REVERSIBILITY FOR DIFFUSIONS VIA QUASI-INVARIANCE
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ABSTRACT. Why is the drift coefficient b associated with a reversible diffusion
on R? given by a gradient? Our explanation is inspired by Handa’s recent
results on reversibility and quasi-invariance of the invariant measure.

1. INTRODUCTION
We look at the problem of reversibility for operators of the form

d

Lf(r) = 3Af@) + Y b@dif(@), f € CR(RY. (1)

i=1

For simplicity we assume that the function b; is smooth for every 1 <1i <d.
We call L reversible if there exists a measure m on R so that

/ (LF)(@)g(x) m(dz) = / (Lg)(@)f(x) m(dz), f.g € CF(RY),

This terminology derives from the time reversal property of the corresponding
diffusion process X = (X;), with initial state chosen randomly using the measure
m. If the generator L of X is reversible, and £(Xy) = m, then for any T > 0,
the two finite horizon processes (X;)o<i<r and (Xr_;)o<¢<r have identical finite-
dimensional distributions. That is, X; has the same probabilistic properties whether
the time parameter ¢ runs forwards or backwards.

A classical result of Kolmogorov [5] tells us that a diffusion process in R?
with infinitesimal generator L is reversible if and only if the vector field b(z) =
(b1(z),...,bg(x)) is conservative, i.e., given by a gradient. In this note, we offer an
alternative proof using the concept of quasi-invariance.

Here is some notation and terminology that we use throughout the paper. A
measure m is a non-zero Borel measure that is finite on compact sets. By “transfor-
mation” we will mean a measurable bijection with measurable inverse. The space
C>(R?) is the space of smooth functions on R?, while C2°(R?) are the smooth
functions with compact support. The brackets (z,y) will refer to the usual inner
product on R¢.
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2. QUASI-INVARIANT MEASURES

Let R? be equipped with its Borel o-algebra B(R%). Let S = {S,},ev denote
a group of transformations on R?, indexed by a vector space V. In other words,
for each v € V, the mapping S, : R? — R? is a transformation, and the following
properties hold:

Suto(®) = Su(Su(x)), So(x) = 2.

Since these mappings are bimeasurable, we can define the image measure by m o
Sy(B) := m(S,(B)). This image measure is characterized by the fact that for all
g € C&(RY)

/ 9(S(®)) (m o S,)(dx) = / o(a) m(dz). )

Definition 1. Let S = {S,},ev be a transformation group on (R4, B(R?)). A
measure m is called S-quasi-invariant if, for each v € V, the measures m and
mo S, are equivalent.

If m is S-quasi-invariant, then we can write the density of m o S, with respect
to m, for some measurable function A(v, ), as
W(m) =00 meas.,
and we say that m is S-quasi-invariant with cocycle A. This terminology is ex-
plained by the proposition below, where (3) is called the cocycle identity. See [3],
[4], and [6] for similar results in other contexts and [1] for more information on
cocycles.

Proposition 1. If m is S-quasi-invariant with cocycle A, then for any u,v € V,
we have:
Alu+v,2) = Ay, Sy(z)) + Alv,z), m-a.s. (3)

Proof. For every v € V the measures m and m o S, are mutually absolutely con-
tinuous. Then on one hand, from the definition of Radon-Nikodym density we
have
dm o Sy (z) = AT dm(z).

On the other hand, using the transformation group properties we have

dmo Sytv(z) = dmoS,(S,(x))
S @) g (S, ()
eA(u,Sv (:v))e/\('u,x)dm(x)
eA(u7S,U (w))-&-/\(v,a;)dm(x)

Hence eMutv2) = gA(w,Su(@)+A(v:2) m_a 5. which gives the result. [l

3. REVERSIBILITY AND (QUASI-INVARIANCE

In the remainder of the paper we take the group S of transformations to be
Sy(z) := x + v for v € R% The next proposition provides a host of examples of
quasi-invariant measures on R¢.



