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Magnetisation, excitation and
relaxation

A   level, the  effect is reliant on spin, a phenomenon which, on the scale
of individual nuclei, is firmly in the realm of quantum mechanics. Population differences

in spin state amongst a very large number of these nuclei give rise to a residual magnetisation,
which in turn is the reason that we can retrieve a signal during an  scan. By adding energy
to a stable system of spins, we can provoke a change in the magnetisation pattern of the system,
which can be measured as the spins relax back to their resting states. Moreover, by applying
sequences of excitations to brain tissue, and fine-tuning the relaxation process, images of the
tissue can be recovered. This chapter provides a basic grounding in these processes, to support
the material that follows in later chapters.

3.1 State and spin

For a simple Newtonian system such as a moving ball, the dynamical state of the system
consists of such quantities as position and momentum, which can in principle be established
exactly, and which describe the instantaneous behaviour of the ball with certainty. In a quantum
mechanical system, on the other hand, dynamical variables such as position do not have well-
defined values at any given time; instead, quantum mechanical theory describes probability
distributions over these variables. A measurement of position, for example, is therefore a
nondeterministic experiment; and until such a measurement is made, the state of any single
quantum object is uncertain.

A form of notation introduced by Paul Dirac allows us to discuss quantum state in abstract
terms without concerning ourselves with the details of the particular system we are working
with. Using this bra-ket notation, quantum state can be described and manipulated using the
familiar principles of linear algebra (Dirac, 1958). Full details of the underlying physics, as
well as a far more detailed general introduction to quantum mechanics than the sketch which
follows, can be found in Bransden & Joachain (1989).

Under Dirac’s system, the instantaneous state of a quantum mechanical system is rep-
resented by a vector in some state space over the complex numbers, whose dimensionality
depends on the characteristics of state in which we are interested. These vector elements of
the state space are known as ket vectors, or kets, and are written using the notation | ·〉, where
the dot is to be replaced by a label. The formulation is such that the direction of these vectors
is the only property that distinguishes one state from another; lengths are immaterial, and so
generally normalised. Consequently, |ψ〉= c |ψ〉 for any nonzero complex scalar, c. On the other
hand, some combination

|x〉 = x1|ψ1〉+x2|ψ2〉
is, in general, different to each of the states |ψ1〉 and |ψ2〉. In fact, the composite ket, |x〉,
represents a superposition of the two constituent states. The significance of this will be explained
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shortly.
If we assume that some set of ket vectors, {|ψi〉}, forms a basis for the state space we are

interested in, then any arbitrary ket can be represented as some linear combination of the set,
whose coefficients form a column vector (i.e. single-column matrix):

|x〉 =
n∑

i=1

xi |ψi〉 =




x1
x2
...

xn



Ψ . (3.1)

The matrixΨ represents the whole basis set. We note briefly that every ket has a corresponding
bra, denoted 〈· |, which is formed by taking the adjoint of the ket vector, which is the combined
operation of matrix transposition and complex conjugation. Thus, a bra in matrix representa-
tion is a row vector whose coefficients are the complex conjugates of the elements of the ket.
That is,

〈x| = |x〉† =Ψ†
[

x1
∗ x2

∗ . . . xn
∗ ] ,

where † represents the adjoint, and ∗ the conjugate. By multiplying together a bra and a ket,
we obtain

〈x | y〉 =
n∑

i=1

xi
∗ yi 〈ψi |ψi〉 ,

which simplifies to

〈x | y〉 =
n∑

i=1

xi
∗ yi (3.2)

because the basis kets, like all state kets, are normalised to unit length. Eq. (3.2) is exactly the
form of the inner product between |x〉 and |y〉.

That quantum state spaces are complex-valued is significant. Recall that the complex
number z = a+ ib can be written in an alternative polar form, z = reiθ, such that

a = rcosθ b = rsinθ r = |z| =
√

a2+ b2

and i is the imaginary unit, with i2 = −1. The complex conjugate is then given by

z∗ = a− ib = re−iθ .

