L2 . Since there
are finitely many boundary components, there are always boundary components where this
is the case.

Furthermore, we may replace N in Theorem 2 by a union of boundary components,
Ñ := ∪Lj=1Nj by applying Theorem 2 for each Nj if we replace ψN by ψÑ .

By Taylor expansion at the boundary M = {xn+1 = 0},

ψN(xn+1) = xn+1 +
Qsup,N(0)

2
x2
n+1 +O(x3

n+1), (1.6)

where Qsup,N(0) is the maximum of the second fundamental form along N ⊂ ∂Ω. Thus, near
the boundary, eigenfunction decay is given to first order by xn+1 = d(x,M). However, when
the boundary is strictly convex, the quadratic correction in (1.6) is actually negative and so
the rate of decay in our estimate may be faster than e−d(x,M)/h. The simple example of the
disc (see section 2.1) shows that this extra decay does occur. Likewise, when a boundary
component is strictly concave, the quadratic correction is positive, producing a sub-linear
rate of decay. This behavior can be seen in the example of the annulus (see section 2.3).

Our final results concerns lower bounds of the L2-restriction of eigenfunciton Cauchy data
along H ⊂ Ω∂(rmax,∂Ω). We recall that given a hypersurface H ⊂ Ω, the Cauchy data along
H is the pair

CDH(h) := (uh|H , h∂νuh|H).

The lower bound in Theorem 2 combined with a potential layer formula in the tube UH(ε)
allows us prove goodness for CDH(h) for hypersurfaces H potentially far inside Ω.

Theorem 3. Let Ω be an analytic manifold with analytic boundary, M = ∂Ω and Ht :=
ϕ∂Ω(∂Ω, t). Then for 0 < t < rmax,∂Ω and ε > 0 there are C(ε) > 0 and h0(ε) > 0 such that
for h ∈ (0, h0(ε)],

eψ∂Ω(t)/h
(
‖uh‖L2(Ht) + ‖h∂νuh‖L2(Ht)

)
≥ C(ε)e−ε/h‖uh‖L2(M).

Theorems 2 and 3 are optimal in a sense made precise in the next section.
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(a) uσ20,1 (b) uσ8,2

Figure 1. Steklov eigenfunctions with σ ∼ 20 on the annulus with r0 = .4.
The black line shows the lower bound predicted by Theorem 2. The labels σk,j
are as in (2.3).

1.1. Organization of the paper. The proof of Theorem 1 follows first from the existence
of a parametrix for the Poisson kernel modulo analytic errors, and second, from the con-
struction of an approximate inverse for this operator valid at frequencies . h−1. However,
the parametrix construction is only valid in a collar of radius ε0 = ε0(M,Ω, g) that while
h-independent, is possibly smaller than rmax,N . The proof of Theorem 1 is taken up in section
3

The proof of Theorem 2 is given in section 4. Here, we use the local result in Theorem 1
as a control estimate and use Carleman estimates to extend the lower bound in Ω∂(ε0) to
the full geometric neighbourhood ΩN(rmax,N) of the boundary. Finally Section 5 applies a
layer potential formula together with Theorem 2 to prove Theorem 3.

Acknowledgements: J.G. is grateful to the EPSRC for support under Early Career
Fellowhip EP/V001760/1. J.T. was partially supported by NSERC Discovery Grant #
OGP0170280 and by the French National Research Agency project Gerasic-ANR- 13-BS01-
0007-0.

2. Examples

2.1. The Disk. Let Ω = B(0, R) ⊂ R2. Then the Steklov eigenvalues are precisely σ =
0, 1

R
, 2
R
. . . with corresponding Steklov eigenfunctions given by

u±k =
1√

2πRRk
rke±ikθ, σ =

k

R
. (2.1)

In particular, letting h = σ−1 = k−1R,

u±k =
1√
2πR

e[R log(1−(R−r)/R))]/heiθR/h.
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Now, we recall that the metric in Fermi normal coordinates relative to ∂B(0, R) (i.e. with
x2 = R− r) is given by

ξ2
2 +

1

(R− x2)2
ξ2
θ ,

and hence, the metric induced on Ht and second fundamental form on Ht are given by

|ξθ|2gt =
ξ2
θ

(R− t)2
, Q(t, θ, ξθ) =

ξ2
θ

(R− t)3
.

In particular,

Qsup(t) =
1

R− t
,

and therefore,

ψ(x2) =

∫ x2

0

e
∫ s
0 Qsup(t)dtds = R log(1− x2

R
).

Undoing, the change of variables and applying Theorem 3 to obtain a lower bound, we
have that

C(ε)e−ε/h ≤ eR log(1−R−r0
R

)/h[‖u±k ‖L2(r=r0)) + ‖h∂ru±k ‖L2(r=r0)] ≤ C.

