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The field of tractography is rapidly developing, and many automatic or semiauto-
matic algorithms have now been devised to segment and visualize neural white
matter fasciculi in vivo. However, these algorithms typically need to be given a
starting location as input, and their output can be strongly dependent on the ex-
act location of this ‘“‘seed point”’. No robust method has yet been devised for pla-
cing these seed points so as to segment a comparable tract in a group of subjects.
Here, we develop a measure of tract similarity, based on the shapes and lengths
of the two tracts being compared, and apply it to the problem of consistent seed
point placement and tract segmentation in group data. We demonstrate that us-
ing a single seed point transferred from standard space to each native space pro-
duces considerable variability in tractography output between scans. However, by
seeding in a group of nearby candidate points and choosing the output with the
greatest similarity to a reference tract chosen in advance—a method we refer to
as neighborhood tractography—this variability can be significantly reduced.

Introduction

Diffusion magnetic resonance imaging (AMRI; see Basser et al., 1994; Le Bihan, 2003)
provides directional information about water self-diffusion in the brain. This informa-
tion is particularly rich near to neural white matter fasciculi, since the self-diffusion is
preferentially directed along rather than across these structures. The rapidly developing
field of tractography consists of a growing number of voxel-level models of the dMRI
signal data, and algorithms for integrating the results along fasciculi (e.g. Basser et al.,
2000; Behrens et al., 2003b; Jansons & Alexander, 2003; Jones & Pierpaoli, 2005;
Lazar & Alexander, 2005; Mori et al., 1999; Parker et al., 2002; Tournier et al., 2004,
Tuch et al., 2002). These methods have been applied to neural connectivity analysis
(e.g. Behrens et al., 2003a; Huang et al., 2005; Johansen-Berg et al., 2005), as well as
to the segmentation and visualization of white matter fasciculi (e.g. Jones et al., 2005;
Kanaan et al., 2006; Pagani et al., 2005; Zhang et al., 2004). It is the segmentation
application that we will be concentrating on here.

Tractography algorithms typically require as input a “seed point”, a single voxel in
the dMRI brain volume from which the algorithm begins its computation. The output
of the algorithm is often highly sensitive to the specific location of this point. This
sensitivity creates problems if one tries to segment comparable white matter structures
in a group of brain volumes, because choosing congruent seed points is not straightfor-
ward. Placing the seed points manually (Ciccarelli et al., 2005) is time consuming, and
it has been shown that measurements of parameters such as mean fractional anisotropy
(FA) or normalized volume in the resultant “tracts” (computed representations of the
fasciculi of interest) can vary in value quite widely between observers, and particularly
between scans (Ciccarelli et al., 2003).



Relatively little work has been done to improve on manual seed point placement in
group data. A two region of interest (2ROI) segmentation methodology, in which the
tractography algorithm is instructed to ignore any pathways that do not pass through
two predefined brain areas (Conturo et al., 1999), has been applied to group tracto-
graphy (Abe et al., 2004); and Jones et al. (2002) developed a technique for averaging
group dMRI data and performing tractography in the averaged brain volume. How-
ever, both of these methods have drawbacks. The strong a priori restriction that the
2ROI approach imposes upon the tractography algorithm may in some cases change
the meaning of the output and make interpretation more complicated. The tensor av-
eraging method by its nature discards individual anatomical variation, which may be
crucial in clinical studies.

Rather than modifying tractography output, or the data from which it is generated,
to suit a particular criterion, our aim in this work is to improve the reproducibility of
tractography segmentation in group data by refining the input to the algorithm; i.e. the
seed point. In order to eliminate observer subjectivity, the method should be automated.

A simple approach to automation is to place seed points in some standard space
and then use standard image registration techniques to transfer them to each subject’s
native space (Clayden et al., 2005). The aim of this approach, which we will refer
to as the registration method, is to choose an equivalent seed point in each subject’s
brain volume, assuming that if this is done accurately then the same fasciculus will be
segmented in each case. However, registration errors and anatomical variation between
subjects make this assumption unsafe, limiting the usefulness of this approach. An
alternative approach to the problem would be to choose, from a group of “candidate”
seed points, that point which produces the best output. However, in this case one must
quantitatively define what constitutes “good” or “correct” output.