In polar form, r is sometimes referred to as the amplitude, and θ as the phase. It is precisely
the fact that quantum theory allows for phase effects which enables it to explain results such
as Claus Jönsson’s double slit electron diffraction experiment, which demonstrated wavelike
behaviour in particles just as Thomas Young had done for light more than a century and a half
before (Jönsson, 1974).

It might be expected in such a system as this, where vector length has no physical implication
for the state represented by a particular ket, that eigenvectors are of significant importance;
and indeed they are central to quantum physics. Physical properties of quantum systems,
such as momentum or position, are associated with linear operators in the Dirac formalism. In
particular, these so-called observable operators are self-adjoint, so that A† = A; and as such their
eigenvectors are orthogonal and their eigenvalues are always real (Riley et al., 2002, §8.13.2).
As a result the eigenstates, |ε〉, which satisfy

A |ε〉 = λ |ε〉

for real scalar values of λ, make up a natural orthonormal basis set for the state space in which
the observable A operates.

One such observable property is spin, a quantum characteristic which is intrinsic to particles
such as protons and has no classical equivalent. These particles can be thought of as having
a natural angular momentum which causes them to spontaneously spin in place. Consider a
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single component of this three-dimensional spin, along a direction which we will choose to be
the z axis of some physical space—in the case of protons, which are abundant in brain tissue,
the corresponding spin operator, Sz, has two eigenstates, which are called “spin up” and “spin
down” and may be thought of as analogous to clockwise and anticlockwise. The magnetic
quantum number of the proton, m, takes the value 1

2 for the spin up state, and − 1
2 for the spin

down. Since the eigenstates are orthonormal, the inner product of any pair of them is given by
the Kronecker delta. That is,

〈m |m′〉 = δmm′ =

{
1 for m =m′
0 for m !m′ . (3.3)

As described in Eq. (3.1), an arbitrary spin state, |ψ〉, can then be described as a linear
combination of the spin up and spin down eigenstates:

|ψ〉 =
∑

m
pm |m〉 .

In these circumstances, where the basis vectors are a set of eigenstates, the coefficients, pm, are
called probability amplitudes, and have a specific practical significance: their squared moduli
represent the probability masses associated with each basis vector in the state |ψ〉. This prob-
ability mass function associated with the state of the system manifests itself when the state is
measured, such that

Pr(M =m) = |pm|2 = pm
∗ pm , (3.4)

where M is the random variable representing the measured spin value.a It is important to
remember that a measurement of the spin of a proton can only yield one of the two values ± 1

2 ,
which make up the discrete sample space of M.

Given this interpretation of the superposed state, we can immediately write down the
expected value of a spin measurement by referring back to Eq. (2.9). It is

〈M〉 =
∑

m
mP(m) =

∑

m
|pm|2 m . (3.5)

The orthonormality of the eigenstates described by Eq. (3.3) allows us to expand this as

∑

m

∑

m′
pm
∗ pm′m〈m |m′〉 ,

which can expanded in matrix form—provided that Sz is correctly constructed—to 〈ψ|Sz|ψ〉, a
full bracket, which is the way that expectation values are written in Dirac notation. Given an
obvious formulation of orthonormal eigenstates in this two-dimensional state space, viz.

∣∣∣∣∣
1
2

〉
or | ↑〉 =

[
1
0

] ∣∣∣∣∣−
1
2

〉
or | ↓〉 =

[
0
1

]
,

this formulation works out correctly if we take as the spin operator

Sz =
1
2

[
1 0
0 −1

]
, (3.6)

which has no off-diagonal components and is therefore trivially self-adjoint.

aThe process of measurement is a crucial and counterintuitively complex one in quantum mechanics. The question
of what constitutes a measurement is a controversial one, but the essential outcome is a sampling from the distribution
given by Eq. (3.4), and an apparent “collapse” of the system’s state into the eigenstate corresponding to the outcome,
so that repeated measurements will all produce this same outcome.
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3.2 Protons in a magnetic field

