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Magnetic resonance imaging (MRI) is a flexible and widely available neuroimaging technique. Struc-
tural MRI and diffusion MRI, in particular, provide information about connectivity between brain
regions which may be combined to obtain a picture of entire neural networks, or the so-called “connec-
tome”. In this review we outline the principles of MR-based connectivity analysis, discuss what relevant
information it can provide for clinical and nonclinical neuroscience research, and outline some of the
outstanding needs which future work will aim to meet.

Introduction

Neural computation is inextricably linked to connectiv-
ity. Without its extensive network of interconnections
at every scale, the mammalian brain would not have the
information processing capabilities that it does. Brain
connectivity is also dynamic, both in the Hebbian sense
that connection strengths between individual neurons are
plastic (Ho et al., 2011), and in developmental terms,
since the refinement of neural connections continues on
a large scale for many years beyond birth (Tau & Pe-
terson, 2010). Damage to the axon bundles connecting
cortical regions is thought to underpin a range of neu-
rological deficits, a principle commonly referred to as
the “disconnection hypothesis” and discussed at length
by Geschwind in a pair of seminal papers (Geschwind,
1965a,b). Techniques which allow for the health of neu-
ral white matter to be inferred in vivo therefore offer sig-
nificant opportunities in clinical and nonclinical neuro-
science. Here we will discuss the role of magnetic reso-
nance imaging (MRI) in this context.

Brain connectivity can be considered at many dif-
ferent scales. At a fundamental level, intercommunica-
tion between individual neurons takes place at chemical
or electrical synapses. The full pattern of synaptic con-
nections in the nervous system of the nematode worm
Caenorhabditis elegans, which contains just 302 neu-
rons, has been painstakingly mapped out (White et al.,
1986)—but performing a similar feat for the hundred
billion or so nerve cells of the human brain would be
unimaginably difficult and, in all likelihood, not espe-
cially informative. More practical on the scale of entire
neural systems is to consider connections made up of
bundles of axons, linking together coherent grey matter

nuclei or small cortical regions. Data from basic neu-
roscience, obtained using invasive techniques in nonhu-
man primates and other mammals, has provided tremen-
dous insight into the connectivity of the visual cortices,
for example, or the basal ganglia (Felleman & Van Es-
sen, 1991; Parent & Hazrati, 1995).

MRI offers the opportunity to examine connectiv-
ity in the living brain. Although the technique is not
without its challenges, and works at a relatively coarse
scale, it is the focus of a great deal of current re-
search due to its clinical feasibility. It is also the ba-
sis of various attempts currently being undertaken to
characterise the human “connectome” in a meaningful
way, notably that of the Human Connectome Project
(http://www.humanconnectome.org; Van Essen & Ugur-
bil, 2012).

The focus of this review is specifically structural
connectivity, the means of measuring it using MRI, and
its key applications in neuroscience. Structural connec-
tivity refers specifically to the identification and char-
acterisation of the axon bundles which embody connec-
tivity. By contrast, “functional” connectivity has come
to refer, in neuroimaging, to a correlation in the time
courses of neural activity in spatially remote regions of
grey matter; and “effective” connectivity describes pat-
terns of influence by some neural systems over others.
While functional connectivity may be measured rela-
tively directly using functional MRI or encephalography,
effective connectivity must generally be inferred using
data in concert with a statistical framework such as a
structural equation model (McIntosh & Gonzalez-Lima,
1994), or dynamic causal model (Friston et al., 2003).
However, the relationship between functional and ef-
fective connectivity has been eloquently explored else-
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Figure 1: Simulation of diffusion within an ideal impermeable cylinder, shown in cross-sections perpendicular (A) and parallel
(B) to the axis of symmetry. Despite starting from the centre of the figure in both cases, diffusing molecules progress further on
average along the cylinder than across it.

where, by Friston (1994) and others, and will not con-
cern us further here.

The remainder of this review is organised as follows.
We begin by discussing how MRI can be used in con-
cert with computational techniques to derive informa-
tion about brain connectivity. We then describe how this
can be built up into a picture of connections across the
whole brain, and what information can be derived from
this reconstructed connectome. We also outline some of
the clinical studies in which this information has proven
useful, and the role of cortical thickness information is
discussed. Finally, we discuss the limitations of current
approaches and future directions.

From molecules to connections

Although magnetic resonance imaging is capable of pro-
ducing highly detailed structural images of the human
brain, the spatial resolution of clinical MRI is typically
on the order of a millimetre. Neuronal axons, by con-
trast, are rarely more than a few microns in diameter;
and it is therefore not possible to directly image axon
bundles in the living brain using current technology.

Nevertheless, entire white matter tracts, which can
be several millimetres across, often have a coherent ori-
entation in any particular part of the brain, and this is
exploited by diffusion MRI (dMRI). In this modality,
the magnetic resonance signal is sensitive to the random
thermal motion of water molecules within neural tissue.
Since structures such as cell walls and myelin impede
such motion, observing the characteristics of this self-
diffusion in a particular part of the brain provides an in-
sight into the underlying tissue microstructure (Le Bi-
han, 2003). In particular, the very linear structure of
white matter tracts creates a strong orientational depen-
dence, or anisotropy, to the mobility of free water. Very
loosely, a millimetre or so of tract may be thought of as

resembling a bundle of cylinders with a single orienta-
tion; and water molecules are freer to move along these
cylinders than across them (cf. Fig. 1).