In particular, the exponential weight in Theorems 2 and 3 is optimal.
The case of spheres in higher dimensions is nearly identical if we replace e±ikθ by a spherical

harmonic.

2.2. Cylinders. Let (M, g) be a real analytic manifold of dimension n without boundary
and Ω = (−1, 1)s ×Mx with metric ds2 + g(x). Then

∆Ω = ∂2
s + ∆M .

Let ϕk be an orthonormal basis for L2(M) with

(−∆M − λ2
k)ϕk = 0.

Then the Steklov eigenfunctions are given by

uh(s, x) =
cosh(λks)

cosh(λk)
ϕk(x), vh(x, s) =

sinh(λkt)

sinh(λk)
ϕk(x)

with Steklov eigenvalues σk = λk tanh(λk) and σ′k = λk coth(λk) respectively. Notice that

cosh(x) =
1

2
e|x| +O(e−|x|), sinh(x) =

sgn(x)

2
e|x| +O(e−|x|),

and
σk = λk(1 +O(e−λk)).

It is easy to see thatQsup(s) ≡ 0 and hence, takingNL = {s = −1}, we have ψNL(s) = 1+s,
and takingNR = {s = 1}, we have ψNR = 1−s. Combining the lower bounds from Theorem 2
applied with NL and NR, we obtain optimal lower bounds on M . Similarly, we obtain optimal
lower bounds with an application of Theorem 3, but this time the hypersurface is given by
Ht = {s = −1 + t} t {s = 1− t} and the Theorem is valid for 0 < t < 1.

Remark 2. Notice that a cylinder has the unusual feature that there are Steklov eigen-
functions with non-negligible mass on multiple boundary components. This is why one must
apply Theorem 2 twice (once from the left hypersurface and once from the right) to obtain
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(a) Ω∂(ε). (b) Ω∂B(0,1). (c) Ω∂B(0,r0). (d) Ω∂Ω.

Figure 2. Regions of applicability for Theorems 1, 2, and 3 for Ω = B(0, 1)\
B(0, r0). The relevant regions are shaded in gray with dashed lines not included
in the region.

the correct lower bounds.

2.3. The Annulus. Now, consider B(0, 1) \ B(0, r0) ⊂ R2. Then a simple computation
shows that the Steklov eigenvalues are the roots of

pk(σ) = σ2 − σk
(

1 + r0

r0

)(
1 + r2k

0

1− r2k
0

)
+
k2

r0

, k = 0, 1, . . .

with corresponding eigenfunctions

u±σ (r, θ) = Ck,σe
±ikθ

(
rk +

k − σ
k + σ

r−k
)
. (2.2)

See Figure 1 for graphs of two such eigenfunctions.
It is easy to show that the roots of pn(σ) have

σk,1 = k +O(kr2k
0 ), σk,2 =

k

r0

+O(kr2k
0 ). (2.3)

Then,

u±σk,1 =
1√
2π
e±ikθ(rk +O(r2k

0 )r−k), u±σk,2 =
1√

2πr0

rk0e
±ikθ(r−k +O(1)rk).

The case of uσk,1 is identical to that for the disk when r > r0 + ε, so we focus on uσk,2 . Let

h = σ−1
k,2 = r0k

−1 +O(e−ck). Then, for r < 1− ε,

|u±σk,2(r, θ)| ≥ 1√
2πr0

e−r0 log[1+(r−r0)/r0]/h(1 +O(e−c/h)).

Using exactly the same computation as for the interior of the disk, one again sees that the
lower bound in Theorem 2 is optimal for uσk,2 . Indeed, ‖uσk,2‖L2(∂B(0,r0)) = 1 + e−c/h and
ψ(r) = r0 log(1 + (r − r0)/r0).

3. Lower bounds sufficiently close to the boundary

The main goal of this section is the proof of Theorem 1. As we already indicated in the
introduction, here ε0 = ε0(M,Ω, g) > 0 is a possibly small constant that depends on the
analyticity properties of M. As such, it is difficult to quantify.



LOWER BOUNDS FOR STEKLOV EIGENFUNCTIONS 7

3.1. Notation for pseudodifferential operators. Below, we will need notation for semi-
classical pseudodifferential operators. We say that a ∈ C∞(T ∗M) is a symbol of order k,
and write a ∈ Sk(T ∗M), if

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉k−|β|, 〈ξ〉 = (1 + |ξ|2)1/2.

Note that, a may implicitly depend on the small parameter h. We also define the set
of semiclassical pseudodifferential operators of order k, Ψk(M) as in [Zwo12, Chapter 14]
or [DZ19, Appendix E]. Note, in particular, that semiclassical pseudodifferential operators
of order −∞ are smoothing, but their norms do not vanish as h → 0. We also define the
elliptic set of a pseudodifferential operator as in [DZ19, Definition E.31].