It is unlikely to come as a surprise that quantum state is not a time-invariant phenomenon.
The observable that determines the evolution over time for a quantum mechanical system is
energy, which is represented mathematically by a Hamiltonian operator, H. Given the appro-
priate Hamiltonian, the change in state of the system is described in general by the famous
time-dependent Schrödinger equation. In the special case where the Hamiltonian itself has
no time dependence, the general equation can be separated into two: the time-independent
Schrödinger equation, which takes the form of an eigenvalue equation; and a relationship
describing the time evolution of the system (Bransden & Joachain, 1989). Specifically, we get

H |ψ(t)〉 = E |ψ(t)〉 (3.7)

and

H |ψ(t)〉 = i!
∂
∂t
|ψ(t)〉 , (3.8)

where ! is the reduced Planck constant, which corresponds to the size of a fundamental
quantum of energy. Integrating Eq. (3.8) leads directly to the solution

|ψ(t)〉 = exp
(−iHt
!

)
|ψ(0)〉 . (3.9)

Now, we may note that if |ψ(0)〉 is an eigenstate of the Hamiltonian with eigenvalue E—as per
Eq. (3.7)—then H will be replaced by E in this solution, and the time evolution of the system
will amount to a mere multiplication of the eigenstate by a complex constant; which, as we
know, has no effect on the physical state of the system. Consequently, a system that is in a state
that is an eigenstate of the Hamiltonian will stay in that state, unless some external influence
dislodges it.

Nuclei with spin, such as that of hydrogen (1H, which contains just a single proton), act like
tiny magnets. If all three components of the spin of a proton are represented by S, then it will
have a magnetic dipole moment of µ = γ!S, where γ is called the gyromagnetic ratio, which
varies from one species of nucleus to another. As a result of this dipole moment, an external
magnetic field will have a significant effect on these nuclei. The Hamiltonian corresponding
to the interaction with a static magnetic field applied in the z direction is given by

H = −γ!B0Sz , (3.10)

where B0 is the field strength (Callaghan, 1991). By substituting Eq. (3.10) into Eq. (3.7) and
rearranging, we obtain

Sz |ψ(t)〉 = −
(

E
γ!B0

)
|ψ(t)〉 ,

which is an eigenvalue equation for Sz. However, we already know that the eigenvalues of
this operator are ± 1

2 , so we can obtain immediately

−
(

E
γ!B0

)
= ±1

2
;

and so

E = ∓γ!B0

2
. (3.11)

Notice the signs: the energy of the spin up state is lower than that of the spin down state. It
is clear from Eq. (3.11) that the separation between the energy levels corresponding to the two
possible values of m is given by ∆E = γ!B0. This difference is called the Zeeman splitting, and
gives the magnitude of the energy quantum needed to excite a transition from one Zeeman
state to the other. The de Broglie relation,∆E= !ω, tells us that a photon with angular frequency
ω = γB0—the so-called Larmor frequency—would be able to supply the required energy.
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Figure 3.1: A spin state that is not an eigenstate will
undergo spontaneous precession about the spin up
direction, thereby tracing out the pathway indicated
here by a dashed line.

|ψ(t)〉|↑〉

We can also consider the time evolution of this system by substituting Eq. (3.10) into Eq.
(3.9), which gives

|ψ(t)〉 = exp(iγB0Szt) |ψ(0)〉 . (3.12)

The time evolution operator in equation Eq. (3.12)—the exponential term—represents a phase
rotation of the state about the z axis by an angle γB0t. Hence, all noneigenstates will precess
about the z axis (i.e. the direction of B0) at the Larmor frequency. This is illustrated in Fig. 3.1.

