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Abstract. Why is the drift coefficient b associated with a reversible diffusion
on Rd given by a gradient? Our explanation is inspired by Handa’s recent

results on reversibility and quasi-invariance of the invariant measure.

1. Introduction

We look at the problem of reversibility for operators of the form

Lf(x) =
1

2
∆f(x) +

d∑
i=1

bi(x)∂if(x), f ∈ C∞c (Rd). (1)

For simplicity we assume that the function bi is smooth for every 1 ≤ i ≤ d.
We call L reversible if there exists a measure m on Rd so that∫

(Lf)(x)g(x)m(dx) =

∫
(Lg)(x)f(x)m(dx), f, g ∈ C∞c (Rd).

This terminology derives from the time reversal property of the corresponding
diffusion process X = (Xt), with initial state chosen randomly using the measure
m. If the generator L of X is reversible, and L(X0) = m, then for any T > 0,
the two finite horizon processes (Xt)0≤t≤T and (XT−t)0≤t≤T have identical finite-
dimensional distributions. That is, Xt has the same probabilistic properties whether
the time parameter t runs forwards or backwards.

A classical result of Kolmogorov [5] tells us that a diffusion process in Rd

with infinitesimal generator L is reversible if and only if the vector field b(x) =
(b1(x), . . . , bd(x)) is conservative, i.e., given by a gradient. In this note, we offer an
alternative proof using the concept of quasi-invariance.

Here is some notation and terminology that we use throughout the paper. A
measure m is a non-zero Borel measure that is finite on compact sets. By “transfor-
mation” we will mean a measurable bijection with measurable inverse. The space
C∞(Rd) is the space of smooth functions on Rd, while C∞c (Rd) are the smooth
functions with compact support. The brackets 〈x, y〉 will refer to the usual inner
product on Rd.
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2. Quasi-invariant measures

Let Rd be equipped with its Borel σ-algebra B(Rd). Let S = {Sv}v∈V denote
a group of transformations on Rd, indexed by a vector space V . In other words,
for each v ∈ V , the mapping Sv : Rd → Rd is a transformation, and the following
properties hold:

Su+v(x) = Su(Sv(x)), S0(x) = x.

Since these mappings are bimeasurable, we can define the image measure by m ◦
Sv(B) := m(Sv(B)). This image measure is characterized by the fact that for all
g ∈ C∞c (Rd) ∫

g(Sv(x)) (m ◦ Sv)(dx) =

∫
g(x)m(dx). (2)

Definition 1. Let S = {Sv}v∈V be a transformation group on (Rd,B(Rd)). A
measure m is called S-quasi-invariant if, for each v ∈ V , the measures m and
m ◦ Sv are equivalent.

If m is S-quasi-invariant, then we can write the density of m ◦ Sv with respect
to m, for some measurable function Λ(v, x), as

d(m ◦ Sv)

dm
(x) = eΛ(v,x), m-a.s.,

and we say that m is S-quasi-invariant with cocycle Λ. This terminology is ex-
plained by the proposition below, where (3) is called the cocycle identity. See [3],
[4], and [6] for similar results in other contexts and [1] for more information on
cocycles.

Proposition 1. If m is S-quasi-invariant with cocycle Λ, then for any u, v ∈ V ,
we have:

Λ(u+ v, x) = Λ(u, Sv(x)) + Λ(v, x), m-a.s. (3)

Proof. For every v ∈ V the measures m and m ◦ Sv are mutually absolutely con-
tinuous. Then on one hand, from the definition of Radon-Nikodym density we
have

dm ◦ Su+v(x) = eΛ(u+v,x)dm(x).

On the other hand, using the transformation group properties we have

dm ◦ Su+v(x) = dm ◦ Su(Sv(x))

= eΛ(u,Sv(x))dm(Sv(x))

= eΛ(u,Sv(x))eΛ(v,x)dm(x)

= eΛ(u,Sv(x))+Λ(v,x)dm(x).

