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Abstract. The classical replicator dynamics for evolutionary games in infi-
nite populations formulated by Taylor and Jonker is invariant when all the
payoff values are shifted by a constant. We demonstrate that this is not the
case in finite populations. We show that both deterministic and stochastic
evolutionary game dynamics based on the original model of Taylor and Jonker
depend on the actual payoff values. We present a variant of Maynard Smith’s
evolutionary stability criteria for finite populations that are large (and possibly
of unknown size). We give a full description for the case of a two strategy game.
Our main contribution is a statement that an evolutionarily stable strategy as
originally defined by Maynard Smith still works for large populations provided
that it does well against itself.

1. Introduction

In this paper we study evolutionary dynamics of a game in normal form with
two strategies A and B. The payoff matrix of the game is

A B
A a b
B c d

(where b is the payoff to a row player adopting the strategy A in the contest with a
player adopting the strategy B; similarly for other entries). The standard model of
evolutionary dynamics for this game in infinite population is replicator dynamics
([8]). This dynamics describes the deterministic selection process by

ẋA = xA · (1− xA) ·
(
(a− c)xA + (b− d)(1− xA)

)
(1)

where xA is the frequency of individuals adopting strategy A. We will develop this
equation in Section 2. It follows that the dynamics depends only on the differences
a − c and b − d of the payoff values. In Section 3 we modify the Taylor-Jonker
dynamics to get a better model for finite populations. We show then that the
dynamics depends on the actual payoff values rather than on the differences a− c
and b−d only. In Section 4 we show the same dependence in a stochastic dynamics
introduced in [6] and [9].

The concept of an evolutionarily stable strategy, abbreviated ESS, was proposed
by John Maynard Smith ([4]; [2]). He defined an ESS to be a strategy such that,
if all members of a population adopt it, then no mutant strategy could invade
the population under the influence of natural selection. In the setting of infinite
populations, the strategy A is an ESS if and only if
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(1) a > c, or
(2) a = c and b > d.

In the 1970s and 1980s it has been established by a number of papers that the above
criteria, given in [4], is correct only for infinite populations. See, for example, the
discussion between Vickery and Maynard Smith: [10]; [3]; [11]. These results led
to a modified concept of evolutionary stability for populations of finite size, and
the definition of an ESS for finite populations as given in [7]. In Section 5 we show
that the above criteria are correct for finite populations if we assume the strategy
A does well against itself.

The concept of an ESS for large and monomorphic populations was introduced
by Neill in [5]. Neill considers populations of a finite but large and unknown size.
Reformulating his mathematical description, he calls a strategy A a large population
ESS if, a large population of A players can not be invaded by a small number of
mutants B 6= A. In the Section 5 we will work with this definition and give it a
meaning with respect to the underlying dynamics. An explicit use of the dynamics
yields different conclusions than those presented in [5]. We will show that an ESS
as defined by Maynard Smith is a large population ESS in most cases.

2. Deterministic dynamics in infinite populations

We will develop the Taylor-Jonker dynamics (1) in a similar fashion as it is done
for example in [1]. Assume for a moment that the population is finite. Let NA

and NB , respectively, denote the number of individuals adopting the strategy A
and B, respectively. We will also call them individuals of type A, or individuals of
type B, respectively. Let N = NA + NB be the total size of the population and
xA = NA/N (and xB = NB/N) be the density of A (respectively B) strategists in
the population.

During a given time period (a year, for example), each individual in the popula-
tion interacts with exactly one opponent chosen randomly (according to the relative
frequencies xA and xB). We measure the fitness fA, fB of individuals of types A
and B by the average payoffs; in other words

fA = axA + bxB , (2)
fB = cxA + dxB . (3)

This individual’s payoff is the number of offspring it produces for the next time
period, possibly minus 1, in case the individual dies. For this reason we require
that the payoff entries be greater or equal to −1.

