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Lifting the Taung Energetic motion detection

child

SIR — The Taung child, Australopithecus
africanus', is a key fossil to our under-
standing of hominid evolution. It is, how-
ever, accompanied by an exceptional
fossil fauna comprised of mainly relative-
ly small animals. This has led to much
analysis and speculation about the poss-
ible agent responsible for the accumula-
tion of this fauna®. Large carnivores or
even the ape-man himself have been
proposed as the most likely candidates.
Recently, Berger and Clarke® suggested
that the primary collecting agent of the
Taung child and the associated fauna was
a large bird of prey. Support for this
hypothesis was obtained by comparison
of the Taung fauna with that found below
nests of large African eagles The most
likely candidate species is the crowned
eagle Stephanoaetus coronatus®, which
was anecdotally reported to have
attacked, and nearly killed, a 7-year-old
child of approximately 20 kg. The body
mass of the Taung child was probably
10-12 kg (ref. 3).

I used biomechanical information*”
about bird load-lifting capacity to test
whether a raptor the size of a crowned
eagle would be capable of carrying a prey
the weight of the Taung hominid. During
a short anaerobic sprint exertion, the
load-lifting capacity of a crowned eagle is
approximately 6.1 kg (ref. 4; assuming a
4.12-kg eagle body mass®), well below the
body mass of the Taung child. In sustained
flapping flight, the fuel load-carrying
capacity of an eagle is only about 1.7 kg
(ref. 5). However, because fat used as fuel
is uniformly distributed around the body,
drag is minimized compared with a load
of prey held in the talons. Therefore, this
represents an upper limit to the sustain-
able load-carrying capacity. The distance
between the hominid savannah habitat
and the deposition site was probably
substantial’, and so an eagle could have
carried little more than the skull over this
distance.

Biomechanics thus show that if a large
bird of prey collected the Taung fauna,
the Taung child itself must have been
dismembered before being brought to the
eagle’s nest.
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SIR — Motion detection has been widely
investigated using random-dot kinemato-
grams (RDKs). Under appropriate con-
ditions, motion may be seen between a
random-dot image and its displaced
counterpart'. Here we attempt to discrim-
inate between the two classes of model
that can account for this.

Proponents of energy-based models
argue that low-level motion sensors detect
motion energy at a range of spatial scales”.
The directional outputs of the detectors
are later combined to indicate the overall
direction of movement of an object. Alter-
natively, edge-based models suggest that
the edges in an image are located and
then motion is detected at a single scale by
forming correspondences between dis-
placed edges®. Both models can account
for the observation that the maximum
displacement for motion detection (d,,.x)
increases when a RDK is low-pass
filtered. For energy-based models, this is
because low-spatial-frequency detectors
have larger receptive fields and tolerate
larger spatial displacements. For edge-
based models the increase is because low-
pass filtering increases the separation
between edges.

dax 18 surprisingly small for white noise,
given the presence of low spatial frequen-
cies', while the absence of an effect on
dmax Of initial low-pass filtering is unex-
pected’. Proponents of energy-based
models must resort to special pleading to
explain these effects (that is, that high
spatial frequencies mask low*). In edge-
based models, direction discrimination is
based on the edges in the pattern after
initial blurring by the visual system. The
low-pass filtering of the stimulus must
exceed that of the visual system before

FIG. 1 The top row illustrates
stimuli used. a, An 8bit
(gaussian) white-noise field,
filtered to have a 1/f relation-
ship between spatial frequen-
cy and amplitude; b, low-
pass-filtered version of a; c,
high-pass-filtered version of a.
Contrast has been normalized
for illustrative purposes, but
in the experiment contrast
was not normalized. The
second row shows the edges
in a one-dimensional section
through each noise sample
after low-pass filtering to sim-
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there is any noticeable effect. A corner-
stone of the argument supporting edge-
based models is the recent finding that
observers could not see motion between
a binary noise image and some of its
low-pass-filtered counterparts’. In these
images, there is little correspondence
between the location of the edges in the
two frames, so edge-based models predict
that motion would not be detected. There
is motion energy at common (low) spatial
frequencies, however, so energy-based
models predict that motion would be seen.

White-noise patterns in RDKs general-
ly contain equal energy at all spatial
frequencies. It has been suggested that
the spatial characteristics of cortical cells
are matched to the spectra of natural
images, thus providing an efficient repre-
sentation of the natural environment®’.
Both simple and complex cortical cells
have frequency bandwidths that are
approximately constant in octaves®’
Thus, white-noise patterns produce activ-
ity skewed towards high spatial frequen-
cies because the frequency bandwidth of
cortical cells increases with peak frequen-
cy; cells tuned to high spatial frequencies
respond the most. To provide a more
appropriate test, noise patterns were
filtered to the 1/f magnitude spectrum
characteristic of natural images, where
magnitude scales inversely with spatial
frequency. The response of visual cortex
cells to 1/f patterns is therefore equal
across spatial scales and the neural repre-
sentation is broad and flat.