In this study, we present a novel, quantitative tract similarity measure, based on
the shape and length of the two tracts being compared. This measure is independent
of the tractography algorithm being used to generate the tracts. In order to validate
the measure, and demonstrate that it provides useful information, we use it to quantify
similarity between independently generated comparable and disparate tracts in a group
of volunteers. Finally, we apply the measure to the problem of consistent seed point
placement across this subject group, and show that the set of tracts thus derived are
more visually similar to one another than the set produced by the registration method.

Theory
Tracts and similarity

A calculation of similarity requires two tracts for comparison. We will assume that the
tractography algorithm generating these tracts takes as input a single seed point, and
produces voxelized, quantitative output. Hence we can define a tract r as

r:{arv¢r(x)}’ (1)

where ¢,.(x) is a discrete scalar field denoting the likelihood of a path from the seed
point, a,, running through the voxel at location x in the native acquisition space of
the subject. These two data elements are tied together because they represent both the
input and output of the tractography algorithm. If a, changes, then ¢, will change too.

The method by which the likelihood data are calculated from raw diffusion MR
images will depend on the tractography algorithm and its underlying model of diffu-
sion. For the purpose of illustration, we will briefly describe how this calculation was



performed for our data by the BEDPOST/ProbTrack algorithm (for full details, see
Behrens et al., 2003b). The diffusion weighted signal at each voxel, on the ¢th acquisi-
tion, is predicted by a partial volume model as a linear combination of an isotropic and
an anisotropic component. That is,

A= A[(1 — f)exp(—b;D) + fexp(—b;Dr]Rr;)] , @)

where A; is the diffusion weighted signal, A is the signal without diffusion weighting,
f is the anisotropic volume fraction, b; and r; are the b-value and gradient direction of
the ith acquisition, D is the diffusivity and R is a matrix that encapsulates the direc-
tionality of the anisotropic component. Implicit in the latter matrix are the two Euler
angles, {0, ¢}, that represent the direction of the underlying fiber tract. The distribu-
tions of the free parameters in this model, { A, D, f, 8, ¢}, are estimated by BEDPOST
using Markov Chain Monte Carlo sampling. Starting at the seed point, a,., ProbTrack
then generates a large number of “probabilistic streamlines” by sampling from the local
distribution over angles, moving a short distance in the sampled direction, and repeat-
ing until a termination criterion is met. Once this process is completed, the likelihoods
¢, (x) are given by the proportion of these streamlines that pass through the voxel at x.

We will work on the principle that the characteristics of interest when comparing
white matter tracts are length and shape. That is, if two tracts have the same shape
and have the same length, then they are considered identical. For the purposes of
comparison, we will make a distinction between “reference” and “candidate” tracts.
There is no structural difference between the two, with both having the form given in
Eq. (1), but similarity is always calculated for a candidate tract relative to a reference
tract, rather than vice versa.

The following algorithm, which is based on a simplification and specialization of a
general curve alignment algorithm (Sebastian et al., 2003), provides sensitivity to the
shapes of both the reference tract, r, and the candidate tract, c. Its output also depends
on the length of the shorter of the two tracts. It moves along the two tracts simultan-
eously, voxel by voxel, finding a maximum likelihood pathway through the data, ¢,. and
¢, subject to certain path direction constraints. The output of the algorithm is a scalar
value, o (r, ¢). The calculation is asymmetric, so that in general, o (r, ¢) # o(c,r). The
algorithm implicitly assumes that the seed points are equivalently located in the two
tracts.

1. Initialize two sets of visited voxel locations, V,. and V, to the empty set.
2. Set tract pointers to the seed point location in each tract.

3. Add the current pointer position in the reference tract to the set V.., and the
position in the candidate tract to V..

4. Check the voxel values, from the field of connection likelihoods, ¢,., of the 26
voxels forming a cube around the current pointer location in the reference tract,
and choose the largest valued neighboring voxel not in V;.. Note the step vector,
v, required to move to this new location.

5. Prohibiting movement at any angle greater than or equal to 90° from the chosen
step direction in the reference tract, find the largest valued neighbor to the pointer
in the candidate tract that is not in V.. Note the step vector used here, v..

6. Add the normalized inner product of the two step vectors to the result, o(r, ¢).



7. Move in the directions of the chosen steps and update the pointers in each tract.

8. Return to step 3, and repeat until there are no unvisited, nonzero voxels adjacent
to one of the pointers. At this point, the algorithm has followed the reference
tract to its end in one direction.

