
Towards self-certified learning: Probabilistic neural
networks trained by PAC-Bayes with Backprop

Marı́a Pérez-Ortiz
AI Centre, University College London

maria.perez@ucl.ac.uk

Omar Rivasplata
DeepMind

rivasplata@google.com

John Shawe-Taylor
AI Centre, University College London

jst@cs.ucl.ac.uk

Csaba Szepesvári
DeepMind

szepi@google.com

Abstract

The result of training a probabilistic neural network is a probability distribution
over network weights. This learnt distribution is the basis of a prediction scheme,
e.g. building a stochastic predictor or integrating the predictions of all possible
parameter settings. In this paper we experiment with training probabilistic neural
networks from a PAC-Bayesian approach. We name PAC-Bayes with Backprop
(PBB) the family of (probabilistic) neural network training methods derived from
PAC-Bayes bounds and optimized through stochastic gradient descent. We show
that the methods studied here represent promising candidates for self-certified
learning, achieving state-of-the-art test performance in several data sets and at the
same time obtaining reasonably tight certificates on the risk on any unseen data
without the need for data-splitting protocols (both for testing and model selection).

1 Introduction

This paper is largely based on our previous work in Pérez-Ortiz et al. [2020]. We present empiri-
cal studies on training probabilistic neural networks from a PAC-Bayesian approach. The generic
method, which we call ‘PAC-Bayes with Backprop’ (PBB), consists of minimizing a PAC-Bayes
bound through stochastic gradient descent. Our work takes inspiration from Blundell et al. [2015]
whose method (called Bayes-by-Backprop) showed that randomized weights achieve competitive
test set error; and from Dziugaite and Roy [2017, 2018], whose results showed that randomized
neural networks obtained by minimizing a classic PAC-Bayes bound can not only have reasonable
test set errors but also, more importantly, non-vacuous risk bound values.

A clear advantage of PBB methods is being an instance of self-certified1 learning. Our experiments
show that PBB training objectives can (a) achieve competitive test set errors (e.g. comparable to
Blundell et al. [2015] and empirical risk minimisation), while also (b) deliver risk certificates with
reasonably tight values (cf. Pérez-Ortiz et al. [2020]). The PBB training methods presented here are
performant yet simple and elegant: These promising results are achieved i) with prior distributions
learnt through empirical risk minimisation of the surrogate loss on a subset of the dataset (which does
not overlap with the data used for computing the risk certificate, thus in line with the usual PAC-
Bayes priors) and ii) via classical SGD optimization of a PAC-Bayes inspired training objective.

1A learning method is self-certified if it uses all the available data in order to output a hypothesis and
simultaneously a reasonably tight risk certificate that is valid in unseen examples (cf. Freund [1998]).

NeurIPS 2020 Workshop - Beyond BackPropagation: Novel Ideas for Training Neural Architectures.

2 Generalization and PAC-Bayes bounds

The ultimate goal for predictive machine learning algorithms is to find a solution that generalizes
well, meaning intuitively that the learned model should give good predictions on unseen data. More
formally, a training algorithm receives a size-n random sample S = (Z1, . . . , Zn), where X ⊂ Rd,
Y ⊂ R and Z = X × Y for supervised learning, and aims to find w ∈ W that minimises the
empirical risk L̂S(w) = n−1

∑n
i=1 `(w,Zi), or some regularized form of it, where W ⊂ Rp and

` : W × Z → [0,∞) is a fixed loss function, e.g. the commonly used cross-entropy loss for
classification, which is used as a surrogate loss in lieu of the zero-one loss. More details on the
learning framework are given in Section 5.1. See also Pérez-Ortiz et al. [2020].

While the outcome of training a classical neural network is a data-dependent weight vector, the
outcome of training a probabilistic neural network is a data-dependent distribution over weightsQS .
Then, given a fresh input X , the network predicts its label by drawing a weight vector W at random
fromQS and applying predictor hW toX . To measure the performance of the resulting randomizing
predictor we use the expected loss over the random draws of weights. The average empirical loss
becomes QS [L̂S] =

∫
W L̂S(w)QS(dw) and the average loss becomes QS [L] =

∫
W L(w)QS(dw).