We measured d,, using 1/f noise
patterns which were subsequently low-pass
filtered or high-pass filtered (Fig. 1, top
row). The observer reported the direction
of displacement in each trial. Direction
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ulate visual blurring. The edges were located at the zero crossings in the second spatial deriva-
tive of the blurred luminance profiles®®. There is little correlation between the edges in each
pattern, and any edge-matching algorithm would be unable to identify correct matches for
motion detection between filtered and unfiltered 1/f patterns. It may be possible to match the
peaks between the 1/f and the low-pass image, but it would not be possible to match them
between the 1/f and the high-pass image. Four main conditions were examined: both images
were filtered in the same cut-off (low- or high-pass); one image was 1/f noise and the other was
filtered (low- or high-pass). The order in which the images were presented was examined sep-
arately (full experimental details are available on request). Direction discrimination was possible
between broad-band 1/f noise and filtered 1/f noise, despite the absence of correlation

between the edges in these images.
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FIG. 2 d.,ax @s a function of the cut-off frequen-
cy of filtered 1/f noise patterns. dn,, corre-
sponds to the displacement at which there
were 20% errors in direction discrimination.
The data are shown for a naive observer (sim-
ilar data are available on request for a second
observer). a, Low-pass data; b, high-pass data.
The cut-off of the filter is shown on the x-axis in
cycles per degree. For the low-pass condition,
16 ¢ deg™ represents the unfiltered 1/f noise
pattern (the Nyquist limit of the image). For the
high-pass condition, O ¢ deg™ represents the
unfiltered 1/f noise pattern. Graphs show esti-
mates of d, when: both images were filtered
(A); when the first image was broad-band (1/f)
and the second was filtered ((3); and when
the first image was filtered and the second was
1/f(O). The broken line shows the estimate of
dnax for the unfiltered 8-bit noise. Error bars
show + 1 s.e.; d,,a Was relatively unaffected by
low-pass filtering except when the cut-off was
very low, where there was a slight increase in
the mixed image sequence. When either image
was high-pass filtered, d,,, scaled with the low-
est spatial frequencies in the high-pass image.
Observers could not see motion between unfil-
tered 1/f noise and high-pass patterns with the
highest cut-off, which may be related to the low
contrast of the high-pass-filtered image.

discrimination was measured for displace-
ments between two images which were
either both filtered or only one of which
was filtered (the other was 1/f). When one
of the images was filtered and the other
was broad-band, direction discrimination
was possible under almost all conditions
(Fig. 2). In these images, there was little or
no correlation between the edges in each
image (Fig. 1, bottom row), but there was
motion energy at common spatial scales.
Furthermore, motion may be seen between
unfiltered 1/f and band-pass-filtered 1/f
patterns of various central frequencies,
suggesting that the human motion system
has equal access to information across
spatial scales for natural images".
Although direction discrimination may,
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in principle, be performed by a high-level
feature-tracking mechanism'', this cannot
explain motion detection between unfil-
tered and filtered images. These results
show that low-level motion detectors are
energy-based and reconcile the different
explanations of the lack of effect on d,,,
of initial low-pass filtering. Such results
are expected when the response bias to
high spatial frequencies in white noise
patterns is considered. The neural repre-
sentation of white noise is effectively high-
pass-filtered. It is therefore unsurprising
that high spatial frequencies are dominant
and that motion may not be seen between
white noise patterns and their low-pass-fil-
tered counterparts. Although there is
undoubtedly initial low-pass filtering due
to the limited resolution of the visual
system, the separation between edges in
the neural representation of an image
cannot account for the ability to integrate
motion between images whose edges are
uncorrelated.
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MORGAN REPLIES — Mather and I’ showed
that motion detection is possible between
pairs of random noise patterns, one of
which has been low-pass-filtered (blurred),
even though the appearance of the blurred
and unblurred patterns is distinctly differ-
ent. This was explained by a motion-detec-
tion model in which the patterns are
matched following a visual filtering stage in
which high-spatial-frequency components
are substantially attenuated’. After filter-
ing, the initially blurred and initially
unblurred patterns have a spatial structure
that matches sufficiently closely for motion
to be detected. Only when the difference in
blur is extreme does the matching process
break down, and detection by human
observers fail”.

Bex ef al. have now shown that correct
matching can also be achieved between
filtered and unfiltered versions of a 1/f-
scaled gaussian noise pattern. Scaling by
1/f selectively attenuates high spatial fre-
quencies, and so would be expected to
reduce the effects of subsequent low-pass
filtering, as Bex er al. find. Their result
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FIG. 3 The zero-crossing structure of random
binary noise viewed through a filter that atten-
uates high spatial frequencies is little affected
by 1/ffiltering. The noise consisted of elements
that were white or black with equal probability
and which had the size shown on the abscissa.
(Similar results are obtained with gaussian noise
as used by Bex et al.) The noise pattern was
convolved with a laplacian-of-gaussian filter with
a standard deviation of 2 units, and the mean
distance between zero-crossings was measured
(ordinate). O, Unscaled; @, 1/f -scaled. There
were 10 independent simulations for each data
point and the vertical bars represent standard
deviations. For further details of the model see
ref. 3.

would be expected if the spatial structure
of the filtered and unfiltered patterns
were sufficiently correlated following
further filtering by an intrinsic visual filter.
A simple statistical description of the edge
structure of a noise pattern is provided by
the mean distance between zero-crossings
in the second spatial derivative'’. This
statistic is substantially unaffected by l/f
filtering (Fig. 3), except that, at small
element sizes, the interval is about twice
as great for l/f-filtered patterns, in agree-
ment with Bex ef al.’s finding that the 1/f
patterns have two to three times larger
d...« values than pure noise. We predict
that this difference would disappear with
larger element sizes. The value of d,,,,, for
pairs of white noise should not be
increased by l/f filtering of one of the
pair. If either of these two predictions is
wrong, our model could be rejected.

The opposition that Bex et al. propose
between ‘motion energy’ and ‘edge match-
ing’ models of motion detection does not
necessarily reflect different mechanisms.
The zero-crossing pattern is a convenient
description of its statistical structure,
which is basic for understanding its
effects, whether on a motion-energy
detector or otherwise. In describing the
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