We assume a classical exponential growth, so the continuous time dynamics is
given by

ṄA = NAfA, (4)

ṄB = NBfB . (5)
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Manipulating (4) and (5), and using xA + xB = 1 we get

ẋA =
d

dt

(
NA

N

)
=

ṄAN −NAṄ

N2
=

NA

N
fA − NA

N
· ṄA + ṄB

N

=
NA

N
fA − NA

N
·
(

NA

N
fA +

NB

N
fB

)

=
(

NA

N

)
·
(

1− NA

N

)
(fA − fB)

= xA(1− xA)(fA − fB).

3. Deterministic dynamics in finite populations

A formal difference between finite and infinite populations lies in the fact that the
number of individuals is not a continuous function of time. Thus, we approximate

ḟ(t) ≈ f(t + 1)− f(t)
1

= f(t + 1)− f(t)

and instead of (4), (5) we get the discrete time dynamics

NA(t + 1)−NA(t) = NA(t)fA(t), (6)
NB(t + 1)−NB(t) = NB(t)fB(t). (7)

These equations lead to the following dynamics for xA(t) = NA(t)/N(t)

xA(t + 1)− xA(t) =
N(t)

N(t + 1)

{
xA(t)

(
1− xA(t)

)(
fA(t)− fB(t)

)}
, (8)

which is a discrete time analog of (1).
However, the major difference between finite and infinite populations lies in

different fitness functions, see e.g. [5]. Indeed, since individuals are not engaged in
contests with themselves, the average payoffs are given by

fA = a · NA − 1
N − 1

+ b · NB

N − 1
, (9)

fB = c · NA

N − 1
+ d · NB − 1

N − 1
, (10)

rather than by (2) and (3).
One would be tempted to conjecture that the difference between (1) and (8)

becomes negligible in large populations and that the two dynamics behave in a
same way. But the contrary is true as demonstrated by the following example.

Example 1. The dynamics (8) depends on the actual payoff values.

Indeed, consider the initial population consisting of a number NA of A individuals
(NA being arbitrarily large) and a single B individual, i.e. NB = 1. Consider the
payoff matrix

A B
A 0 1
B 0 2

(11)



4 OMAR RIVASPLATA, JAN RYCHTÁŘ, AND CHRISTIAN SYKES

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generations

F
ra

ct
io

n 
of

 B
 s

tr
at

eg
is

ts

Figure 1. Evolution of NB/N ; the lower curve is given by matrix
(11); the upper curve is given by matrix (12).

Clearly,

fA = 0 · NA − 1
NA

+ 1 · 1
NA

=
1

NA
,

fB = 0 · NA

NA
+ 2 · 0

NA
= 0.

Thus NB stays constant while NA steadily increases by 1 in each time period. In
other words, the strategy A is better.

Now change the payoff matrix by adding 1 to all its entries to have

A B
A 1 2
B 1 3

(12)

Similarly as above, the number of A players will grow. But, the number of B players
will grow as well. Slowly first, because their fitness will be mostly determined by
contests with A players. But the more B players there are in the population, the
more important contests with B become. Finally, because d = 3 > max{1, 2, 1},
NB will grow much faster then NA. Eventually, B will outnumber A. In other
words, the strategy B is better. Figure 1 demonstrates this situation graphically.

Detailed mathematical analysis can be done along the lines of the proof of The-
orem 6 below.

4. Stochastic dynamics in finite populations

The stochastic game dynamics was introduced and studied in [9] and [6]. Let
us summarize their notation and results. Suppose the population consists of N
individuals. Unlike the deterministic model, the stochastic one assumes the total
size of the population being constant. The number of individuals adopting strategy
A is denoted by i. Then, similarly as in (9) and (10), the fitness of A and B
individuals are

fi = a
i− 1
N

+ b
N − i

N
,

gi = c
i

N
+ d

N − i− 1
N

.
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At each time step, an individual is chosen for reproduction proportional to its
fitness. One identical offspring is being produced which replaces another randomly
chosen individual.

We are interested in the quantity %BA - the probability that a single B individual
will invade the population of N − 1 individuals of type A and the population will
end at the steady state i = 0. By [9] we have

%BA =
1

1 +
∑N−1

j=1

∏N−1
k=j

fk

gk

. (13)

We say that selection favors B invading A if %BA > 1/N . See [9] for more detailed
exposition.