As a result of the difference in energy between the two eigenstates, the p.m.f. over spin
states for any given proton is not uniform at thermal equilibrium. Rather, a large population
of spins will be distributed amongst the Zeeman energy levels according to the Boltzmann
distribution, viz.

n↓/n↑ = exp(−∆E/kT) = exp(−γ!B0/kT) , (3.13)

where n↑ and n↓ are the number of spins parallel and antiparallel to the magnetic field respec-
tively, k is Boltzmann’s constant, and T is the absolute temperature. However, in a 1.0 T field
and at normal body temperature (310 K), the fractional excess of protons in the low energy state,
(n↑ −n↓)/(n↑+n↓), is only 3.295×10−6. Nevertheless, this small difference is significant, and in
a large population of spins within a some small region of space—known as an isochromat—it
is large enough to be measurable on a macroscopic scale.

The magnetisation of an isochromat at equilibrium, containing a net excess of N spins in the
positive z direction, is defined as M0 =Nµ, where µ is the proton magnetic moment discussed
above. It follows from Eq. (3.13), therefore, that the magnitude of this vector is approximately
given by

M0 = χB0 +
γ2!2B0(n↑+n↓)

4kT
. (3.14)

The factor χ, which links the magnetisation of the isochromat with the static field strength, is
called its magnetic susceptibility.

It is clear from Eq. (3.14) that the magnetisation can be increased for a fixed group of spins,
thereby increasing sensitivity, by increasing the field strength or decreasing the temperature.
However, since the change would have to be substantial to make any significant difference, the
latter option is not very practical for in vivo !

At rest, the direction of the magnetisation vector, M0, is the same as that of the static
field. However, in a nonequilibrium state, this vector could have any arbitrary direction.
Whilst the underlying spins must always yield one or other of the eigenstates when measured,
the semiclassical representation of spin dipole moments as magnetisation is approximately
continuous, since it denotes the aggregate tendency of a large number of individual quantised
states.

3.3 The NMR signal

As we have seen, a nucleus with spin can be excited from the spin up to the spin down state
using electromagnetic radiation with an angular frequency corresponding to the appropriate
Larmor frequency. For 1H nuclei, this corresponds to a linear frequency of about 42.5 MHz T−1,
which is in the radiofrequency () range.
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α

z

M

M0 Figure 3.2: The effect of applying a radiofrequency
electromagnetic pulse to a spin isochromat at equilib-
rium is to “flip” the magnetisation vector, M, by an
angle α towards the transverse (x–y) plane.

If a spin isochromat is excited so that half of the “excess” protons—which are responsible for
the residual magnetisation at equilibrium—are expected to be in each of the spin up and spin
down states, then clearly no magnetisation in the longitudinal (z) direction remains, because
there is no longer any net difference between the populations of spins in each state. However,
since the states of the spins are individually precessing about the z axis, as shown in Fig. 3.1,
a net magnetisation in the transverse (x–y) plane can arise if the spins are in phase with one
another, due to constructive interference. This is exactly the effect of applying an  pulse to
an isochromat at equilibrium (see Fig. 3.2). Since the initial magnetisation vector, M0, does not
precess, the spins will be in phase after the excitation has “flipped” the magnetisation towards
the transverse plane. The exact angle, α, by which the magnetisation vector is deflected will
depend on the power of the  pulse and the length of time over which it is applied; but these
parameters can be calibrated so as to produce predictably any flip angle required.

The evolution over time of the components of the magnetisation vector due to precession
is given by

dM
dt
= γM∧B , (3.15)

where ∧ is the vector cross product, and B is the total magnetic field. The latter primarily
consists of the static field, B0, but the  pulse also induces a small and fluctuating field, B1,
perpendicular to the longitudinal direction.