3.2. Analytic symbols. In this section, we will need the notion of a classical analytic
symbol, which we recall from [Sjö82] (see also [SU16]). We say that a is classical analytic
of order k and write a ∈ Skcl,a if there exist C0 > 0 and functions aj analytic on a fixed
neigbhorhood of T ∗M \ {0}, homogeneous degree j, satisfying∣∣∣aj(x, ξ|ξ|)∣∣∣ ≤ Cj+1

0 (j + 1)!,

and for every C1 > 0 large enough, there is C2 > 0 such that∣∣∣a(x, ξ)−
∑

0≤j≤|ξ|/C1

ak−j(x, ξ)
∣∣∣ ≤ C2e

−|ξ|/C2 , |ξ| ≥ 1.

The key fact that we will use about such symbols is that, after rescaling ξ → ξ/h, it is
possible to deform contours away from |ξ| = 0 modulo errors of order e−1/Ch.

We also recall the notion of a semiclassical, classical analytic symbol. We say that
a ∈ Skh,cl,a provided there are aj ∈ Sk−j(T ∗M), h independent and analytic in a conic
neighborhood of T ∗M , and C0, C > 0 such that

∂l1x ∂
l2
ξ ∂̄(x,ξ)a = Ol1,l2(e−〈ξ〉/Ch),∣∣∣a− ∑

0≤j≤|ξ|/C

hjaj(x, ξ)
∣∣∣ ≤ Ce−〈ξ〉/Ch, |aj| ≤ C0C

jj!〈ξ〉k−j.

Contours can, again modulo errors of the form e−1/Ch, be readily deformed when this type
of symbol is involved.

3.3. A geometric FBI transform. We also recall a particular Fourier-Bros-Iagolnltzer
(FBI) transform on M . Define the operator T : C∞(M)→ C∞(M) by

Tu(x, ξ) =
1

(2πh)3n/4

∫
ei(〈exp−1

y (x),ξ〉+i 〈ξ〉
2
d(x,y)2)/ha(x, ξ, y)u(y)dy, (3.1)

where a ∈ Sn/4h,cla, which is uniformly bounded from L2(M)→ L2(T ∗M), and has a left inverse

S : L2(T ∗M)→ L2(M) given by

Sv(x) =
1

(2πh)3n/4

∫
e−i(〈exp−1

x (y),ξ〉−i 〈ξ〉
2
d(x,y)2)/hb(x, ξ, y)v(x, ξ)dxdξ, (3.2)

for some b ∈ S
n/4
h,cla, which is also uniformly bounded. As in [GT19, Theorem 2], the FBI

transform and its left inverse will be useful when localizing modulo exponential errors.
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3.4. Preliminaries on the Poisson Operator. Let P : C∞(∂Ω)→ Cω(Ω) be a parametrix
for the Poisson operator modulo analytic errors of the form

[Pf ](x) =
1

(2π)n

∫
ei(ψ(xn+1,x′,ξ′)−〈y′,ξ′〉)a(xn+1, x

′, ξ′)f(y′)dy′dξ′. (3.3)

that is, there is Ka an operator with analytic kernel such that

∆g(P +Ka) = 0 in Ω (P +Ka)|∂Ω = f.

Such an operator exists by [SU16] (see also [Leb18, Ste14, Zel12, Gui97]). In addition, a is
classical analytic of order 0 and ψ ∈ C∞([0, ε)× T ∗M \ {0}) satisfies,

∂xn+1ψ − i
√
r(x, ∂x′ψ) = 0, ψ(0, x′, ξ′) = 〈x′, ξ′〉, (3.4)

where, in Fermi normal coordinates, the symbol of −∆g is ξ2
n + r(x, ξ′).

Let t > 0 and define the smooth hypersurface

Ht := {(x′, t) | x′ ∈ ∂Ω}

In the following, we identify C∞(∂Ω) with C∞(Ht) under the diffeomorphism ∂Ω 3 x′ 7→
(x′, t) ∈ Ht.

Let ϕ ∈ C∞c (0,∞) with ϕ(x) ≡ 1 near {x ≡ 1} consider the family of operators Eh :
L2(∂Ω)→ L2(∂Ω) given by

[Ehu](x′) =
1

(2πh)n

∫
ei(〈x

′,ξ′〉−ψ(t,y′,ξ′))/hϕ(|ξ′|g(x′))u(y′)dy′dξ′. (3.5)

Let also γH denote the restriction operator from Ω to {Ht}.