The PAC-Bayes-kl theorem (Langford and Seeger [2001], Seeger [2002], Maurer [2004]) concludes
that, as long as the loss function ` is bounded in [0, 1], for any δ ∈ (0, 1), with probability at least
1− δ over random n-samples S, simultaneously for all distributions Q overW it holds that:

kl(Q[L̂S]‖Q[L]) ≤
KL(Q‖Q0) + log(2

√
n
δ)

n
, (1)

where KL(Q‖P) is the Kullback-Leibler divergence from Q to P , and in the left-hand side kl(q‖p)
is the binary KL divergence (i.e. the divergence from the Bernoulli distribution with parameter q to
the Bernoulli distribution with parameter p), andQ0 is a data-free distribution overW , meaning that
Q0 is fixed without any dependence on the data on which the bound is evaluated.

One can lower-bound the binary KL divergence using Pinsker’s inequality kl(p̂‖p) ≥ 2(p− p̂)2 and
solve the resulting inequality forQ[L] (see e.g. Tolstikhin and Seldin [2013]). Alternatively, one can
use the refined version of Pinsker’s inequality kl(p̂‖p) ≥ (p− p̂)2/(2p) which is valid for p̂ < p (see
e.g. [Boucheron et al., 2013, Lemma 8.4]), the latter being tighter than the former when p < 1/4
(see details in Pérez-Ortiz et al. [2020]), and thus get:

Q[L]−Q[L̂S] ≤

√
2Q[L]

KL(Q‖Q0) + log(2
√
n
δ)

n
. (?)

However, due to the appearance of Q[L] on the right-hand side this bound is not immediately useful
for optimization purposes. One can view the above inequality as a quadratic inequality on

√
Q[L].

Solving this inequality for Q[L] leads to the PAC-Bayes-quadratic bound shown below in Eq. (2).
Alternatively, using (?) combined with the inequality

√
ab ≤ 1

2 (λa + b
λ) valid for all λ > 0 and

after some derivations, leads to the PAC-Bayes-λ bound of Thiemann et al. [2017] shown below in
Eq. (3). For convenience, we quote the classical PAC-Bayes bound of McAllester [1999] in Eq. (4)
below. The original proof of McAllester [1999] gave a slightly looser bound. The form presented in
Eq. (4) is with the sharp dependence on n due to Maurer [2004]. The three bounds are:

Q[L] ≤

√
Q[L̂S] +

KL(Q‖Q0) + log(2
√
n
δ)

2n
+

√
KL(Q‖Q0) + log(2

√
n
δ)

2n

2

. (2)

Q[L] ≤ Q[L̂S]

1− λ/2
+

KL(Q‖Q0) + log(2
√
n/δ)

nλ(1− λ/2)
. (3)

Q[L] ≤ Q[L̂S] +

√
KL(Q‖Q0) + log(2

√
n
δ)

2n
. (4)

These inequalities are valid for losses with range [0,1]. Each one gives an upper bound on Q[L] that
holds with high probability (over the random draw of size-n samples) simultaneously for all distribu-
tionsQ over weights. In particular, the bounds allow to choose a distributionQS in a data-dependent
manner, which is why they are usually called ‘posterior’ distributions in the PAC-Bayesian literature.

2

3 PAC-Bayes with Backprop

The essential idea of “PAC-Bayes with Backprop” is to train probabilistic neural networks (realized
as distributions over the weight space) by minimizing a PAC-Bayes upper bound on the risk. Here
we present two new training objectives, derived from Eq. (2) and Eq. (3) respectively, in the context
of multiclass neural network classification. The standard surrogate loss used on these problems is
the cross-entropy loss `x-e : Rk × [k] → R defined by `x-e(z, y) = − log(σ(z)y) where z ∈ Rk,
y ∈ [k] = {1, . . . , k} and σ : Rk → [0, 1]k is the soft-max function, σ(z)i = exp(zi)/

∑
j exp(zj).