Eq. (3.15) does not, however, represent the whole picture. An excited isochromat will
not merely precess indefinitely at a fixed angle from the longitudinal direction; rather, its
magnetisation will gradually return to the equilibrium state. This relaxation is caused by
a combination of processes. Firstly, some of the excitation energy will be spontaneously
transferred to the environment as heat—an exponential decay process known as spin–lattice
relaxation. Evolution of the z component of the magnetisation is therefore more accurately
reflected by

dMz

dt
= γ(MxBy−MyBx)−Mz−M0

T1
, (3.16)

where T1 is a time constant. The second relaxation process involves the transfer of energy
between excited spins, which causes their rates of precession to vary slightly from one to the
other. This in turn results in a dephasing of the spin states, so that the transverse component
of the magnetisation vector diminishes; again exponentially:

dMx

dt
= γ(MyBz−MzBy)−Mx

T2

dMy

dt
= γ(MzBx−MxBz)−

My

T2
. (3.17)

This second time constant T2 is, in general, not equal to T1; but it cannot be larger. Eqs (3.16)
and (3.17) are collectively the Bloch equations for nuclear induction (Bloch, 1946).

Once the  pulse has been applied to excite the system it is switched off, leaving the z
component of B as the only nonzero one (the static field is still on). Under these conditions
we can therefore ignore all terms in the Bloch equations containing Bx or By. The resulting
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Figure 3.3: Effects of relaxation on the magnetisation vector after a 90◦ excitation pulse. (a) The vector
precesses around the z axis with a monotonically decreasing radius. (b) The y component of the relaxing
magnetisation vector (or equivalently, the x component) induces a decaying voltage in the receive coil. In
both subfigures, T1 = 2T2.

simplified differential equations can be integrated to give the solutions

Mx(t) =
(
c1 cos(γBzt)+ c2 sin(γBzt)

)
e−t/T2

My(t) =
(
c2 cos(γBzt)− c1 sin(γBzt)

)
e−t/T2

Mz(t) =M0+ c3 e−t/T1



, (3.18)

where c1, c2 and c3 are constants; although there is no loss of generality in taking c1 = 0, so
we will do so. The x and y components of the magnetisation will then trace out a circle of
radius c2 e−t/T2 with angular frequency γBz, which is the Larmor frequency for the main field.
This radius is itself dependent on time, clearly, and will monotonically decrease as relaxation
proceeds; as shown in Fig. 3.3(a).

If an electrically conducting coil is placed around the subject in the transverse plane, the
rotating transverse magnetisation component will induce a voltage in it—just as in an electrical
generator—whose magnitude will decay exponentially due to relaxation (see Fig. 3.3(b)). It
is this phenomenon, known as a free induction decay (), which forms the signal for an
 experiment. Note that Mx and My differ only in phase, and they make up the real and
imaginary components of the complex-valued oscillating function Mxy(t) = c2 e−t/T2 eiωt, where
ω = γBz above. It is often convenient to work with the transverse magnetisation in these terms.

3.4 Pulse sequences

The relaxation time constants, T1 and T2, are not invariant throughout the brain; or, indeed,
the body (de Certaines et al., 1993). Moreover, there can be systematic differences in these
parameters between healthy and pathological tissue of the same basic type. It is therefore
constructive from a clinical point of view to devise -based protocols for measuring rates
of relaxation; or at least, for creating contrast between regions whose rates differ. This aim can
be achieved by applying carefully designed sequences of  pulses to brain tissue.

A simple pulse sequence for weighting the signal by the value of T1 is called inversion
recovery. At its simplest, this sequence consists of a pulse inducing a flip angle of 180◦,
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Figure 3.4: Pulse sequence timing diagrams for inversion recovery (a) and spin-echo (b) sequences. The
axis represents time, but pulse and signal widths are not to scale.

followed after a time  by a 90◦ pulse. The first of these—the inversion pulse—will flip an
isochromat at equilibrium so that all of the magnetisation is antiparallel to the static field. The
system will then decay back towards the equilibrium state according to

Mz(t) =M0
(
1−2e−t/T1

)
, (3.19)

until the second pulse is applied to convert the remaining longitudinal magnetisation into
measurable transverse magnetisation. Note that Eq. (3.19) is a special case of Eq. (3.18) in
which c3 = −2M0, the choice that produces the correct boundary conditions. By measuring the
 amplitude for several values of the inversion time, , one can infer the value of T1 in a
sample.