Remark 3. Note that, because we include the compactly supported cutoff ϕ in the am-
plitude of the integral defining Eh, Eh is well-defined as an operator on L2(∂Ω). It would,
however, be possible to define a left inverse for P acting on sufficiently analytic functions as
in e.g. [Gui97], but this is not necessary here.

Lemma 3.1. Let T and S be the FBI transform and its left inverse from (3.1) and (3.2).There
is ε0 > 0 such that for 0 < t < ε0, AH := EhγHPSϕ(|ξ′|g)T ∈ Ψ−∞(∂Ω) . Moreover, A is
elliptic on

{(x′, ξ′) : |ξ′|g(0,x′) = 1}.

Proof. We start by computing the kernel of EhγHPSϕ(|η′|g) :

[EhγHPSϕ(|η′|g)](x′, y′, η′)

=
1

(2πh)2n+3n/4

∫
ei(〈x

′,ξ′〉−ψ(t,z′,ξ′)+ψ(t,z′,ω′)−〈s′,ω′〉−〈exp−1
s′ (y′),η′〉+ i〈η′〉

2
d(y′,s′)2)/h

a(t, z′, ω′/h)ϕ(|ξ′|g(x′))b(y′, η′, s′)ϕ(|η′|g(y′))ds′dω′dz′dξ′.

We start by formally computing the critical points of the phase in z′, ω′, s′. Let

Φ = 〈x′, ξ′〉 − ψ(t, z′, ξ′) + ψ(t, z′, ω′)− 〈s′, ω′〉 − 〈exp−1
s′ (y′), η′〉+

i〈η′〉
2

d(y′, s′)2.
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Then, using Fermi normal coordinates centered around y′ in the s′-variables to compute

∂z′Φ = ∂z′(ψ(t, z′, ω′)− ψ(t, z′, ξ′)), ∂ω′Φ = ∂ω′ψ(t, z′, ω′)− s′,
∂s′Φ = η′ − ω′ + i〈ξ′〉(s′ − y′).

Now, observe that (3.4) implies that

∂2
(z′,ω′,s′)Φ =

0 I 0
I 0 −I
0 −I i〈η′〉

+

O(t) O(t) 0
O(t) O(t) 0

0 0 0

 (3.6)

and hence that the phase is non-degenerate for t small. Moreover, by Taylor expansion,

∂z′Φ = (I + t A(t, z′, ω′, ξ′))(ω′ − ξ′),

for some A ∈ C∞. In particular, denoting the critical points by (ω′c, z
′
c, s
′
c), we have ω′c = ξ′

for t small enough and hence s′c = y′ + i〈η′〉−1(η′ − ξ′), and z′c = s′c +O(t). Thus,

Φ(x, ξ′, z′c, ω
′
c, s
′
c, y
′, η′) = 〈x′, ξ′〉+ 〈s′c, η′ − ξ′〉 − 〈y′, η′〉+

i〈η′〉
2

d(y′, s′c)
2

= 〈x′ − y′, ξ′〉+
i

2〈η′〉
(ξ′ − η′)2.

.
We will need to deform the contour to a good contour in order to perform complex station-

ary phase [Sjö82, Theorem 2.8]. However, before doing this, we must show that the region
near ω′ = 0 can be neglected. Since the integrand is supported on |η′| > c > 0, this can be
done by deforming the contour in s′ alone by s′ 7→ s′ + iδ〈η′〉−1(ω′ − η′).

Next, we need to find a good contour for the phase. That is, we want to find a contour,
Γ, on which the critical point, ρc = (ω′c, z

′
c, s
′
c) lies and Im Φ|Γ(ρ) ≥ c|ρ− ρc|2. To do this, we

use the Hessian (3.6) to choose a contour such that

Im 〈∂2
(z′,ω′,s′)Φ|ρc v, v〉 ≥ c|v|2, v = ρ− ρc, ρ ∈ Γ.

For this, let χ ∈ C∞c (R; [0, 1]) with χ ≡ 1 near 0 and deform the contour to Γ1, with Γr
defined for r ∈ [0, 1] by

Γr : (z′, ω′, s′) 7→
(
z′+r(zc+

iδω′

〈ω′〉
), ω′+ξ′+irδz′, s′+y′+ir〈η′〉−1(η′−ξ′)χ(δ−1〈η′〉−1|η′−ξ′|)

+ irδ(
η′ − ξ′

|η′ − ξ′|
(1− χ(δ−1〈η′〉−1|η′ − ξ′|))

)
.

First, note that for |ω′| � 1, r ∈ [0, 1], Im Φ|Γr ≥ c|ω′|. Thus, the terms coming from infinity
in ω′ vanish and the contour deformation from Γ0 = R3n to Γ1 is justified.