Since the PAC-Bayes bounds of Eq. (2), (3) and (4) require losses within [0,1], we enforce an upper
bound on the cross-entropy loss by lower-bounding the network probabilities by a value pmin > 0
(cf. Dziugaite and Roy, 2018), which effectively puts an upper-bound `max on the cross-entropy
loss, and then normalizing by `max gives a loss ˜̀x-e

1 with range [0,1]. We thus propose to replace the
zero-one loss with ˜̀x-e

1 in either of Eq. (2), (3) or (4), leading to the three objectives:

fquad(Q) =

√
Q[L̂x-e

S] +
KL(Q‖Q0) + log(2

√
n
δ)

2n
+

√
KL(Q‖Q0) + log(2

√
n
δ)

2n

2

(5)

flambda(Q,λ) =
Q[L̂x-e

S]

1− λ/2
+

KL(Q‖Q0) + log(2
√
n/δ)

nλ(1− λ/2)
(6)

fclassic(Q) = Q[L̂x-e
S] +

√
KL(Q‖Q0) + log(2

√
n
δ)

2n
(7)

The empirical risk term is L̂x-e
S (w) = 1

n

∑n
i=1

˜̀x-e
1 (hw(Xi), Yi), where ˜̀x-e

1 is the ‘bounded’ version
of the cross-entropy loss, and hw : X → Rk is the neural network function that uses weights w.

Optimization of the objectives (5) and (7) entails minimizing over Q only, while optimization of (6)
is done by alternating minimization with respect to Q and λ, similar to the procedure that was used
by Thiemann et al. [2017] for training SVMs. By choosingQ in a parametric family of distributions,
in either case we use the pathwise gradient estimator [Price, 1958, Jankowiak and Obermeyer, 2018]
as done by Blundell et al. [2015]. In particular, assuming that Q = Qθ with θ ∈ Rq is such that
hW (·) with W ∼ Qθ (W ∈ Rp) has the same distribution as hfθ(V)(·) where V ∈ Rp′ is drawn at
random from a fixed distribution PV and fθ : Rp′ → Rp is a smooth map, an unbiased estimate of
the gradient of the loss-map θ 7→ Qθ[`(h•(x), y)] at some θ can be obtained by drawing V ∼ PV
and calculating ∂

∂θ `(hfθ(V)(x), y), thereby reducing the efficient computation of the gradient to the
application of the backpropagation algorithm on the map θ 7→ `(hfθ(v)(x), y) at v = V .2 Following
Blundell et al. [2015], the reparametrization we use is W = µ+σ�V with appropriate distribution
(Gauss or Laplace) for each coordinate of V . The optimization uses σ = log(1 + exp(ρ)), thus
gradient updates are with respect to µ and ρ.

3.1 Prior distributions

We experiment with i) priors centered at randomly initialised weights and ii) priors centered at
weights learnt by empirical risk minimisation using the surrogate loss on a subset of the dataset
which is independent of the subset used to compute the risk certificate. Note that all n training data
are used by the learning algorithm (n0 examples used to build the prior, n to learn the posterior and
n − n0 to evaluate the risk certificate). This is to avoid needing differentially private arguments to
justify learning the prior [Dziugaite and Roy, 2018]. Since the posterior is initialised to the prior,
the learnt prior translates to the posterior being initialised to a large region centered at the empirical
risk minimiser. Similar approaches for building data-dependent priors have been considered before
in the PAC-Bayesian literature [Lever et al., 2013, Parrado-Hernández et al., 2012, Dziugaite and
Roy, 2018]. We test both Gaussian and Laplace prior distributions.

2Indeed, ∂
∂θ

∫
Qθ(dw)`(hw(x), y) =

∂
∂θ

∫
PV (dv)`(hfθ(v)(x), y) =

∫
PV (dv)

∂
∂θ

`(hfθ(v)(x), y), where
the interchange of the partial derivative and the integral is justified when the partial derivatives are integrable,
which needs to be verified on a case-by-case basis. See e.g. Ruiz et al. [2016].