REVERSIBILITY FOR DIFFUSIONS VIA QUASI-INVARIANCE 3

Proposition 2. Let U : RY — R be a continuously differentiable function. The
measure m(dx) = eV @ dx is S-quasi-invariant with cocycle

Aw, z) = /0 (VU (Spo()), 0) dt. )

Proof. Define A(v,x) = U(S,(z)) — U(z), so that for any v € R,
(moS,)(dx) = V(S () 1 — U(Su(@)=U(2) U(2) 10 — eA(”’””)m(de
so m is S-quasi-invariant with cocycle A. Note that

d

1
U(Sy(z)) = U(z) = U(Sy()) = U(So(z)) = /0 5 U (Seo(@))dt.

We finish by using the chain rule to obtain 4U (S, (z)) = (VU (Sw(2)), v). O

Let us comment on how this result helps our intuition for the reversible case.
Consider an operator L as in (1), and assume that the measure m is reversible
for L. Formally, m should be given by m(dz) = V@) dg for some “potential
function” U. Then by the result above m is S-quasi-invariant with cocycle (4).
Furthermore, we know from Kolmogorov’s criterion that in the reversible case we
have b(z) = £ VU (z), where b(z) is the drift of the operator L. So we expect that

Alv,z) = 2/0 (b(Sw(x)),v) dt. (5)

Our main theorem, Theorem 1, makes this intuition rigorous by showing that
a measure m on R% is a reversible measure for the operator L if and only if m is
quasi-invariant under the group {Sy},cra of translations with cocycle (5).

The following three technical lemmas will be used in proving Theorem 1.

Lemma 1. Let A be given by (5). Fiz an arbitrary v € RY. For any given g €
C>(R?) and t € R, define

9¢(x) = g(Seo(x)) exp{A(tv, z)}.
Then g; € C°(R?) for allt € R, and
%gt(x) =2(b(x),v)ge(x) + (v, Vge (). (6)

Proof. Set Fy(z) = A(tv,z) and rewrite g¢(z) = g(Sio(x))ef ). From (5) we see
that x — A(v,z) is smooth so that F; € C®°(R?) and g; € C2°(R?). The product
rule gives us

Goe) = | Gasulan| " 4 g0 SR ")
Voz) = [Vo(Su(@)] €@ + g,(2)VF, (). (®)

By the chain rule
4 (Sia(@)) = (v, Vg(Suu(@)). (9)

%g
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Take the inner product of (8) with v, and subtract from (7) (using (9)) to get

d d
G0 = ©.Vaa) = o) (A - 0 IRG@)). (0
So we need to analyze the function F;. A change of variables gives
t
Fy(x) =2 / (b(Syo (), v) dr. (11)
0

Using the auxiliary function h(z) := (b(x),v), we differentiate (11) to get
VFE(z) =2 /t V(ho Sp)(x)dr.
Then using the same calculation as in 0(9) with h instead of g we get
(v, VE()) = 2/0t<v7V(h 0 Syo)(z)) dr = 2/; diih(sm(x)) dr

= 2[h(Stw(x)) = h(So(x))] = 2[(b(Stu(2)), v) = (b(x), v)]

d
= LR - 2.0,
Substituting this back into (10) gives the result. O

Lemma 2. Let L be an operator of the form (1), and let m be a measure on R%.
If m is reversible for L, then

/Rd Lf(z)m(dz) =0, fecCZ(RY. (12)

Proof. Let f € C2°(R%) be arbitrary. Since both f and Lf have compact support,
we can find an open ball B,.(0) centered at the origin with radius big enough to
contain the supports of both these functions. Take a function g € C°(R?) such

that g =1 on B,(0). We have

[ tt@midn) = [ Lf@g)m(iz) = [ f@)Lga)mida) =0,
R¢ R¢ Rd
where in the last step we use the fact that Lg = 0 on B,.(0). O

Lemma 3. Let L be an operator of the form (1), and let m be a measure on R?.
Then m is a reversible measure for L if and only if, for any f,g € C°(R?),

J@n@gtaymidn) = = [(95@), Vg(a)) m(do). (13)
Proof. Suppose that m is reversible for L, and fix f,g € C>°(R%), so that
J@n@gte) mids) = [ f)(Lg) (@) mlde). (14)
Now, a direct computation shows that
(Lf)(@)g(x) + f(z)(Lg)(x) — L(fg)(z) = =(Vf(z), Vg(x)). (15)

Also, fg € C(RY), so [ L(fg)(z) m(dz) = 0 by (12). Then integrating both sides
of (15) with respect to m we get (13).
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Conversely, assume that (13) holds. Since the right hand side of this equation is
symmetric in f and g, this implies that the left hand side is also symmetric; i.e.,
(14) holds. O

Theorem 1. Let L be an operator of the form (1), and let m be a measure on R?.
Then m is a reversible measure for L if and only if m is quasi-invariant under the
group {Sy}yera of all translations with cocycle

1
Av,z) =2 /0 (b(Sio (@), v) dt. (16)

Proof. Let us take g € C2°(R?) and v € R? arbitrary. Integrating both sides of (6)
with respect to m we get

[t varmia) + 5 [0, Va@)mian) = 5 [ Lo mi).