The same pair of pulses in the opposite order can be used to give T2-weighting, in a
technique known as spin-echo (Hahn, 1950). The spins are allowed to dephase for a time /2,
after which the magnetisation is flipped. After another time period of /2 the spins, which
are now dephasing in the opposite sense, will return to being in phase with one another, thus
producing a measurable signal. Once again, the constant T2 can be recovered by repeating the
experiment with several values of the echo time, . A significant benefit of this approach is
that the separate dephasing effects of small local variations in the main static field—which are
always present to some degree—will cancel out at the time the  amplitude is measured.b
The transverse magnetisation component will therefore evolve according to

Mxy(t) =M0 e−t/T2 eiωt , (3.20)

a version of Eq. (3.18) with c2 =M0. This is valid as long as all of the equilibrium magnetisation
is initially flipped into the transverse plane. In order to ensure that this is the case, the repetition
time, , between successive 90◦ pulses in a train of spin-echoes must be sufficiently large to
allow the longitudinal magnetisation to recover fully.

The inversion recovery and spin-echo pulse sequences are illustrated in Fig. 3.4, in a
schematic representation called a pulse sequence timing diagram.

In order to make the move from  to, we need the ability to localise a signal in space.
Spatial information can be encoded in the signal by applying magnetic gradients—that is, static
magnetic fields whose strength varies (linearly) across a region of space. The magnitude
of these gradients is small compared to that of the main field—typically on the order of
10−2 T m−1—but they are large enough to provoke variation in the angular frequency at which
local magnetisation vectors precess. A gradient with magnitude and orientation described by

bIn fact, this is only true under the (naïve) assumption that spins do not move during the experiment. In practice,
there is movement within the field between the 90◦ pulse and the signal measurement; a fact which is exploited by
diffusion , as we will see in chapter 4.
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Figure 3.5: The spin-warp imaging sequence. A phase encoding gradient is applied, typically along the y
axis, for a time τ; after which a frequency encoding gradient is applied along the x axis, and the FID signal is
sampled. This process is repeated a number of times with different magnitudes of phase encoding to build
up a full three-dimensional brain volume. The sequence is shown as a pulse sequence timing diagram (a)
and in terms of its characteristic trajectory in k-space (b).

a vector G = (Gx,Gy,Gz) will produce a local frequency shift, relative to the Larmor frequency,
described by

ω(r) = γG · r = γ(Gxrx+Gyry+Gzrz) ,

where r = (rx,ry,rz) represents location in the brain. After applying a 90◦  pulse to create a
measurable , the signal from a small volume of tissue is therefore given by

dA(G, t) = ρ(r)exp(iγtG · r)dr . (3.21)

We ignore the effects of spin–spin (T2) relaxation for simplicity, but in a real experiment its
effect needs to be quantified. Morris (1986) provides a detailed explanation of the impact it
has on the signal. The scalar field ρ(r) represents the number of spins per unit volume at each
location in the brain. This spin density is proportional to the initial magnetisation, M0, as we
saw in Eq. (3.14); and it is this property that we wish to recover in our experiment. The signal
value denoted by the left hand side of Eq. (3.21) is therefore not exactly the  described by
the Bloch equations, but it is closely related to it. Now, introducing

k =
1

2π
γGt ,

the signal over the whole brain is given by integrating Eq. (3.21):

A(k) =
∫
ρ(r)exp(i2πk · r)dr . (3.22)

Eq. (3.22) describes a Fourier relationship between the spin density throughout the brain,
ρ(r), and the measured signal in the presence of magnetic gradients; and it is therefore the
fundamental relationship in . If we sample the signal at a number of locations in k-space,
we can recover the spin density using a discrete Fourier transform.

There are a number of schemes for traversing k-space with various advantages and disad-
vantages, but we will just describe a relatively straightforward one to give the idea. Fig. 3.5
shows a sequence called spin-warp (Edelstein et al., 1980). It should be noted that this is an
imaging sequence using gradients, which is quite independent from the sequences of  pulses
which are used to affect contrast.