3

3.2 Risk certificates

After optimising the distribution over network weights through the previously presented training
objectives, we compute a risk certificate on the error of the stochastic predictor, following the pro-
cedure of Langford and Caruana [2001]. This uses the PAC-Bayes-kl theorem in Eq. (1), which is
tighter than Eq. (2), (3) or (4), as the latter are relaxations of Eq. (1). To do so, we need to invert
the binary KL from Eq. (1) and use Monte Carlo sampling to estimate the empirical term Q[L̂S] by
random weight sampling. We elaborate further on this in the appendix (Section 5.2).

4 Results and conclusions

We experimented on MNIST and CIFAR-10 to investigate the properties of the training objectives
presented before. We evaluate the proposed fquad and flambda of Eq. (5) and Eq. (6), and compare
these to fclassic of Eq. (7) and the objective from Blundell et al. [2015] (fbbb). We also compare
to empirical risk minimisation with dropout (ferm). The code for our experiments is publicly avail-
able3. All risk certificates were computed using the the PAC-Bayes-kl theorem, as explained in the
appendix, with δ = 0.025 and δ′ = 0.01 and m = 150.000 Monte Carlo model samples. We per-
formed a grid search over all hyper-parameters and selected the run with the best risk certificate. We
tested in our model selection experiments that the risk certificate has a strong correlation with test
set error (Pearson correlation of 0.977), thus we use the risk and avoid the need for data splitting
protocols (except for ferm). Further details on the experiments can be found in Section 5.3.

The results are shown in percentages in Table 1. For all probabilistic neural networks we show the
test set error of the stochastic classifier, while for ferm we use classical neural networks and thus a
deterministic classifier (included for comparison purposes). Several conclusions can be drawn from
these results: Firstly, we see that a randomly initialised prior leads to worse minima than learning
the prior on a subset of the data. Specifically, learnt priors lead to tight risk certificates (specially
for PAC-Bayes inspired training objectives). This is consistent across the two tested architectures in
MNIST. Thirdly, the test set errors coming from these new training objectives with learnt priors are
close to the test error of ferm and fbbb. Finally, the risk certificates for MNIST are tighter than those
for CIFAR-10, but these are still non-vacuous and relatively tight. For a more in depth analysis of
these experiments we refer the reader to the appendix (Section 5.4).

Dataset, architecture and prior fquad flambda fclassic fbbb ferm
Test err. Risk `01 Test err. Risk `01 Test err. Risk `01 Test err. Risk `01 Test err.

MNIST, FCN, rand Gauss 9.21 31.55 7.32 32.75 14.11 33.04 2.93 55.16 1.52
MNIST, FCN, learnt Gauss 2.02 2.79 1.96 3.54 2.30 2.84 1.79 9.68 1.52
MNIST, CNN, rand Gauss 5.35 21.65 3.97 22.02 8.69 22.77 1.54 36.45 0.92
MNIST, CNN, learnt Gauss 1.04 1.55 1.06 1.86 1.23 1.54 1.04 5.38 0.92
MNIST, CNN, rand Laplace 6.77 24.25 4.61 25.40 2.96 24.89 1.39 44.87 0.92
MNIST, CNN, learnt Laplace 1.39 1.67 0.98 2.16 1.07 1.55 0.92 8.66 0.92

CIFAR10, CNN (13 lay.) learnt Gauss 15.68 18.32 15.41 21.77 15.88 17.58 15.08 58.58 15.66
CIFAR10, CNN (15 lay.) learnt Gauss 14.63 18.06 14.37 21.21 14.75 16.67 14.13 55.72 14.13

Table 1: Test 0-1 error and risk certificate on MNIST and CIFAR-10 for several architectures/priors.