Hence eΛ(u+v,x) = eΛ(u,Sv(x))+Λ(v,x) m-a.s., which gives the result. �

3. Reversibility and Quasi-invariance

In the remainder of the paper we take the group S of transformations to be
Sv(x) := x + v for v ∈ Rd. The next proposition provides a host of examples of
quasi-invariant measures on Rd.
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Proposition 2. Let U : Rd → R be a continuously differentiable function. The
measure m(dx) = eU(x)dx is S-quasi-invariant with cocycle

Λ(v, x) =

∫ 1

0

〈∇U(Stv(x)), v〉 dt. (4)

Proof. Define Λ(v, x) = U(Sv(x))− U(x), so that for any v ∈ Rd,

(m ◦ Sv)(dx) = eU(Sv(x))dx = eU(Sv(x))−U(x)eU(x)dx = eΛ(v,x)m(dx),

so m is S-quasi-invariant with cocycle Λ. Note that

U(Sv(x))− U(x) = U(Sv(x))− U(S0(x)) =

∫ 1

0

d

dt
U(Stv(x))dt.

We finish by using the chain rule to obtain d
dtU(Stv(x)) = 〈∇U(Stv(x)), v〉. �

Let us comment on how this result helps our intuition for the reversible case.
Consider an operator L as in (1), and assume that the measure m is reversible
for L. Formally, m should be given by m(dx) = eU(x)dx for some “potential
function” U . Then by the result above m is S-quasi-invariant with cocycle (4).
Furthermore, we know from Kolmogorov’s criterion that in the reversible case we
have b(x) = 1

2∇U(x), where b(x) is the drift of the operator L. So we expect that

Λ(v, x) = 2

∫ 1

0

〈b(Stv(x)), v〉 dt. (5)

Our main theorem, Theorem 1, makes this intuition rigorous by showing that
a measure m on Rd is a reversible measure for the operator L if and only if m is
quasi-invariant under the group {Sv}v∈Rd of translations with cocycle (5).

The following three technical lemmas will be used in proving Theorem 1.

Lemma 1. Let Λ be given by (5). Fix an arbitrary v ∈ Rd. For any given g ∈
C∞c (Rd) and t ∈ R, define

gt(x) = g(Stv(x)) exp{Λ(tv, x)}.

Then gt ∈ C∞c (Rd) for all t ∈ R, and

d

dt
gt(x) = 2〈b(x), v〉gt(x) + 〈v,∇gt(x)〉. (6)

Proof. Set Ft(x) = Λ(tv, x) and rewrite gt(x) = g(Stv(x))eFt(x). From (5) we see
that x 7→ Λ(v, x) is smooth so that Ft ∈ C∞(Rd) and gt ∈ C∞c (Rd). The product
rule gives us

d

dt
gt(x) =

[
d

dt
g(Stv(x))

]
eFt(x) + gt(x)

d

dt
Ft(x) (7)

∇gt(x) = [∇g(Stv(x))] eFt(x) + gt(x)∇Ft(x). (8)

By the chain rule
d

dt
g(Stv(x)) = 〈v,∇g(Stv(x))〉. (9)
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Take the inner product of (8) with v, and subtract from (7) (using (9)) to get

d

dt
gt(x)− 〈v,∇gt(x)〉 = gt(x)

(
d

dt
Ft(x)− 〈v,∇Ft(x)〉

)
. (10)

So we need to analyze the function Ft. A change of variables gives

Ft(x) = 2

∫ t

0

〈b(Srv(x)), v〉 dr. (11)

Using the auxiliary function h(x) := 〈b(x), v〉, we differentiate (11) to get

∇Ft(x) = 2

∫ t

0

∇(h ◦ Srv)(x) dr.

Then using the same calculation as in (9) with h instead of g we get

〈v,∇Ft(x)〉 = 2

∫ t

0

〈v,∇(h ◦ Srv)(x)〉 dr = 2

∫ t

0

d

dr
h(Srv(x)) dr

= 2 [h(Stv(x))− h(S0(x))] = 2 [〈b(Stv(x)), v〉 − 〈b(x), v〉]

=
d

dt
Ft(x)− 2〈b(x), v〉.