Consider a ball B,.(0) big enough to contain the supports of all the functions g,
for 0 <t <1 (see Lemma 1 for the definition of g;), and take ¢ € C°(R9) with
p(x) = 1 for x € B,(0). Now define the function f(z) := (z,v)p(x). We may
regard this kind of function f as a “truncated polynomial” of first degree. Note
that for z € B,(0) we have f(z) = (z,v), Vf(z) = v, and Lf(zx) = (b(z),v). For
such f

1d

Jan@amts) + 5 [(95@). Va)mtn) =5 4 [a@mns). o7)

We know that g; € C°(R?) by Lemma 1.

If m is a reversible measure for L, then the left-hand side of (17) vanishes by
(13). Therefore [ g¢(x) m(dz) is constant in ¢ and in particular [ gi(z)m(dz) =
J go(x) m(dz), or equivalently

/ 95, (2)) exp{A(v, )} m(dz) = / o) m(dz).

This gives us (2) with the appropriate density, and therefore m is quasi-invariant
under S with the desired cocycle.

Conversely, assume that the measure m is quasi-invariant under S with the
given cocycle A. Fix an arbitrary g € C°(R%), and consider equation (17) for g
and f(z) = (z,v)¢(x) for some v € R%. It is clear that the right-hand side of (17)
vanishes (see Lemma 1 and equation (2)). Thus (13) holds in this case.

Next we note that, for fixed g € C°(RY), the set of functions f € C°(R?)
that satisfy equation (13) is closed under multiplication. To see this, assume that
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f1, f2 € C°(R?) satisfy (13). Then using (15) with f; fo replacing f we have
/ (Lfif2)(2)g(z) m(dz) = / (Lf1)(x) fa(x)g(x) m(dz)
+ [ A@(LR@g() m(da)

+ / (V 11(2), V fo()) g ) m(da)

_ _% / (V1(2), V(fag)(x)) m(dx)
g / (V fo(2), V(f1g) (x)) m(d)

+ [(V12@). 9 fla)g(a) md)
= 5 [ 2@, V@) m(dz)

L A (0, Tt i

1

= 5 [ (VUi f)(a), V(o) mda),

so the product f; fo also satisfies (13).

Thus (13) can be extended to all functions f(z) = (x,v1) - (z,vk)p(z) with
v1,...,v, € RY Using the linearity in f of (13) it follows that this expression
must be true for all “truncated polynomials” f of arbitrary degree. A suitable
approximation procedure (see e.g. [2, Appendix 7]) shows that (13) is valid for
all f € C®(RY). Since g € CX(R?) was fixed arbitrarily, this establishes the
reversibility of m. ([l

As consequence, we give now our explanation that an operator L as in (1) is
reversible precisely when its drift b is of gradient form.

Corollary 1. The operator L as in (1) has a non-zero reversible measure m, if
and only if b has a potential, i.e., there is a function F : R — R such that b= VF.

Proof. If b= VF, then set U(x) = 2F(z) and m(dz) = eV(*)dx. Proposition 2 and
Theorem 1 show that m is reversible for L.

Now suppose that L has a non-zero reversible measure m. Define A as in (16)
using the function b associated with L. By Proposition 1 and Theorem 1, A satisfies
the cocycle identity:

Alu+v,2) = AMu,z +v) + Alv,z), m-as. (18)

On the other hand, Theorem 1 also says that m is quasi-invariant with respect to
shifts, therefore it has full support on R%. Since both sides of the equation (18) are
continuous functions, the equation must be true for all z € R?.

To show that b has a potential it is enough to prove that

Dy (b(),u) = 0, (b(x),v), wu,v € R 2z ecR (19)

For if (19) holds, then taking u = e;, v = e; we get 0;b;(x) = 9;b;(x), and this
condition is sufficient for b to have a potential, since the domain R? is simply
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connected. Now let us establish (19). From the cocycle identity we get
A,z +v) + Alv,z) = Ao,z + u) + Alu, x),

or equivalently
Au,z+v) — Au,z) = Alv,z + u) — Av, x).

Then using the definition of A we get

/1<b(x—|—v+tu) — bz + tu),u)dt = /1<b(x+u—|—tv) —b(x + tv),v) dt.
0 0

Replace u by du and v by ev, for some d,¢ > 0. Then

/1 (b(x + ev + 0tu) — b(x + dtu), u) gt — /1 (b(x + du + etv) — b(x + etv), v) it

0 € o 4 ’

and letting first § — 0 and then ¢ — 0 we get 9, (b(z),u) = 9, (b(x),v). O
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