The risk certificates in Table 1 are much tighter than the ones reported in the literature for MNIST
with the same FCN architecture. Specifically, the best two models in Dziugaite and Roy [2018]
showed respectively a 12.00% test set error and a risk of 21.00%, and a 6% test set error and a risk
certificate of 65%. The best two models in Lever et al. [2013] showed respectively a 12.00% test set
error and a risk of 26.00%, and a 6% test set error and a risk certificate of 100%. In comparison we
report a 2.00% test set error and 2.79% risk certificate for the same architecture and dataset.

The three tested PAC-Bayes inspired training objectives show some consistent differences. Specif-
ically, flambda usually leads to more accurate predictors in test set error but looser risk certificates.
fquad seems to achieve better test set error and risk certificates for MNIST, while fclassic achieves
tighter bounds for CIFAR-10. In any case, the results reported suggest that this family of methods
shows promise towards self-certified learning, in the sense of certifying the risk on any unseen data
without the need for data-splitting protocols (train and test and model selection).

3PyTorch code available at https://github.com/mperezortiz/PBB.

4

https://github.com/mperezortiz/PBB

References
Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in

neural networks. In International Conference on Machine Learning, pages 1613–1622, 2015.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing Nonvacuous Generalization Bounds for
Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. In UAI,
2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent PAC-Bayes priors via differential
privacy. In Advances in Neural Information Processing Systems, pages 8430–8441, 2018.

Yoav Freund. Self bounding learning algorithms. In Proceedings of the eleventh annual conference
on Computational Learning Theory, pages 247–258. ACM, 1998.

Martin Jankowiak and Fritz Obermeyer. Pathwise Derivatives Beyond the Reparameterization Trick.
arXiv:1806.01851, 2018.

John Langford and Avrim Blum. Microchoice bounds and self bounding learning algorithms. Ma-
chine Learning, 51(2):165–179, 2003.

John Langford and Rich Caruana. (Not) bounding the true error. In Advances in Neural Information
Processing Systems, pages 809–816, 2001.

John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical Report CMU-CS-
01-102, Carnegie Mellon University, 2001.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds through
distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

Andreas Maurer. A note on the PAC Bayesian theorem. arXiv:cs/0411099, 2004.

David A McAllester. PAC-Bayesian model averaging. In Proceedings of the twelfth annual confer-
ence on Computational Learning Theory, pages 164–170. ACM, 1999.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun. Pac-bayes
bounds with data dependent priors. Journal of Machine Learning Research, 13(112):3507–3531,
2012. URL http://jmlr.org/papers/v13/parrado12a.html.

Marı́a Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certifi-
cates for neural networks. arXiv:2007.12911, 2020.

Robert Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on
Information Theory, 4(2):69–72, 1958.

Francisco R Ruiz, Michalis Titsias, and David Blei. The Generalized Reparameterization Gradient.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 460–468, 2016.

Matthias Seeger. PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification.
Journal of Machine Learning Research, 3:233–269, 2002.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly quasiconvex
PAC-Bayesian bound. In International Conference on Algorithmic Learning Theory, pages 466–
492, 2017.

Ilya O Tolstikhin and Yevgeny Seldin. PAC-Bayes-empirical-Bernstein inequality. In Advances in
Neural Information Processing Systems, pages 109–117, 2013.

5

http://jmlr.org/papers/v13/parrado12a.html

5 Appendices

5.1 Generalization via risk upper bounds

The ultimate goal for predictive machine learning algorithms is to find a solution that generalizes
well, meaning intuitively that the learned model should give good predictions on unseen data. More
formally, a training algorithm receives a size-n random sample S = (Z1, . . . , Zn), where X ⊂ Rd,
Y ⊂ R and Z = X × Y for supervised learning, and aims to find w ∈ W that minimises the
empirical risk L̂S(w) = n−1