Substituting this back into (10) gives the result. �

Lemma 2. Let L be an operator of the form (1), and let m be a measure on Rd.
If m is reversible for L, then∫

Rd

Lf(x)m(dx) = 0, f ∈ C∞c (Rd). (12)

Proof. Let f ∈ C∞c (Rd) be arbitrary. Since both f and Lf have compact support,
we can find an open ball Br(0) centered at the origin with radius big enough to
contain the supports of both these functions. Take a function g ∈ C∞c (Rd) such
that g = 1 on Br(0). We have∫

Rd

Lf(x)m(dx) =

∫
Rd

Lf(x)g(x)m(dx) =

∫
Rd

f(x)Lg(x)m(dx) = 0,

where in the last step we use the fact that Lg = 0 on Br(0). �

Lemma 3. Let L be an operator of the form (1), and let m be a measure on Rd.
Then m is a reversible measure for L if and only if, for any f, g ∈ C∞c (Rd),∫

(Lf)(x)g(x)m(dx) = −1

2

∫
〈∇f(x),∇g(x)〉m(dx). (13)

Proof. Suppose that m is reversible for L, and fix f, g ∈ C∞c (Rd), so that∫
(Lf)(x)g(x)m(dx) =

∫
f(x)(Lg)(x)m(dx). (14)

Now, a direct computation shows that

(Lf)(x)g(x) + f(x)(Lg)(x)− L(fg)(x) = −〈∇f(x),∇g(x)〉. (15)

Also, fg ∈ C∞c (Rd), so
∫
L(fg)(x)m(dx) = 0 by (12). Then integrating both sides

of (15) with respect to m we get (13).
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Conversely, assume that (13) holds. Since the right hand side of this equation is
symmetric in f and g, this implies that the left hand side is also symmetric; i.e.,
(14) holds. �

Theorem 1. Let L be an operator of the form (1), and let m be a measure on Rd.
Then m is a reversible measure for L if and only if m is quasi-invariant under the
group {Sv}v∈Rd of all translations with cocycle

Λ(v, x) = 2

∫ 1

0

〈b(Stv(x)), v〉 dt. (16)

Proof. Let us take g ∈ C∞c (Rd) and v ∈ Rd arbitrary. Integrating both sides of (6)
with respect to m we get

∫
〈b(x), v〉gt(x)m(dx) +

1

2

∫
〈v,∇gt(x)〉m(dx) =

1

2

∫
d

dt
gt(x)m(dx).

Consider a ball Br(0) big enough to contain the supports of all the functions gt,
for 0 ≤ t ≤ 1 (see Lemma 1 for the definition of gt), and take ϕ ∈ C∞c (Rd) with
ϕ(x) = 1 for x ∈ Br(0). Now define the function f(x) := 〈x, v〉ϕ(x). We may
regard this kind of function f as a “truncated polynomial” of first degree. Note
that for x ∈ Br(0) we have f(x) = 〈x, v〉, ∇f(x) = v, and Lf(x) = 〈b(x), v〉. For
such f

∫
(Lf)(x)gt(x)m(dx) +

1

2

∫
〈∇f(x),∇gt(x)〉m(dx) =

1

2

d

dt

∫
gt(x)m(dx). (17)

We know that gt ∈ C∞c (Rd) by Lemma 1.

If m is a reversible measure for L, then the left-hand side of (17) vanishes by
(13). Therefore

∫
gt(x)m(dx) is constant in t and in particular

∫
g1(x)m(dx) =∫

g0(x)m(dx), or equivalently

∫
g(Sv(x)) exp{Λ(v, x)}m(dx) =

∫
g(x)m(dx).

This gives us (2) with the appropriate density, and therefore m is quasi-invariant
under S with the desired cocycle.

Conversely, assume that the measure m is quasi-invariant under S with the
given cocycle Λ. Fix an arbitrary g ∈ C∞c (Rd), and consider equation (17) for g
and f(x) = 〈x, v〉ϕ(x) for some v ∈ Rd. It is clear that the right-hand side of (17)
vanishes (see Lemma 1 and equation (2)). Thus (13) holds in this case.