The main result of this section shows that the stochastic dynamics depends on
the actual payoff values.

Fact 2. The condition %BA > 1/N is not invariant when all the payoff values are
changed by an additive constant.

Proof. Fix N = 7 and consider the payoff matrix

A B
A 2 2.2
B 1.8 2.9

Then (13) yields

%BA = 0.14111549201175 < 1/N.

On the other hand, adding 2 to each entry we obtain the new payoff matrix

A B
A 4 4.2
B 3.8 4.9

for which

%BA = 0.14316662601416 > 1/N.

¤

One has to add that there were other stochastic models considered in [6] and the
dynamics of some of them depends only on a− c and b− d.

5. ESS for finite populations

In this section we will study the notion of an evolutionarily stable strategy for
finite populations of large (and unknown) size.

According to Maynard Smith, an ESS is a strategy such that, if all members of
a population adopt it, then no mutant strategy could invade the population under
the influence of natural selection. We extend Maynard Smith’s original definition
by agreeing that an invasion is successful if the frequency of mutants either reaches
above certain threshold value or it always stays relatively large. In the following
definition we give a reformulation of this.

Definition 3. A strategy A is called evolutionarily stable if it will survive an inva-
sion of a small number of mutants B, never lose the leading role in the population,
and the frequency of mutants will eventually be approaching 0.
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This is the point where we depart from some of the previous interpretations of
ESSs (e.g. [10]; [5]). In our extended interpretation, we do not require for the
frequency of mutants in the population to be always decreasing. All we require is
the frequency to be always small and eventually approaching to 0.

Nevertheless, we should point out that the previous definition still dwells in the
realm of infinite populations. In order to fit the study of finite populations, this
definition has to be modified ([10]; [3]; [11]). Neill gave in [5] the following definition
of an ESS for large populations.

Definition 4. A strategy A is called evolutionarily stable in large populations if
a population of A players could not be successfully invaded by a small number of
mutants, provided the population of A individuals is large enough.

Now we can combine our extended interpretation of evolutionary stability (i.e.
Definition 3) with Neil’s definition to give a precise mathematical description of
evolutionarily stable strategies in large populations.

Definition 5. A strategy A is called an evolutionarily stable strategy in large
populations (abbreviated ESSLP ) if, for any mutant strategy B 6= A, any positive
number M0 and any control constant γ > 0, there exists a population threshold
N0 = N0(M0, B, γ) such that for all population sizes N ≥ N0 and for all positive
integers M ≤ M0, the population of N individuals of type A can not be invaded by
M mutants of type B – i.e., under the dynamics (8), xA will be approaching 1 and
will never be smaller than 1− γ.

Our next theorem simply says that the original criteria of Maynard Smith for
an ESS in infinite population almost gives an ESSLP .

Theorem 6. If A is a monomorphic ESS in the sense of Maynard Smith, i.e. it
satisfies

1. a > c, or
2. a = c and b > d,

then A is a monomorphic ESSLP , provided a > 0.

Proof. Fix M0 and γ as in Definition 5. We will work with the ratio NB/NA and
will prove that it goes to 0 and is always smaller than the arbitrarily prescribed
value γ. From this it follows that the strategy A is ESSLP .

We would like to find N0 big enough such that

NB(t)
NA(t)

< γ, for all t ≥ 0, (14)

lim
t→∞

NB(t)
NA(t)

= 0, (15)

where NA and NB are given by (6) and (7) with initial conditions NA(0) ≥ N0,
NB(0) ≤ M0.

By (6) and (7),

NB(t + 1)
NA(t + 1)

− NB(t)
NA(t)

=
NB(t)

NA(t)
(
fA(t) + 1

)
[
fB(t)− fA(t)

]
. (16)

Clearly, NB/NA is decreasing if and only if fB − fA < 0 (recall fA + 1 > 0 because
a > 0 and, due to the interpretation of payoffs, b ≥ −1).
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Assume for a moment that we have already proved “fB − fA < 0 for all t big
enough”. It follows that NB/NA is eventually decreasing and thus there exists
r = limt→∞NB/NA. Going with time t to ∞, the dynamics (16) becomes

0 = r(fB − fA).