Moreover, for |ξ′ − η′| ≤ δ, the phase satisfies

Φ|Γ1 = 〈x′ − y′, ξ′〉+
i

2〈η′〉
(ξ′ − η′)2 + 〈z′ + iδω′

〈ω〉
, ω′ + iδz′〉+ 〈s′, ω′ + iδz〉+ i

〈η′〉|s′|2

2

+O(t(|ω′ + iδz′|2 + |z′ + iδω′

〈ω′〉
|2)),
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and for |ξ′ − η′| ≥ δ, Im Φ|Γ1 ≥ cδ. In particular, for t� δ, Γ1 is a good contour for Φ and
we may apply the method of analytic stationary phase in (z′, ω′, w′) to obtain

[EhγHPSϕ(|η′|g)](x′, y′, η′)

=
1

(2πh)n+n
4

∫
e
i[〈x′−y′,ξ′〉+ i

2〈η′〉 (ξ
′−η′)2]/h

(a(t, z′c, ξ
′/h)ϕ(|ξ′|g(x′))ϕ(|η′|g(x′))b̄(y′, η′, w′c)

+O(h)C∞c )dξ′ +O(e−C/h).

Here, we crucially use that a(t, z′, ω′/h) is uniformly bounded with all derivatives when
|ω|′ > c > 0.

Finally, we precompose with T to obtain the phase

Φ̃ = 〈x′ − w′, ξ′〉+
i

2〈η′〉
(ξ′ − η′)2 +

i〈η′〉
2

(w′ − y′)2 + 〈w′ − y′, η′〉

and, using that R2n
(w′,η′) is a good contour, we may perform (analytic) stationary phase in

w′, η′ to obtain

[EhγHPSϕ(|ξ|g)T ](x′, y′) =
1

(2πh)n

∫
ei[〈x

′−y′,ξ′〉]/h ã(x′, y′, ξ) dξ′ +O(h∞)C∞ ,

where ã ∈ C∞c and |ã(x′, x′, ξ′)| > c > 0 on |ξ′|g = 1. In particular, EhγHPSϕ(|ξ′|g)T is a
semiclassical pseudodifferential operator of order zero which is elliptic as claimed. �

3.5. Lower bounds in a fixed non-geometric neighborhood: Proof of Theorem 1.

Proof. Recall from [GT19, Theorem 2] that, with T and S as in (3.1) and (3.2) respectively,
for ϕ ∈ C∞c ((0,∞)) with ϕ ≡ 1 near 1,

u|∂Ω = Sϕ(|ξ′|g)Tu|∂Ω +O(e−C/h)L2 .

Next,

u|H = γH(P +Ka)u|∂Ω = γH(P +Ka)Sϕ(|ξ′|g)Tu|∂Ω +O(e−C/h)L2 .

Now, we have

KaSϕ(|ξ′|g)T

=
1

(2πh)3n/2

∫
Ka(x

′, w)e
i
h

(〈exp−1
z′ (w′),ζ′〉+〈exp−1

y′ (w′),ζ′〉+ i
2
d(w′,z′)2+ i

2
d(y′,z′))

ϕ(|ζ ′|g(z′))dz′dζ ′dw′,

Since Ka is analytic, we may deforming the contour in w′ to w′+iδζ ′, and use that |ζ ′| > c > 0
to obtain

KaSϕ(|ξ′|g)T = O(e−C/h)L2→L2 ,

and hence

u|H = γHPSϕ(|ξ′|g)Tu|∂Ω +O(e−C/h)L2 .

Now, note that Eh naturally decomposes into a sum of operators acting on from L2(Nj)→
L2(Nj) where M = tNj and Nj are the connected components of M . We assume that
Ht = ϕN0(N0, t) with ϕN0 as in (1.4) and write the component of Eh acting on N0 as E0

h.
Therefore, with Eh as in (3.5) and ϕ ∈ C∞c (0, 1+ε) with ϕ ≡ 1 near 1, we have by Lemma 3.1

E0
h(u|Ht) = E0

hγHPSϕ(|ξ′|g)Tu|∂Ω = Au|N0 + E0
hO(e−C/h)L2
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where A is a semiclassical pseudodifferential operator on ∂Ω that is elliptic on

{(x′, ξ′) : |ξ′|g(0,x′) = 1}.
In particular,

‖Au|N0‖ ≤ ‖E0
h‖L2→L2(‖u|Ht‖L2(Ht) +O(e−C/h))

≤ Cε sup
x∈Ht,|η|gHt≤1+ε

eImψ(x,η)/h(‖u|Ht‖L2(Ht) +O(e−C/h)L2)

Now, since
WFh(u|∂Ω) ⊂ S∗∂Ω,

and A is elliptic on S∗∂Ω, we have by e.g. [DZ19, Theorem E.33]

‖u‖L2(N0) ≤ Cε‖Au‖L2(N0) +O(h∞)‖u‖L2(N0).