∑n
i=1 `(w,Zi), or some regularized form of it, where W ⊂ Rp and

` : W × Z → [0,∞) is a fixed loss function, e.g. the commonly used cross-entropy loss for
classification, which is used as a surrogate loss in lieu of the zero-one loss. An ideal goal would be
to minimize the expected loss on unseen examples, also called the riskL(w) = E[`(w,Z)]; however,
the latter objective is inaccessible in any practical situation of interest, given that the data-generating
distribution is unknown. Hence, the objective used in practice is the (possibly regularised) empirical
risk. However, often minimizing the empirical risk can lead to situations in which the risk of the
learned weight is significantly larger than the empirical risk —a case of overfitting. An alternative to
the empirical risk is to choose a training objective which is guaranteed to give an upper bound on the
risk, i.e. a so-called risk bound. Then, as long as the risk upper bound is tight and the optimization
gives rise to a small value for this objective, the risk will also be small. By doing this, overfitting
can be prevented, while we automatically get a self-certified learning method (cf. Freund [1998],
Langford and Blum [2003]). Our paper Pérez-Ortiz et al. [2020] shows that this last approach is
feasible with training objectives derived from PAC-Bayes bounds.

5.2 Computing the risk certificates

We compute a risk certificate on the error of the stochastic predictor following the procedure of
Langford and Caruana [2001], which uses the PAC-Bayes-kl theorem. We describe now how to
invert the binary KL from Eq. (1). For x ∈ [0, 1] and b ∈ [0,∞), the “inverse” of the binary entropy
with respect to the second argument is:

f?(x, b) = sup{y ∈ [x, 1] : kl(x‖y) ≤ b}
This is easily seen to be well-defined. The crucial property that we rely on is that kl(x‖y) ≤ b holds
precisely when y ≤ f?(x, b).
The function f? provides a way for computing an upper bound on Q[L] based on the PAC-Bayes-kl
bound: For any δ ∈ (0, 1), with probability at least 1− δ over size-n random samples S we have:

Q[L] ≤ f?
(
Q[L̂S],

KL(Q‖Q0) + log(2
√
n
δ)

n

)
.

The difficulty is evaluatingQ[L̂S] since it is not computable. Since f? is a monotonically increasing
function of its first argument (when fixing the second argument), it suffices to upper-bound Q[L̂S].

We also use f? to estimate the empirical termQ[L̂S] by random weight sampling: IfW1, . . . ,Wm ∼
Q are i.i.d. and Q̂m =

∑m
j=1 δWj is the empirical distribution, then for any δ′ ∈ (0, 1), with

probability at least 1−δ′ we have kl(Q̂m[L̂S]‖Q[L̂S]) ≤ m−1 log(2/δ′) (see Langford and Caruana
[2001, Theorem 2.5]), hence by the inversion formula:

Q[L̂S] ≤ f?
(
Q̂m[L̂S],

1

m
log(

2

δ′
)
)
.

This expression can be applied to upper-bound Q[L̂01
S] by setting the underlying loss function to be

the 01 (classification) loss. This estimation is valid with high probability (of at least 1 − δ′) over
random weight samples.

We evaluate the risk certificates (risk upper bounds) for the 0-1 loss using the PAC-Bayes-kl bound
and Monte Carlo weight sampling. For any δ, δ′ ∈ (0, 1), with probability at least 1 − δ − δ′ over
random size-n data samples S and size-m weight samples W1, . . . ,Wm ∼ QS we have:

Q[L] ≤ f?
(
f?
(
Q̂m[L̂S],

1

m
log(

2

δ′
)
)
,
KL(Q‖Q0) + log(2

√
n
δ)

n

)
.

In our experiments we used a numerical implementation of the kl inversion f? and this upper bound
to evaluate risk certificates for the stochastic predictor.