9. Return to step 2, and repeat until there are no unvisited, nonzero voxels adjacent
to one of the starting points. The algorithm has now followed the reference tract
to its end in all directions.

The normalized inner product calculated in step 6 is given by
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which is equivalent to the cosine of the angle between the two step vectors. The for-
mulation of step 5 may seem to be excessively restrictive, but it simply ensures that
the result is not undervalued due to the pointers drifting in opposite directions along
the tract. This is an important issue because seed points are rarely placed at tract ex-
tremities, since such areas tend to be associated with high directional uncertainty, and
so traversal away from the seed point can usually be in two, almost equally likely,
directions. Note that there is no angle restriction in step 4.

The value of the o function is translation invariant; but because we compare the
local absolute directions of the tracts relative to the dMRI acquisition coordinate sys-
tem, rather than curvature, it is not rotation invariant. This is desirable, since we do not
want to produce spurious matches of potentially rotationally symmetric tracts such as
the corpus callosum genu and splenium, or bilateral pairs.

Reduced tract

Tract data of the form given by Eq. (1) is not constrained to be a single voxel wide,
and in general it will not be. As a result, the exact path taken through a reference tract
can vary, and may be different during comparisons with different candidate tracts. This
makes establishing an upper bound on the value of o(r, ¢) extremely difficult.

In order to alleviate this problem, we define a reduced version of the tract r to
include that subset of the nonzero data in ¢,- which is visited during the comparison of
r with itself, a process that is illustrated, for a two dimensional case, in Fig. 1. Parts (a)
and (c) of the figure represent two consecutive iterations of step 4 of the algorithm, and
part (b) illustrates step 5. The shaded squares in the figure represent those voxels that
the algorithm is allowed to move into, and the boxes with bold borders indicate visited
voxels. After this calculation of o(r, ), the reduced tract, 7, is defined as

L ) | or(x) ifxeV,

ar = ar or(x) = { 0 otherwise, “)

where V. is the set of visited voxel vectors calculated by the algorithm above. While r

and 7 are generally not identical, they are equivalent to the o function in the sense that
o(r,r) =o(7,7) =o(r,7) =o(F, 1), (5)

because all voxel locations whose data value is nonzero in r but not in 7 are never
visited. It must be remembered here that the tract data r includes the seed point, a,,



reference candidate

Figure 1: Two dimensional illustration of the shape similarity algorithm, as applied to two
identical tracts. In (a), the boxes with bold borders represent the starting point, which has been
marked visited. The shaded voxels in the reference tract indicate those nonzero, unvisited loc-
ations that the algorithm may legally move into, and the line represents the chosen step vector,
from the current pointer location (circle head) to the next location (arrow head). In (b), movement
in the candidate tract is restricted to those voxels whose angle from the chosen step direction in
the reference tract is less than 90°. Since the voxel values are identical, the same direction is
chosen. In (c), the next step in the reference tract cannot be back to the previous pointer location,
since it is marked visited. In each diagram, numbers represent connection likelihood values at
each voxel.



since this property will not hold if the same voxel data but different seed points were
to be passed to the o function.

When comparing a tract to itself the inner product calculated in step 6 of the al-
gorithm will always be unity, and so the algorithm is merely counting the number of
steps taken. Thus, the value of o(r, ) is exactly equal to the number of nonzero voxels
in 7 (excluding the seed point), and since each nonzero voxel can be visited at most
once, producing a maximum contribution of one, we can establish the bounds

0<o(f,c) <o(rr) Vec. (6)

The restriction that the pointer in the candidate tract can never move in a direction
opposite to the reference tract ensures that all inner products are positive, and this fixes
the lower bound in Eq. (6) at 0. Equivalently, 0 < o(r, é) < (¢, ¢) for any 7.

Similarity measure

Using the tract comparison algorithm described above, we here develop measures of
shape and length similarity, and then combine them together to form an overall simil-
arity score.

We first approximate the length, L,., of tract r as the number of voxels visited when
it is compared to itself, excluding the seed point, which is given by

L.=o(rr). 7

This length value is unchanged in the reduced tract, 7, as shown by Eq. (5). Note that
when comparing a tract to itself, shape is irrelevant because the local directionality of
the reference and candidate tracts is always the same. If there are no nonzero voxels
adjacent to the seed point, the data represents a “point tract”, with length zero.