In particular, for h small enough

‖u‖L2(N0) ≤ Cε‖Au‖L2(N0) ≤ Cε sup
x∈Ht,|η′|gHt≤1+ε

eImψ(x,η)/h(‖u|Ht‖L2(Ht) +O(e−C/h)L2).

Therefore, for t small enough, the proof is complete. �

4. Carleman estimates under control assumptions: Proof of Theorem 2

Although the collar neighbourhood U in which the Poisson representation in (3.3) is valid
is fixed independent of h, the size of U is difficult to make precise and could be quite small
since it depends in a complicated fashion on the analyticity properies of (Ω,M, g). Our aim
in the next section is to “bootstrap” the lower bounds in Theorem 1 further into the interior
of Ω. To set notation, we let N be a connected component of ∂Ω and H = ϕN(N, t) with
0 < t < rmax,N and ϕN as in (1.4).

Proof. Let (x′, xn+1) : ΩN → Rn×R be the Fermi coordinates above adapted to the boundary
component N = {xn+1 = 0} and let ΩN := {0 ≤ xn+1 < rmax,N} be the maximal Fermi tube
containing the hypersurface Hδ0 = {xn+1 = δ0} with δ0 < rmax,N .

Remark 4. We note here that Fermi neighbourhood ΩN of the boundary depends only
on the geometry of geodesic flow inside Ω and not on the analytic modulus of the data
(∂Ω, H, g). As such, it is often comparatively easy to determine the maximal tube width
δ0 > 0 in Theorem 1.

4.1. Definition of cutoff functions. Let ε > 0 to be chosen small later such that

ε < min(
ε0

4
, δ0, rmax,N ,−δ0), (4.1)

where we recall that Hδ0 = {xn+1 = δ0} ⊂ ΩN(rmax,N) and ε0 = ε0(M,Ω, g) is the radius for
which Theorem 1 holds.

Let χ+
ε ∈ C∞(R; [0, 1]) with

supp ∂χ+
ε ,⊂ {x ∈ ΩN ; 0 < xn+1 < ε}

and
χ+
ε (xn+1) = 1; xn+1 > 2ε, χ+

ε (xn+1) = 0; xn+1 < ε.
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We let χ−ε ∈ C∞(R; [0, 1]) be another cutoff be localized around the hypersurface H =
{xn+1 = δ0} with

supp ∂χ−ε ,⊂ {δ0 − ε < xn+1 < δ0 + ε}
and

χ−ε (xn+1) = 1; xn+1 < δ0 − 2ε, χ−ε (xn+1) = 0; xn+1 > δ0 + 2ε.

Finally, we set

χε(x
′, xn+1) := χ+

ε (xn+1) · χ−ε (xn+1) ∈ C∞0 (R; [0, 1]), (4.2)

where by Leibniz rule it follows that

supp ∂χε ⊂ supp ∂χ+
ε ∪ supp ∂χ−ε . (4.3)

Next, we set

vh := χεe
ψ/huh ∈ C∞0 (ΩN),

where ψ ∈ C∞(ΩN) is a weight function that is defined below. As usual, one then considers
the conjugated operator Pψ(h) := eψ/hP (h)e−ψ/h : C∞0 (ΩN) → C∞0 (ΩN) with principal
symbol

pψ(x, ξ) = p(x, ξ + i∂xψ),

where p(x, ξ) = |ξ|2g. In Fermi coordinates (x′, xn+1) : ΩN → Rn+1,

p(x, ξ) = ξ2
n + g(x, ξ′), g(x, ξ′) = g∂(x

′, ξ′) + 2xn+1κ∂(x, ξ
′) (4.4)

where g is a quadratic form in ξ′. In the Taylor expansion (4.4), g∂ is the dual metric form
on T ∗∂Ω induced from the interior and κ∂(x

′, xn+1 = 0, ξ′) is the second fundamental form
of the boundary.

4.2. Carleman weight. Fix δ > 0. We define the putative weight function to be

ψN(xn+1) =

∫ xn+1

0

e
1
2

∫ s
0 fδ(t)dtds xn+1 ∈ [0, rmax,N ], (4.5)

where fδ ∈ C∞([0, rmax,N ]) and satisfies

δ ≤ fδ(t)− sup
{(x′,ξ′);g(t,x′,ξ′)=1}

∂tg(t, x′, ξ′) ≤ 2δ, (4.6)

so that

(|ψ′N(xn+1)|2)′ = fδ(xn+1) (ψ′N(xn+1))2

≥
(

sup
{(x′,ξ′); g(xn+1,x′,ξ′)=1}

∂xn+1g(xn+1, x
′, ξ′)

)
(ψ′N(xn+1))2 + δ (ψ′N(xn+1))2,

=
(

sup
{(x′,ξ′); g(xn+1,x′,ξ′)=|ψ′N (xn+1)|2}

∂xn+1g(xn+1, x
′, ξ′)

)
+ δ (ψ′N(xn+1))2,

(4.7)
and

∂xn+1ψN |xn+1=0 = 1, ∂2
xn+1ψN |xn+1=0 = 1

2
fδ(0).