It follows that either r = 0 or fB − fA = 0. Since

fB − fA =
1

N − 1

(
NA

(
c− a

)
+ NB

(
d− b

)
+ (a− d)

)

=
NA

NA + NB − 1

(
(c− a) +

NB

NA
(d− b) +

1
NA

(a− d)
)

=
1

1 + r − 1
NA

(
(c− a) + r(d− b) +

1
NA

(a− d)
)

,

we cannot have fA − fB = 0 if r is sufficiently small and NA is sufficiently big.
Thus, in order to establish (14) and (15), we have to prove that we can take N0

big enough to have NA ≥ N0 (and increasing), NB/NA always small, and fB − fA

eventually negative. In order to prove it, we will distinguish two cases.
Case I. Assume c < a, i.e. A is better than B in common contests. We will

prove that once NA is big and NB/NA is small, then NA will only get bigger and
NB/NA will only get smaller. In mathematical terms, we will show the following
fact.

Fact 7. There are γ0 < γ and N0 such that if γ′ < γ0,

NA(t) > N0, and
NB(t)
NA(t)

< γ′ (17)

for time t = 0, then (17) holds for all t ≥ 0. Moreover,

fB(t)− fA(t) < 0 for all t ≥ 0.

Proof of Fact 7. It is enough to take γ0 small enough and N0 big enough to have

a
N0 − 1

N0
+ bγ0 > 0, (18)

(c− a) + γ0(d− b) +
a− d

N0
< 0. (19)

Clearly, conditions (18) and (19) are possible to satisfy because a > 0 and c−a < 0.
Once they hold and NA(t) > N0 and NB(t)/NA(t) < γ′ < γ0, we have

NA(t + 1)−NA(t) = fA(t)NA(t) =
NA(t)2

(N(t)− 1)
·
(

a
NA(t)− 1

NA(t)
+ b

NB(t)
NA(t)

)
> 0,

i.e. NA grows. In particular, it stays above N0. Moreover

fB(t)− fA(t) =
NA(t)

N(t)− 1

(
(c− a) +

NB(t)
NA(t)

(d− b) +
1

NA(t)
(a− d)

)
< 0,

i.e. NB/NA decreases. In particular, it stays below γ′. The Fact 7 is proved. ¤

Case II. a = c and d < b. It follows

fB − fA =
NB

N − 1

(
(d− b) +

1
NB

(a− d)
)

.
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In order to have fB − fA < 0 we need to have NB > N c
B , where N c

B is a critical
value

N c
B = max

{
0,

a− d

b− d

}
.

First, we will prove that if NB is big (bigger than N c
B), NA is big, and NB/NA

is small, then both NB and NA will get bigger while NB/NA will get smaller. In
mathematical terms, we will prove the following.

Fact 8. There are γ0 < γ and N ′
0 such that if γ′ < γ0,

NB(t) > N c
B , NA(t) > N ′

0, and
NB(t)
NA(t)

< γ′ (20)

holds for some t = T0, then (20) holds for all t ≥ T0. Moreover,

fB(t)− fA(t) < 0 for all t ≥ T0.

Proof of Fact 8. It is enough to take γ0 small and N ′
0 large enough to have

c + dγ0 > 0, (21)

a
N ′

0 − 1
N ′

0

+ bγ0 > 0. (22)

The above conditions can be satisfied because a = c > 0. And once they are
satisfied,

NB(t + 1)−NB(t) = fB(t)NB(t)

=
NA(t)NB(t)

N(t)− 1

(
c + d

NB(t)− 1
NA(t)

)
> 0. (23)

This says that NB grows. In particular, it stays above N c
B . Similarly

NA(t + 1)−NA(t) = fA(t)NA(t) =
NA(t)2

N(t)− 1

(
a
NA(t)− 1

NA(t)
+ b

NB(t)
NA(t)

)
> 0.