Given the definition of length in Eq. (7), and having calculated its value for the
reference and candidate tracts, we establish the similarity of these two numbers using
the symmetric normalized difference given by

L, — L,
L.+L.

~ 2-min{L,, L.}
— I L. = Si(c,r) . ®)

Si(r,e) =1 ‘

This measure has the value zero if either L,. or L. is zero, and unity if the lengths are
equal.

The other component of the similarity measure, the similarity in shape between the
reference and candidate tracts, can be established using the asymmetric formulation

o(7,¢)

B L L)

# Sa(c,r) . )
The denominator in Eq. (9) removes the length dependence of the o function. The
bounds on the ¢ function that were established above ensure that the value of Eq. (9)
is always in the interval [0, 1].

Finally, the two score components given by Eqs (8) and (9) are combined to form
the overall similarity score,

S(Tv C) = Sl(ra C) : 52(7"7 C) = (10)
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Figure 2: Qualitative demonstration of the effect on the two score components, S1 (shape) and
Sa (length), of different types of relationship between the reference tract (fixed, and on the left
in each case) and the candidate tract (variable, and on the right). The seed points are assumed to
be in the centre of each tract throughout.

the geometric mean of the two components. A higher value of Eq. (10) indicates a
better match, and a lower value indicates a worse match. The score will be 1 if r and
c are the same tract. It will be 0 if either r or c is a point tract. The geometric mean
lends a far stronger influence to very small values in one score component than does
the arithmetic mean when finding the “average” similarity of c to r, and in particular,
if either score component is O then the overall score is also 0. This formulation em-
phasizes that both length and curvature must be similar for the candidate tract to be
considered a likely equivalent to the reference.

Fig. 2 shows four examples of tract pairs and their associated score components.
In each case the reference tract is on the left, and the seed points are assumed to be
placed exactly in the middle of each tract. These are idealized, and continuous rather
than voxelized, tract curves; but they illustrate how the two score components will be
affected in various scenarios. In (a), the the candidate tract is identical to the reference
tract. This is equivalent to the case in Fig. 1. In (b), the candidate is a reflected copy
of the reference. Note that the shapes of this pair of curves are considered different. In
(c), the candidate is a central segment from the reference, so the shape is considered
identical, but the lengths differ. It should be noted that this case represents a truncation
rather than a scaling of the reference tract, as the latter would not produce an S5 score
of 1. Finally, in (d), the tracts are different in both shape and length.

Methods
Image acquisition

Six normal volunteers (2 male, 4 female; mean age 27 £ 3.4 years) were recruited for
this study. Each subject underwent a dMRI protocol on a GE Signa LX 1.5 T clinical
scanner (GE Medical Systems, Milwaukee, WI, USA), equipped with a self-shielding
gradient set (22 mT m~! maximum gradient strength) and manufacturer supplied “bird-
cage” quadrature head coil. The protocol used a single-shot spin-echo echo-planar ima-
ging sequence with 51 noncollinear diffusion weighting gradient directions at a b-value
of 1000 s mm~2, and 3 T,-weighted scans. 48 contiguous axial slice locations were
imaged, with a field of view of 220 x 220 mm, and a slice thickness of 2.8 mm. The



acquisition matrix was 96 x 96 voxels in-plane, zero filled to 128 x 128. TR was 17 s
per volume and TE was 94.3 ms.

In order to investigate the variation in similarity scores between acquisitions, 2 of
the subjects were scanned twice, and 3 were scanned three times. Those subjects that
went through the protocol three times were taken out of the scanner between the second
and third acquisitions, and the slice locations were repositioned for the third acquisition
without reference to those chosen for the first two.

Data processing

The data were initially preprocessed to remove skull data and eddy current induced dis-
tortion effects from the images, using FMRIB Software Library (FSL) tools (FMRIB,
Oxford, UK). As mentioned above, the underlying tractography algorithm used in this
study was the BEDPOST/ProbTrack algorithm (Behrens et al., 2003b), which is also
part of the FSL suite. It should be remembered that the BEDPOST/ProbTrack model
of the dMRI signal is a partial volume model assuming a single anisotropic diffusion
direction at each voxel, and as such the measure of anisotropy it uses is the anisotropic
volume fraction (AVF), rather than the more common, diffusion tensor based fractional
anisotropy (FA). However, the two measures are closely related.