The last line in (4.7) follows since g(x, ξ′) is quadratic in the fiber ξ′-variables.
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To show that the function ψN in (4.5) is a legitmate Carleman weight, we compute that
in Fermi coordinates (x′, xn+1) : ΩN(rmax,N)→ Rn × R,

pψN (x, ξ) = (ξn+1 + i∂xn+1ψN)2 + g(x, ξ′)

= ξ2
n+1 + g(x, ξ′)− (∂xn+1ψN)2 + 2iξn+1∂xn+1ψN .

Since ∂xn+1ψN ≥ c > 0 it follows that

Char(pψN )(x, ξ) = {(x, ξ) ∈ T ∗ΩN ; g(x, ξ′) = (∂xn+1ψN)2, ξn+1 = 0} (4.8)

Then, since Re pψN = ξ2
n+1 + g(x, ξ′) − (∂xn+1ψN)2 and Im pψN = 2∂xn+1ψNξn+1, a direct

computation gives

{Re pψN , Im pψN}(x, ξ)
=
{
ξ2
n+1 + g(x, ξ′)− (∂xn+1ψN)2, 2∂xn+1ψNξn+1

}
= 2∂xn+1ψN ·

(
∂xn+1 [(∂xn+1ψN)2]− ∂xn+1g(x, ξ′)

) (x, ξ) ∈ Char pψN . (4.9)

Then, since ∂xn+1ψN ≥ c ≥ 0, it follows from (4.7) and (4.9) that

{Re pψN , Im pψN}(x, ξ) ≥ C1(δ)|∂xn+1ψN |2 ≥ C2(δ) > 0, (x, ξ) ∈ Char(pψN ). (4.10)

Consequently ψN is a legitimate Carleman weight in ΩN(rmax,N) and so, by the subelliptic
Carleman estimates (see e.g. [Zwo12, Theorem 7.5])

‖PψN (h)vh‖2
L2(ΩN ) ≥ Ch ‖vh‖2

H1
h(ΩN ). (4.11)

4.3. Lower bounds: completion of the proof. Since P (h)uh = 0, it follows that PψN (h)vh =
eψN/h[P (h), χε]uh. Since [P (h), χε] is an h-differential operator of order one supported in supp
∂χε, it follows from (4.11) and (4.3), that with Carleman weight ψN(xn+1) in (4.5),

‖eψN/h[P (h), χε]uh‖2
supp ∂χ+

ε
+ ‖eψN/h[P (h), χε]uh‖2

supp ∂χ−ε
≥ Ch ‖eψN/hχεuh‖2

H1
h(ΩN ). (4.12)

Since χε = 1 on the set Γ(δ0, ε) := {2ε < xn+1 < δ0 − 2ε}, from (4.12),

‖eψN/h[P (h), χε]uh‖2
supp ∂χ+

ε
+ ‖eψN/h[P (h), χε]uh‖2

supp ∂χ−ε
≥ Ch ‖eψN/huh‖2

H1
h(Γ(δ0,ε))

, (4.13)

and so,

h2
(
‖eψN/huh‖2

H1
h(supp ∂χ+

ε )
+ ‖eψN/huh‖2

H1
h(supp ∂χ−ε )

)
≥ Ch‖eψN/huh‖2

H1
h(Γ(δ0,ε))

. (4.14)

To bound the first term on the LHS of (4.14) from above, we recall the upper bound
from [GT19]:

|∂αxuh(x)| ≤ CΩ,α exp
(
[−xn+1 + Csup(Ω)x2

n+1)]/h
)
‖u‖L2(N) + Ce−1/Ch; x ∈ ΩN(ε0).