The timing diagram in Fig. 3.5(a) shows that after the  pulse is applied, a gradient is
applied for a certain time, τ, along the y axis. The effect is to apply a phase offset to the
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magnetisation vectors, γτGyry, which depends on their position in the y direction—thereby
encoding position information in the phase of the signal. Immediately afterwards, another
gradient is applied in the x direction, and is maintained while the signal is sampled. In this
case, the frequency of precession of the magnetisation vectors as time progresses is altered
by an amount γGxrx—as we saw above—which depends on the location of the tissue along
the x axis. This combination of frequency and phase encoding allows one to spatially locate
the source of parts of the signal within a two-dimensional plane. Localisation in the third
dimension of space is achieved by selective excitation: that is, only a single “slice” of a certain
thickness is excited at a time, and the 3- image is then built up from a series of these 2- slices.c
A slice selection gradient is applied at the same time as the  pulse.

As a trajectory through k-space, the sequence is easily represented. Fig. 3.5(b) shows it in
these terms. The phase encode step, along with the application of a negative gradient in the
frequency encode direction at the same time, moves us to the “leftmost” position in the space
for some value of ky. Then, during the application of the frequency encoding gradient, the
trajectory moves in the positive x direction, and all the signal data for this phase encode level is
recorded. This process is repeated for several different magnitudes of phase encode gradient,
and k-space is thereby sampled line-by-line.

The spin-warp sequence requires a separate  pulse for each line of k-space, which limits
the rate at which images can be acquired. On the other hand, an influential alternative technique
called echo-planar imaging () is able to reconstruct an entire 2- slice image using a single
excitation pulse or “shot” (Mansfield, 1977). This method is now widely used because of its
speed advantages, especially in studies that require a large number of brain volumes to be
imaged, such as those using diffusion  or functional .

3.5 On ghosts and pile-ups

Magnetic resonance images are susceptible to various different types of artefacts, which ad-
versely affect their qualitative and quantitative interpretability and therefore need to be avoided
or corrected for whenever possible (see for example Pusey et al., 1986). We describe here the
three most significant artefacts for diffusion .

Firstly, there is the problem that the subject, which is usually a living and unsedated human
patient or volunteer, may move during the scan. Even if there is no wholesale movement of the
head, localised movement can occur as the subject swallows or moves his eyes. The ventricles,
which are full of cerebrospinal fluid, typically exhibit spontaneous pulsatile movement; and
dilation and contraction of the carotid arteries during the cardiac cycle can also be a source
of this kind of artefact. The effect of motion during the sequence is to shift the phase of the
signal originating from a particular location, which causes blurring and ghosting—that is, the
appearance of nonphysical objects, or of a physical object several times. Motion artefacts can
be alleviated by using a sequence that acquires images very quickly—generally —and by
“gating” image acquisition so that each slice is collected at the same point in the cardiac cycle
(Lanzer et al., 1984).

Whilst  is less sensitive to motion effects than other imaging sequences, it is considerably
more vulnerable than other methods to two other types of artefact: eddy current induced
distortions and susceptibility effects. We will describe these separately.

Eddy currents are tiny circulating electric current loops which are induced by the applied
gradient fields, particularly when they are large in magnitude or switched rapidly. These in
turn act as electromagnets with magnetic fields that oppose the effect of the gradient field,
causing magnification, translation and shearing in the phase encoded direction of the image.
The gradients used for diffusion imaging are particularly prone to produce this kind of artefact.
One way to significantly reduce their effects is to use a twice-refocussed spin-echo sequence,
as described by Reese et al. (2003).