The aim of our first experiment was to validate the similarity measure described
above, by investigating whether the measure could differentiate between comparable
and disparate tracts in the group of volunteers. A series of 8 seed points were placed
in major white matter fasciculi on a Montréal Neurological Institute (MNI) standard
brain (Evans et al., 1993), and transferred to each subject’s native space using the
FLIRT registration algorithm (Jenkinson & Smith, 2001), with the MNI white matter
map used as a weighting volume (Clayden et al., 2005). The specific seed regions
chosen were genu and splenium of corpus callosum (CC), right and left anterior limb
of internal capsule (ALIC), right and left posterior limb of internal capsule (PLIC), and
right and left sagittal stratum (SS). Whilst the accuracy of seed point placement using
this registration method is limited, it provides an independent mechanism for generat-
ing groups of tracts that can be expected to be more or less similar to one another. The
ProbTrack tractography algorithm was run with each of these points as a seed, and sim-
ilarity scores were calculated for various tract pair permutations. Comparisons between
equivalent seed regions on the left and right of a single brain volume (e.g. left ALIC
versus right ALIC) were labeled “bilateral”, and all other comparisons within a single
volume (e.g. left ALIC versus right PLIC) were labeled “nonbilateral”. Comparisons
across subjects for a single seed region (e.g. left ALIC in subject 1 versus left ALIC in
subject 2) were labeled “intersubject”; and additional similarity scores were calculated
between 1st and 2nd scans (“inter-NEX”’) and 2nd and 3rd scans (“interscan”), where
available, within each subject and seed region. We expect that similarity scores will be
lowest for the nonbilateral comparisons, and highest for the interscan and inter-NEX
cases where the two tracts are from the same seed region and same subject. For every
pair of tracts thus compared, similarity scores were calculated using each in turn as the
reference tract.

A second experiment was then performed, aimed at applying the similarity ap-
proach to the problem of improving the robustness of seed point placement across a
group of scans. For each seed region, a representative reference tract was chosen.
For each scan, a 7 x 7 x 7 cube of voxels around, and including, the voxel sugges-
ted by the registration method (hereafter the “original” seed point) for each fasciculus
of interest were used as seed points for the tractography algorithm, except where the



Subject Scan1 Scan 2 (inter-NEX) Scan 3 (interscan)

1 (a) (b) ()
2 (d) (e)

3 () €y ()
4 ® @ (k)
5 ) (m)

6 (m)

Table 1: Correspondence between the different scans and the subfigure labels used in Figs 4 and
5.

Seed RM score mean RM scores.d. NT score mean NT score s.d.
1 (CC genu) 0.488 0.056 0.597 0.018
2 (CC splenium) 0.354 0.106 0.542 0.031
3 (right ALIC) 0.529 0.098 0.651 0.026
4 (left ALIC) 0.463 0.099 0.644 0.027
5 (right SS) 0.329 0.220 0.680 0.023
6 (left SS) 0.365 0.077 0.516 0.024
7 (right PLIC) 0.405 0.096 0.570 0.030
8 (left PLIC) 0.444 0.054 0.594 0.025

Table 2: Mean and standard deviation of similarity scores for all tracts chosen by neighborhood
tractography (NT) in each of the 8 seed regions, determined from the 6 volunteers (14 scans).
The means and standard deviations for tracts chosen by the registration method (RM) are given
for comparison.

voxel AVF was less than 0.2, an empirically chosen threshold used to avoid seeding
in cerebrospinal fluid or gray matter. The tract with the highest similarity score when
compared to the relevant reference tract was then selected as the “best” tract from each
brain volume. We will refer to this technique as neighborhood tractography.

In all of the experiments described above, reference and candidate tract data (i.e.
the fields ¢, and ¢.) were thresholded at the 1% level before similarity scores were
calculated. This was done to avoid inclusion of very low confidence paths in the com-
parisons.

Results

Fig. 3 shows the results of the first experiment as a box-and-whisker plot. The mean
(£ standard deviation) similarity score for each group of tract comparisons was 0.14
(£0.13) for nonbilateral, 0.31 (£0.13) for bilateral, 0.38 (£0.12) for intersubject, 0.47
(£0.09) for interscan, and 0.46 (30.12) for inter-NEX. Two sample, two tailed ¢-tests
showed significant differences between nonbilateral and bilateral scores (P < 1079),
between bilateral and intersubject scores (P = 0.005), and between intersubject and
interscan scores (P < 107%). There was no significant difference between interscan
and inter-NEX similarity scores (P = 0.89).