Since supp ∂χ+
ε ⊂ {0 < xn+1 < ε} and ε < ε0, it follows that

h2‖eψN/huh‖2
H1
h(supp ∂χ+

ε )
≤ h2C2

Ω‖eψN/he[−xn+1+Csup(Ω)x2
n+1)]/h‖2

L2({0<xn+1<ε})‖uh‖
2
L2(N) + Ce−1/Ch.
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Using that ψN(xn+1) = xn+1 + 1
2
ψ′N(0)x2

n+1 +O(x3
n+1),

‖eψN/he[−xn+1+Csup(Ω)x2
n+1)]/h‖2

L2({0<xn+1<ε}) ≤ C6e
(fδ(0)+Csup)ε2+Cε3/h,

and consequently, for the first term on the LHS of (4.11),

h2‖eψN/huh‖2
H1
h(supp ∂χ+

ε )
≤ C2

Ωh
2e(fδ(0)+Csup)ε2+Cε3/h‖uh‖2

L2(N) + Ce−1/Ch. (4.15)

To estimate the RHS of (4.14) from below, we use the local L2-restriction lower bounds in
Theorem 1 which gives that for all τ ∈ [0, ε0] and any δ1 > 0, then, with h ∈ (0, h0(δ1, ε0)],

‖uh‖L2({xn+1=τ}) ≥ C(δ1)e−[ (τ+ 1
4
f0(0)τ2+Cτ3)(1+δ1) ]/h‖uh‖L2(N) − Ce−1/Ch.

Now, let ε < ε1 � min(δ, ε0). since { ε1
2
< xn+1 < ε1} ⊂ Γ(δ0, ε), for the RHS in (4.14),

‖eψN/huh‖2
H1
h(Γ(δ0,ε))

≥ ‖eψN/huh‖2
L2({ ε1

2
<xn+1<ε1}

≥ C(δ1)

∫ τ=ε1

τ=
ε1
2

e2τ+ 1
2
fδ(0)τ2−Cτ3/he−(2τ+

1
2
f0(0)τ2+Cτ3)(1+δ1))/h dt‖uh‖2

L2(N) − Ce−1/Ch

= C(δ1)

∫ τ=ε1

τ=
ε1
2

eδτ
2−Cτ3−δ1(2τ+ 1

2
f0(0)τ2)/h dτ‖uh‖2

L2(N) − Ce−1/Ch

≥ C(δ1)

∫ τ=ε1

τ=
ε1
2

e
δ
2
τ2/h dτ‖uh‖2

L2(N) − Ce−1/Ch,

where the last line follows by choosing ε1 � δ and δ1 � ε1δ and noting that from (4.6),
fδ(0)− f0(0) ≥ δ.

Consequently, the end result is the following lower bound for the RHS in (4.14):

‖eψN/huh‖2
H1
h(Γ(δ0,ε))

≥ C(δ1)ε1e
δε21
2h ‖uh‖2

L2(N) − e−1/Ch. (4.16)

By possibly shrinking ε > 0 further so that ε �
√
δε1, it follows from the upper bound

in (4.15) and the lower bound in (4.16), that the first term on the LHS of (4.14) can be
absorbed in the RHS. Consequently,

‖eψN/huh‖2
H1
h(supp ∂χ−ε )

≥ C(ε)‖uh‖2
L2(N) − Ce−1/Ch, (4.17)

and that, together with elliptic regularity, completes the proof of Theorem 2.
�

5. Eigenfunction goodness estimates for Cauchy data: Proof of Theorem 3

Proof. Let 0 ≤ t < rmax,∂Ω and Ht := ϕ∂Ω(∂Ω, t) so that in Fermi coordinates (x′, xn+1)
around ∂Ω,

Ht = {(x′, t)}.
Let UHt ⊂ Ω̊ be the domain interior to Ω bounded by Ht and for any fixed ε > 0, let
UHt,ε b UHt be a compact manifold with boundary, Ht,ε, strictly contained in UHt with
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ε
2
≤ d(Ht,ε, Ht) ≤ max(x,y)∈Ht,ε×Ht d(x, y) ≤ ε. Then, by e.g. [Aub82, Chapter 4], there exists

a Green’s function G ∈ D′(UHt × UHt) satisfying

−∆xG(x, y) = δx(y), (x, y) ∈ UHt × UHt ,
with G(·, ·) ∈ C∞((UHt × UHt) \ {x = y}).

Then, for x ∈ UHt,ε an application of Green’s formula gives

huh(x) =

∫
Ht

G(x, s)h∂νuh(s)dσ(s)− h
∫
Ht

∂ν(s)G(x, s)uh(s)dσ(s). (5.1)

Since d(x,Ht) > ε when x ∈ UHt,ε and so, G ∈ C∞(UHt,ε, Ht), differentiation of (5.1) in
the x-variables gives a similar formula for the derivatives ∂xkuh. An application of Cauchy-
Schwarz then implies that

h2‖uh‖2
H1
h(UHt,ε)

≤ C(ε)
(
‖uh‖2

L2(Ht)
+ ‖h∂νuh‖2

L2(Ht)

)
. (5.2)

Finally, by Theorem 2, applied with Ht,ε = {d(x, ∂Ω) = t+ ε}, for any ε > 0,

‖u‖H1
h(UHt,ε)

≥ Cεe
(−ψ∂Ω(t)−ε)/h,

which completes the proof.
�
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