6

5.3 Experiment details

Hyperparameter selection For all experiments we performed a grid search over all hyper-
parameters and selected the run with the best risk certificate on 0-1 error4. We did a grid
sweep over the prior distribution scale hyper-parameter (i.e. standard deviation σ0) with values
in [0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005]. For the SGD with momentum optimizer we performed a
grid sweep over learning rate in [1e−3, 5e−3, 1e−2] and momentum in [0.95, 0.99]. We found that
the best optimiser hyper-parameters for building the data-dependent prior differ from those selected
for optimising the posterior. Because of this, we also performed a grid sweep over the learning
rate and momentum used for learning the data-dependent prior (testing the same values as before).
The dropout rate used for learning the prior was selected from [0.0, 0.05, 0.1, 0.2, 0.3]. All training
objectives derived from PAC-Bayes bounds used the ‘bounded cross-entropy’ function as surrogate
loss during training, for which we enforced boundedness by restricting the minimum probability. We
observed that the value pmin = 1e− 5 performed well. The lambda value in flambda was initialised
to 1.0 (as done by Thiemann et al. [2017]) and optimized using alternate minimization using SGD
with momentum, using the same learning rate and momentum than for the posterior optimisation.
Notice that fbbb requires an additional sweep over a KL trade-off coefficient, which was done with
values in [1e− 5, 1e− 4, . . . , 1e− 1], see Blundell et al. [2015]. For ERM, we used the same range
for optimising the learning rate, momentum and dropout rate. However, given that in this case we do
not have a risk certificate we need to set aside some data for validation and hyper-parameter tuning.
We set 4% of the data as validation in MNIST (2400 examples) and 5% in the case of CIFAR-10
(2500 examples). This is the first example of how PAC-Bayes bounds could be a good approach for
self-certified learning, showing in this case that, as opposed to ERM, PAC-Bayes inspired training
objectives do not need a validation or test set.

Figure 1: Bar plots of results across two architectures and training objectives for MNIST. The bottom
shaded areas correspond to the test set 0-1 error of the stochastic classifier. The coloured areas on
top correspond to the risk certificate. The horizontal dashed line corresponds to the test set 01 error
of ferm, i.e. the deterministic classifier learnt by empirical risk minimisation of the surrogate loss
on the whole training set (shown for comparison purposes).

Architectures For MNIST, we tested both a fully connected neural network (FCN) with 4 layers
(including input and output) and 600 units per layer, as well as a convolutional neural network
(CNN) with 4 layers (two convolutional, two fully connected). For the latter, we learn a distribution
over the convolutional kernels. We trained our models using the standard MNIST dataset split of
60000 training examples and 10000 test examples. For CIFAR-10, we tested two convolutional
architectures (with 13 and 15 layers of learnable parameters) with standard CIFAR-10 data splits.
ReLU activations were used in each hidden layer for both datasets. Both for learning the posterior
and the prior, we ran the training for 100 epochs (however we observed that methods converged
earlier). We used a training batch size of 250 for all the experiments.

4Note that if we use a total of C hyperparameter combinations, the union bound correction would add no
more than log(C)/30000 to the PAC-Bayes-kl upper bound. Even with say C = 42M (forty two million)
combinations, the value of our risk certificates will not be impacted significantly.

7

Figure 2: Bar plots of results achieved on CIFAR-10 for 2 different network architectures and all
training objectives.

Priors We find that the prior learnt by ERM can be over-fitted easily. To avoid this, we use dropout
during the learning process (exclusive to learning the prior, not the posterior). The main difference
between our data-free and data-dependent priors is that, after initialisation, the center parameters of
data-dependent priors are optimised through ERM on a subset of the training data. This means the
posterior center µ will be initialised at the empirical risk minimiser. As opposed to data-dependent
priors, in the case of data-free priors we simply use the initial random weights as center parameters.
For MNIST we use 50% of the data for learning the prior, 100% of the data for refining the posterior
and the remaining 50% for certifying the risk. For CIFAR-10 we use 70% of the data for learning
the prior, 100% for refining the posterior and the remaining 30% for the risk.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs t raining posterior

0

1

2

3

4

5

6

E
p

o
ch

s
tr

a
in

in
g

 p
ri

o
r

Contour plot of the test set error Contour plot of the risk certificate

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0

1

2

3

4

5

6

E
p

o
ch

s
tr

a
in

in
g

 p
ri

o
r

0.225

0.300

0.375

0.450

0.525

0.600

0.675

0.750

0.825

0.900

20.0
Epochs t raining posterior

Figure 3: Contour plots of the test set error (0-1 loss) and risk certificate after different training
epochs learning the prior and posterior and initial scale hyper-parameters value σ0 = 0.1 for the
prior. These experiments are performed on MNIST using the FCN architecture.