Results from the second experiment are shown visually in Figs 4 and 5. The corres-
pondence between the letters labeling each subfigure and the different scans is shown
in Table 1. Fig. 4 shows the tract fields produced by seeding ProbTrack at the original
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Figure 3: Box-and-whisker plot showing the range of similarity scores for the five different
categories of comparison in the first experiment. The thick horizontal line across each box
represents the median, the box shows the interquartile range, the whiskers show the extent of the
bulk of the data, and circles show outliers more than 1.5 interquartile ranges from the box. The
n values indicate the number of scores making up the data for each plot. The data demonstrate
appropriate score increases across the different test conditions, suggesting that the score provides
meaningful and useful information.
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Figure 4: Two dimensional axial projections of the tracts generated by the ProbTrack algorithm
using the original seed points chosen by the registration method, overlaid on AVF maps of the
slice in plane with the seed in each case. White indicates high AVF and black low. In the tracts,
yellow indicates high likelihood of connection to the seed point, and red low. The green stars
indicate the seed point locations. The similarity score to the reference tract (f) is shown in each
case.
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Figure 5: Projections of the tracts chosen as the “best” (highest similarity to the reference tract),
using a 7 X 7 X 7 seeding neighborhood around the original seed point. Individual similarity
scores are also shown. Tract (f) is the reference tract.
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Figure 6: Examples of reduced reference and candidate tracts, produced from two of the unre-
duced tracts shown in Fig. 4.
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seed point in splenium of corpus callosum, and thresholding the results at the 1% level.
This seed region was chosen as the example because considerable variation in tract
shape can be seen across the group: the resultant tracts demonstrate pathways running
anterior (d, e, h, k), posterior (a—c, f, g, j, I-n) or both (i) from the edges of the cor-
pus callosum itself. Fig. 5 shows the tracts chosen by the neighborhood tractography
approach, after the same 1% threshold has been applied. Both figures also show the
similarity scores associated with each tract, using (f), which is the same in both cases,
as the reference tract. In Fig. 5, similarity scores are necessarily greater than or equal to
the corresponding score in Fig. 4, and only two tracts (i, 1) remain that do not project in
the posterior direction from the corpus callosum. These two tracts have the two lowest
similarity scores in the figure. Tract (g), which has the highest score apart from the
reference tract, is found in the same subject as the reference tract, so the fasciculus it
represents is identical.

Fig. 6 shows examples of “reduced” reference and candidate tracts, in the sense
described in the Theory. It shows how the reduction affects the tracts. In this case, the
reference tract is simply slightly narrower than its unreduced equivalent, Fig. 4(f). The
candidate tract is truncated at the edge of the splenium, where the unreduced version,
Fig. 4(h), had an ambiguous branch.

The mean and standard deviation of the similarity scores for the tracts chosen before
and after applying neighborhood tractography for each seed region, across all subjects
and acquisitions, are given in Table 2. The figures for the “best” tracts (as chosen
by neighborhood tractography) represent narrow and seed specific score distributions,
whose coefficients of variation are in the range 3.0-5.7%. By comparison, the original
scores, generated by the registration method, are invariably lower with wider standard
deviations. Their coefficients of variation are in the range 11.5-66.9%.

Discussion

While tract shape has been studied before (Corouge et al., 2004), previous work has
been aimed at modeling individual tracts, rather than doing pairwise similarity scor-
ing. As far as we are aware, the present study represents the first attempt at using a
quantitative tract similarity measure to improve segmentation reproducibility.

The results from our first experiment provide evidence that the similarity meas-
ure described above produces higher scores for a single seed region across a range of
healthy subjects, than it does for a range of seed regions within a single subject, as
demonstrated by higher intersubject than bilateral and nonbilateral similarity scores.
Behavior of this nature is clearly crucial for any tract similarity measure that is inten-
ded to be used as a basis for the identification of comparable tracts across a group of
subjects. It is not surprising to find that comparisons between bilateral seed regions
(such as left versus right ALIC) produce generally higher scores than other compar-
isons (such as left ALIC versus right PLIC), since comparable white matter fasciculi
in the two hemispheres can be expected to have similar lengths and related shapes.
Nevertheless, even the bilateral scores are significantly smaller than the intersubject
scores.