It means that NA grows. In particular, it stays above N ′
0. The condition fB−fA < 0

follows automatically because NB > N c
B . Thus the Fact 8 is proved. ¤

To finish the case II, we have to deal with the initial condition NB(0) < N c
B .

We have to show that given such NB(0) we can find N0 big enough such that when
NA(0) > N0, there is a time t = T0 when the conditions (20) are satisfied. But it
is enough to take

N0 = max
{

N ′
0,

N c
B

γ′

}
,

where N ′
0 and γ0 are from Fact 8 and γ′ < γ0. Indeed, as in the proof of Fact 8, we

will get that both NA and NB will be increasing. In particular, NA will stay above
N0. Moreover, NB will grow at least linearly, by (21) and (23). Therefore it will
reach the critical value N c

B in a finite time t = T0. For t ≤ T0 we have

NB

NA
≤ N c

B

N0
< γ′.

By the Fact 8, the inequality NB/NA < γ′ is satisfied for t ≥ T0 as well. The proof
of the Theorem 6 is now complete. ¤
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Figure 2. Evolution of NB/NA.

6. Discussion

The critical threshold N crit
B has appeared before ([10]; [5]). In both papers the

authors concluded that, for NB < N crit
B , mutants will invade. The above proof

shows that, for a > 0, mutant strategy B does not invade successfully.
Let us illustrate the above phenomenon by a computer simulation. Consider a

payoff matrix given by

A B
A 1 0.1
B 1 0

Figure 2 shows the evolution of the ratio NB/NA with the initial conditions NB = 1
and NA = 20. One can see that it takes 4 time periods before NB/NA starts to
decrease. This coincides with the fact that, for the above payoff matrix, the critical
threshold is

N c
B = 10,

and the number of mutants NB approximately doubles every generation.
Let us discuss the necessity of the condition a > 0. Consider a single mutant B

in a population of any number of A players and the payoff matrix given by

A B
A 0 0
B 0 −0.5

One checks that the population does not change, because fA = fB = 0. Hence, the
strategy B successfully invaded the population.

A careful examination of the proof of Theorem 6 shows that B does not invade
successfully if a < 0. More precisely, the strategy A will die out later than the
strategy B. Indeed, if c < a, then NB will decrease faster than NA provided we
choose N0 large enough. And if a = c then NB will decrease almost as fast as NA.
By taking N0 large enough, we can assure that mutants will die out first. However,
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since the strategy A would die out anyway (i.e. regardless the invasion of B), we
should not call this an ESS.

7. Conclusions

We define an ESS for large populations in the same spirit as [5] does. We call a
strategy A an ESSLP , if the population of A players cannot be successfully invaded
by a small number of mutants provided the original population was large enough.
The knowledge of the exact size of the population is not required. We propose an
alternative interpretation of noninvadibility, and we believe that our interpretation
– requiring only the eventual outnumbering rather than an immediate response
to the invasion – is more biologically appropriate because evolution is happening
on a large time scale. Surprisingly, with this shift of an interpretation we see
that Maynard Smith’s criteria works for finite populations despite the existence
of previous “counterexamples”. We only need to add one more requirement: “the
strategy A is prosperous by itself”. We suggest to take it as a proof of a tremendous
anticipation and insight Maynard Smith had.

We propose the following criteria for evolutionary stability of a strategy A:

(1) a ≥ c,
(2) if a = c, then b > d,
(3) a > 0,

for all strategies B 6= A. Conditions (1) and (2) are identical to Maynard Smith’s
original definition and, as discussed in [2], mean the following: (1) B does no better
than A in its common contests against A; and (2) if B does as well as A in those
contests, then it does worse in its rare contests against itself. With the condition
(3) we added a dependence on the payoff values. We argue that it was necessary
in finite populations according the results in Sections 3 and 4 – both deterministic
and stochastic variants of Taylor and Jonker dynamics in finite populations depend
on the actual payoff values.
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