5.4 Additional results and analysis

The findings with learnt Gaussian priors from the experiments on MNIST and CIFAR-10 can be
better seen in the bar plots in Figure 1 and Figure 2. These results show the following: i) fquad
achieves the best empirical performance and risk certificates for 0-1 error on MNIST, whereas all
methods achieve similar test set performance for CIFAR-10 and fclassic obtains the tighter risk cer-
tificates. ii) flambda is the PAC-Bayes inspired objective that shows the looser risk certificates. iii)
The results achieved by the stochastic predictor are close to those of empirical risk minimisation and
fbbb, while also providing tight risk certificates. This is obtained without the need for data splitting
protocols. iv) The application of PBB is successful not only for learning fully connected layers but

8

also for learning convolutional ones. The improvements in performance and risk certificates that the
use of a CNN (and also deeper architectures) bring are also noteworthy.

Figure 3 shows a contour plot of the loss and risk certificate when training the prior and the posterior
for different epochs (e.g. to check the effect of training the posterior with an under-fitted prior). This
plot has been generated using the FCN architecture on MNIST with Gaussian priors. Similar results
are obtained for the CNN architecture. Note that for the sake of visualisation we are plotting much
less epochs that those used to generate the final results (in this case up to 20, whereas the previously
reported results were with 100 epochs) so the reported test set errors and risk certificates differ from
those previously reported. We observe that both training the prior and the posterior are crucial to
improve the final loss and risk certificates, as the best loss and risk certificate values are found in
the top right corner of the plot. The plot also shows that if the prior is under-fitted (e.g. if trained
for only one or two epochs), then the final predictor can still be much improved with more training
epochs for the posterior. However, a more adequate prior means that less epochs are needed to
reach a reasonable posterior. Nonetheless, this is less apparent if the prior is not learnt (i.e. random,
represented as a training of 0 epochs). In this experiment, we also noted that only a few epochs of
training the prior are enough to reach competitive posteriors and that learning the posterior for much
longer (e.g. 1000 epochs) does not lead to overfitting, which reinforces the finding of Blundell et al.
[2015] that the KL term act as a regulariser. This is, however, opposed to what we observe when
training the prior through empirical risk minimisation, since the prior overfits easily, which is why
we had to learn the priors using dropout.

0.025 0.030 0.035 0.040 0.045 0.050
0

5

10

15

20

25

0.030 0.035 0.040 0.045 0.050
0

2000

4000

6000

8000

10000

0.030 0.035 0.040 0.045 0.050
0

200000

400000

600000

800000

1000000

1200000

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0

50

100

150

200

250

300

350

Figure 4: Histograms of the scale parameters for the Gaussian distribution at the end of the optimisa-
tion for the different layers of the CNN architecture on MNIST. All scale parameters were initialised
to 0.05, i.e. σ0 = 0.05 for all coordinates, and σ̂ is the scale of the final output of training.

Figure 4 shows a histogram of the final scale parameters σ̂ (i.e. standard deviation) for the Gaussian
posterior distribution (both weights and biases). The plot shows that the optimisation changes the
scale of different weights and biases, reducing specially those associated to the input and output
layer. We will experiment with different scale initialisations per layer in our future work, as well as
different covariance structures for the weight and bias distributions.

9

	Introduction
	Generalization and PAC-Bayes bounds
	PAC-Bayes with Backprop
	Prior distributions
	Risk certificates

	Results and conclusions
	Appendices
	Generalization via risk upper bounds
	Computing the risk certificates
	Experiment details
	Additional results and analysis