The finding that interscan and inter-NEX scores are indistinguishable is an inter-
esting one. It suggests that repositioning of the slice positions introduces no consistent
bias to the results of the similarity measure, demonstrating a useful robustness to subtle
changes in the slice locations. It is additionally reassuring to see that both these sets
of scores are significantly higher than the intersubject scores, since the underlying fas-
ciculi are the same across acquisitions, rather than merely comparable as they are in
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the intersubject case.

Our findings from the second experiment are also encouraging. The results in Fig.
4 show the inadequacy of the registration method: despite comparable seed point loc-
ations in each brain volume, the shapes of the resultant tracts are highly variable. By
contrast, the tracts shown in Fig. 5 are generally more similar to the reference tract
(f) than those in Fig. 4, at least in terms of the qualitative observation that fewer of
them project anteriorly from the splenium of corpus callosum. In addition, those tracts
which clearly do project along very dissimilar pathways to the reference tract (i, 1)
have similarity scores lower than the remaining 12 tracts. Tract (g) in Fig. 5, which
appears most similar in shape to the reference tract, appropriately generates the largest
similarity score.

The narrowness of the score distributions for each seed point (see Table 2) seems
to indicate that the scoring algorithm is quite strongly influenced by the nature of the
reference tract. This may be because the part of each tract near the seed point in each
direction is relatively reproducible, whereas the spatially uncertain regions near the
ends of tracts are very unlikely to produce a perfect match with the reference tract. The
combination of these two factors may effectively impose reference tract specific upper
and lower score bounds.

We do not claim that the tracts shown in Fig. 5 are anatomically correct. Validation
of tractography output is a complex issue in its own right (Mori & van Zijl, 2002), since
there are no other established techniques for studying white matter structures in vivo.
We do, however, claim that these tracts are more similar to the reference tract (which
is chosen for illustration) than those shown in Fig. 4. If the nature of the reference
tract were later to be found to be inappropriate, it could be updated and neighborhood
tractography repeated without change. The method would then find the best match to
the new reference tract.

After the fact examination of the locations of the “best” voxels relative to the ori-
ginal seed points showed that 63% of seed points chosen by neighborhood tractography
are not more than 2 voxels from the original seed point in any direction. While this pro-
portion is high enough to suggest that a 7 x 7 x 7 search cube is generally sufficiently
large, it may be that using a larger search space would have improved the results of
our application experiment in certain cases. However, for larger search spaces it would
probably be necessary to use more complex heuristics for culling seed points than the
simple AVF threshold used here, so as to keep run times reasonable.

A major advantage of the approach taken in this work, when compared to group
data averaging (Jones et al., 2002), is that no spatial manipulation of each individual
brain volume is required before tractography can be performed, and so potentially in-
teresting anatomical variation across the group need not be averaged away or otherwise
distorted. For this reason, we have made no alterations or corrections for factors such as
natural variation in brain size and shape, or head rotation. These factors will have some
effect on the absolute similarity scores, but they will affect all candidate tracts, and the
neighborhood tractography method is only interested in relative similarity, compared to
other candidates. A correction based on a transformation of the candidate tract into the
space of the reference tract would, in any case, have problems of its own, since inter-
polating the tract data could alter its structure in undesirable ways. For example, local
duplication of voxel values would be strongly suboptimal for our similarity algorithm.

Since differences in head rotation and head size between scans will have a complex,
nonlinear effect on the similarity measure, and may affect different tracts differently,
it is not straightforward to establish the impact of these variates, or to recommend
upper bounds on acceptable rotations or scalings. Moreover, working with simulated
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data would add another image processing step, which may be a source of variance,
and would introduce similar interpolation issues to a correction. However, interscan
rotations for single subjects are present in our data set. Linear registrations between
pairs of To-weighted images suggest that the median rotation between a subject’s first
scan and their third was 1.5° (4.3° about the left-right axis, 0.6° about the anterior—
posterior, and 1.1° about the superior—inferior). Hence, some variance due to rotation
is incorporated into the results from our first and second experiments; but it should be
remembered that in the first experiment, inter-NEX and interscan scores were statist-
ically indistinguishable, despite much smaller rotations in the former case (median of
0.3°), suggesting a certain robustness to such effects.