Next we note that, for fixed g ∈ C∞c (Rd), the set of functions f ∈ C∞c (Rd)
that satisfy equation (13) is closed under multiplication. To see this, assume that
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f1, f2 ∈ C∞c (Rd) satisfy (13). Then using (15) with f1f2 replacing f we have∫
(Lf1f2)(x)g(x)m(dx) =

∫
(Lf1)(x)f2(x)g(x)m(dx)

+

∫
f1(x)(Lf2)(x)g(x)m(dx)

+

∫
〈∇f1(x),∇f2(x)〉g(x)m(dx)

= −1

2

∫
〈∇f1(x),∇(f2g)(x)〉m(dx)

−1

2

∫
〈∇f2(x),∇(f1g)(x)〉m(dx)

+

∫
〈∇f1(x),∇f2(x)〉g(x)m(dx)

= −1

2

∫
f2(x)〈∇f1(x),∇g(x)〉m(dx)

−1

2

∫
f1(x)〈∇f2(x),∇g(x)〉m(dx)

= −1

2

∫
〈∇(f1f2)(x),∇g(x)〉m(dx),

so the product f1f2 also satisfies (13).
Thus (13) can be extended to all functions f(x) = 〈x, v1〉 · · · 〈x, vk〉ϕ(x) with

v1, . . . , vk ∈ Rd. Using the linearity in f of (13) it follows that this expression
must be true for all “truncated polynomials” f of arbitrary degree. A suitable
approximation procedure (see e.g. [2, Appendix 7]) shows that (13) is valid for
all f ∈ C∞c (Rd). Since g ∈ C∞c (Rd) was fixed arbitrarily, this establishes the
reversibility of m. �

As consequence, we give now our explanation that an operator L as in (1) is
reversible precisely when its drift b is of gradient form.

Corollary 1. The operator L as in (1) has a non-zero reversible measure m, if
and only if b has a potential, i.e., there is a function F : Rd → R such that b = ∇F .

Proof. If b = ∇F , then set U(x) = 2F (x) and m(dx) = eU(x)dx. Proposition 2 and
Theorem 1 show that m is reversible for L.

Now suppose that L has a non-zero reversible measure m. Define Λ as in (16)
using the function b associated with L. By Proposition 1 and Theorem 1, Λ satisfies
the cocycle identity:

Λ(u+ v, x) = Λ(u, x+ v) + Λ(v, x), m-a.s. (18)

On the other hand, Theorem 1 also says that m is quasi-invariant with respect to
shifts, therefore it has full support on Rd. Since both sides of the equation (18) are
continuous functions, the equation must be true for all x ∈ Rd.

To show that b has a potential it is enough to prove that

∂v〈b(x), u〉 = ∂u〈b(x), v〉, u, v ∈ Rd, x ∈ Rd. (19)

For if (19) holds, then taking u = ei, v = ej we get ∂jbi(x) = ∂ibj(x), and this
condition is sufficient for b to have a potential, since the domain Rd is simply
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connected. Now let us establish (19). From the cocycle identity we get

Λ(u, x+ v) + Λ(v, x) = Λ(v, x+ u) + Λ(u, x),

or equivalently

Λ(u, x+ v)− Λ(u, x) = Λ(v, x+ u)− Λ(v, x).

Then using the definition of Λ we get∫ 1

0

〈b(x+ v + tu)− b(x+ tu), u〉 dt =

∫ 1

0

〈b(x+ u+ tv)− b(x+ tv), v〉 dt.

Replace u by δu and v by εv, for some δ, ε > 0. Then∫ 1

0

〈b(x+ εv + δtu)− b(x+ δtu), u〉
ε

dt =

∫ 1

0

〈b(x+ δu+ εtv)− b(x+ εtv), v〉
δ

dt,

and letting first δ → 0 and then ε→ 0 we get ∂v〈b(x), u〉 = ∂u〈b(x), v〉. �
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