Susceptibility effects occur at boundaries between materials with significantly different
magnetic susceptibilities—as defined by Eq. (3.14). In the brain this is most obvious near di-

cThis is the most common arrangement, but it is possible to use phase encoding in two dimensions, in which case
selective excitation is unnecessary.
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grase, and magnetization prepared turbo-spin-echo and
turbo gradient echo sequences. The PROPELLER MRI
method is well suited for imaging moving objects, due to its
inherent ability to remove some of the in-plane motion,
reject some of the artifact from through-plane motion, and
its inherent averaging of the remaining data inconsisten-
cies. The collection requires an additional factor of !/2
imaging time over conventional scans, due to redundant

sampling of k-space, but the oversampling also results in
increased SNR. The ability to use real-valued reconstruc-
tion, when appropriate, further increases SNR.

It is expected that PROPELLER MRI will also work well
for multishot diffusion MRI, similar to that discussed by
Butts et al. (13). As long as the motion-related phase from
the diffusion gradients is slowly varying, the data from
individual strips may be added together with minimal

FIG. 5. Axial images of a head with a conventional turbo-spin-echo sequence both without (a) and with (b) motion, and the PROPELLER

sequence both without (c) and with (d–i) motion. Data for PROPELLER with motion are shown after (d) no correction, (e) phase correction,

(f,g) rotation correction (image and k-space, respectively), (h) shift correction, and (i) correlation (through-plane) correction. Magnitude data

(g) are raised to the 0.2 power for display purposes.
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(a) (b)

(c) (d)

Figure 3.6: Examples of various types
of MRI artefact. Eddy currents in-
duce a distortion in (b) which results
in this circular “phantom” appearing
squashed relative to a reference im-
age (a). (Note that the increased noise
level in subfigure (b) is not caused by
eddy currents.) A susceptibility effect
near the ear canals produces signal
pile-up and drop-out (c), resulting in
artefactual bright and dark patches in
the image. Motion by the subject can
produce major blurring and ghosting
effects (d). Subfigures (a–c) are cour-
tesy of Dr Susana Muñoz Maniega;
subfigure (d) is reproduced from Pipe
(1999).

viding lines between soft tissue and air—around the sinuses, for example. At such boundaries,
the field is locally distorted and therefore rendered inhomogenous; and as a result signal can
“drop out” of some areas while “piling up” in others. Strong susceptibility effects can also be
seen if a subject has a small piece of metal near her head, like a hair clip.

Fig. 3.6 illustrates the effects of these different types of artefact. Image (b), which illustrates
the distorting effect of eddy currents, is a diffusion-weighted image—as we will see in chapter
4, these images are particularly vulnerable to this sort of artefact. Image (d) is an extreme
example of a motion artefact, which makes this image totally unusable.

Whilst not strictly an artefact, there is a further imaging issue which is important when it
comes to interpreting  data. In practice, the  is not retained in its original, continuous
form, but rather sampled at regular intervals by an analogue-to-digital convertor. As a result
the signal in the final image is discretised into spatial units with a fixed volume called voxels.d
The larger the dimensions of these voxels, the higher the signal to noise ratio of the image;
but at boundaries between tissue types, the inhomogeneous signal will be averaged across the
region represented by the voxel. This implicit averaging is called a partial volume effect. These
effects make images hard to interpret, since one cannot easily tell what contribution white and
grey matter, or healthy and unhealthy tissue, had to the measured signal value.

3.6 Summary

Beginning with a single proton, we have described in this chapter how the stochastic behaviour
of atomic nuclei can be usefully represented at the macroscopic scale in terms of magnetisation.
We have also demonstrated how this phenomenon may be manipulated using radiofrequency
radiation, and then measured during relaxation to elucidate characteristics of living tissue.
These techniques usually culminate, for clinical purposes, in the creation of images, whose
formation we have also discussed. Finally, we have seen that the quality of magnetic resonance
images can be affected by a number of artefacts, which arise as side-effects of the scanning
process. It should be emphasised that  pulse sequence design, and artefact avoidance and
correction, are both substantial fields in their own right; and many problems and solutions
exist which have not been touched upon at all in the brief coverage of the last two sections.

In the following chapter we will focus on the specific application of the  effect to the
measurement of diffusion.

dThe word “voxel” is short for “volume element”, by analogy with “pixel”, which abbreviates “picture element”.