Unlike neighborhood tractography as presented here, the 2ROI method (Conturo
etal., 1999) is a modification of tractography algorithms themselves. Neither method is
explicitly dependent on the particular algorithm in use, but the 2ROI approach changes
the meaning of the tractography output. Specifically, a probabilistic algorithm will no
longer indicate absolute connection likelihood to the seed point. The data will instead
represent some information about the relative likelihoods of different connection routes
between the two regions of interest. By contrast, whilst neighborhood tractography
provides a preference for certain shapes and lengths of output, it does not change the
tract data at all. Where appropriate, neighborhood tractography and the 2ROI method
could be complementary.

Some tractography studies have used a volume of interest (VOI) approach, in which
the tractography algorithm is seeded from a cluster of voxels and the results combined
together (e.g. Kanaan et al., 2006; Pagani et al., 2005). This method is related to
neighborhood tractography, because both approaches seed in a region rather than a
single point, but while the VOI method retains all of the resulting data, neighborhood
tractography retains only the output from a single chosen seed point. The potential
advantage of the all-but-one rejection performed by neighborhood tractography is that
the specificity of single seed point tractography remains—allowing, in principle, for
the study of white matter structures only a single voxel wide—whilst undesirable sens-
itivity that hinders more straightforward single seed methods is reduced. It is not clear
to what extent it is reasonable, in general, to treat the sum of the outputs from each
point in a VOI as a single white matter structure.

The similarity measure described above aims to be relatively simple whilst captur-
ing important characteristics of the two tracts that we wish to compare. It would be
possible to make minor specializations or refinements to the algorithm that calculates
the o function without changing the overall framework, provided the bounds on the
score, .S, remain. This simplicity aids portability. Whilst probabilistic tractography al-
gorithms tend to produce tract data of the form given by Eq. (1), some other approaches,
particularly streamline based algorithms, instead produce a single line of infinitesimal
thickness through the seed point. In these cases, the principle of our similarity calcu-
lation would still be applicable, and in fact the method would become even simpler
because there would no longer be any need to produce a reduced tract.

The main weakness of the similarity measure presented here is that the termination
criterion in step 8 of the algorithm (see Methods) can be met prematurely if a local
“loop” of relatively high valued voxels is encountered. This leads to underscoring
or false negatives, and is likely to be at least a contributor to the problem of narrow
score distributions for a particular reference tract, and the reason that tract (1) is less
visually similar to (f) in Fig. 5 than in Fig. 4. That result, when taken in context with
the rest of the data, suggests that while a high score seems to indicate a good match
between tracts, a low score may not reliably indicate a bad match. The underscoring
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problem could perhaps be alleviated by biasing the algorithm in favor of continuing in
the same direction as its previous step, and introducing some fuzziness into the choice
of local maximum voxel in step 4 of the algorithm. However, these changes would
render the algorithm nondeterministic, and care would have to be taken to ensure that
the maximum and minimum scores remain tractable.

We do not claim that our similarity measure is optimal, or that tract shape and length
are the only characteristics of interest, but our results demonstrate that dMRI data does
provide enough information to meaningfully compare tractography output algorith-
mically. The measure presented here is not directly based on any explicit model of
intersubject tract variability, so a constructive future direction for development would
be to construct such a model in a formal probabilistic framework, and derive a more
rigorous similarity measure from that model.

The effect of the neighborhood tractography approach will necessarily depend on
the underlying data, the tractography algorithm and the similarity measure being used,
so further investigation will be required to find the best combination of these factors.
Nevertheless, we believe that approaches to group tractography based on an attempt to
pinpoint a single, “equivalent” seed point in each brain volume face almost unassail-
able difficulties; whereas after the fact comparisons of candidate tracts with a reference
tract in the manner described in this study could provide a truly robust foundation for
automated, reproducible tract segmentation in group dMRI data. With further improve-
ment to similarity measures, it may ultimately be possible to produce a standard set of
reference tracts, much as standard brain images are produced now, and to use these
to reliably segment specific fasciculi with tractography in a group of brain volumes.
Furthermore, a similarity measure with sensitivity to tract shape, such as ours, could be
applied to quantify white matter distortion effects in pathologies such as brain tumors.
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