The general technique for estimating the degree of
water mobility, or diffusivity, in tissue using MRI was es-
tablished in the mid-1960s (Stejskal & Tanner, 1965)—
and the effect of diffusion on the MRI signal was known
for some time before that. But it wasn’t until the 1990s,
with the advent of diffusion tensor imaging (DTI), that
a method for fully characterising diffusion anisotropy
was established (Basser et al., 1994). This was a ma-
jor step forward, as it allowed the favoured diffusion
direction of water molecules, and hence the orientation
of the underlying tract, to be inferred at each voxel (or
3D pixel) in an image of the brain. It was not long be-
fore postprocessing techniques which combined this lo-
cal information to reconstruct entire white matter path-
ways followed (Conturo et al., 1999; Jones et al., 1999;
Mori et al., 1999; Basser et al., 2000). The principle
of this “tractography” is illustrated in Fig. 2, following
the widely used approach of generating streamlines from
seed points. Refinements to diffusion models and trac-
tography algorithms have continued since, notably to al-
low for fibre crossings, but the general techniques re-
main broadly similar (Jones, 2008). A range of software
tools for performing tractography are now available, and
this has made its use relatively mainstream in clinical re-
search applications. It has also been used for surgical
planning and intraoperative navigation (Ciccarelli et al.,
2008). However, it can be computationally intensive,
and generally requires significant care and anatomical
knowledge on the part of the user. Several approaches to
automation have been described (O’Donnell & Westin,
2007; Clayden et al., 2009b; Zhang et al., 2010; Yendiki
et al., 2011; Suarez et al., 2012), although none has yet
attained widespread acceptance.

DTI, and to a lesser extent its various successors,
have also been used to characterise white matter mi-
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Figure 2: Illustration of the principle of streamline tractography based on dMRI data. The principal direction of diffusion at
each voxel location in the data is shown as a line, whose colour corresponds to its orientation. The streamline, shown in white,
is generated by beginning at a seed point (large white circle) and repeatedly stepping along the principal direction.

crostructure as such. Since diffusion anisotropy at the
millimetre scale arises due to the coherent organisation
of axon bundles, it is logical to suppose that a reduc-
tion in observed anisotropy would follow a loss of co-
herence due to the effects of pathology. Indeed, there
have been hundreds of clinical studies reporting reduc-
tions in anisotropy in parts of the brain, when com-
pared with control cohorts or examined over the course
of disease progression. Localised changes in diffu-
sion parameters have also been detected after even rel-
atively short periods of training in a new skill (Scholz
et al., 2009; Sagi et al., 2012). The biophysical in-
terpretation of anisotropy changes is not fully under-
stood, but a series of ex vivo experiments have suggested
that the hindrance of cell membranes to water self-
diffusion forms the biggest contribution to anisotropy,
while myelin has a somewhat lesser effect (Beaulieu,
2002). Breakdown in axonal cell membranes and de-
myelination would therefore be expected to have some
effect on observed anisotropy. Many authors have con-
sidered diffusivities perpendicular and parallel to the
axons separately, in order to provide some distinction
between different sources of change in anisotropy, but
interpretation of these measures remains controversial
(Wheeler-Kingshott & Cercignani, 2009), and so caution
is advisable. Recently, novel dMRI-based experiments
incorporating detailed tissue geometry models have been
appearing, with the aim of directly estimating pseudohis-
tological parameters such as axon radius from imaging
data (Barazany et al., 2009; Alexander et al., 2010); and
this is an enticing, if highly ambitious, avenue of current
research.

The structural connectome

It was recognised soon after tractography first became
established that it could be used as a tool to compare the
connectivity “profiles” of different brain areas. More-
over, although afferent and efferent pathways cannot be
distinguished using dMRI, the differences in the projec-
tions of streamlines generated from a set of seed points
can be used to delimit functionally distinct cortical ar-
eas or subnuclei. This principle has been successfully
applied to automatically segment subnuclei of the thala-
mus (Behrens et al., 2003) and basal ganglia (Draganski
et al., 2008), as well as to separate adjacent, but func-
tionally distinct, regions of cortex (Klein et al., 2007).

Going one step further, to build up a picture of
the full structural connectivity network, is conceptually
quite straightforward. Typically, a high-resolution struc-
tural MR image is used to parcellate the cortex into
anatomically coherent subregions, tractography is per-
formed throughout the brain, and the connectivity be-
tween each pair of regions is compiled into an abstract
representation called a graph (see Fig. 3). Graph-based
approaches to structural connectivity analysis have be-
come established in the dMRI literature in the last five
years or so (Hagmann et al., 2008; Iturria-Medina et al.,
2008), and are now an extremely fast-growing area of
methodological and applied research.

Graph representations are appealing for their sim-
plicity, since they collapse the complexities of brain con-
nectivity into a set of abstract interconnected “nodes”.
They are also extremely well-understood in mathemati-
cal terms, since graph theory as a field has been devel-
oped over centuries. Numerical values can be derived
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Figure 3: Key stages in the creation of a structural connectivity graph using magnetic resonance images: cortical parcellation
(A), whole-brain tractography (B), and the final graph representing the pattern of connections between regions (C).

which represent a whole spectrum of topological fea-
tures of the network represented by the graph (Rubinov
& Sporns, 2010), such as the average number of con-
nections to each brain region represented by a node, or
the average number of connections which must be tra-
versed to get between any pair of nodes. In common
with many complex networks, brain networks have also
been described as having “small-world” topology (Watts
& Strogatz, 1998), with a number of key hubs acting as
gateways between local clusters of interconnected grey
matter regions.

The availability of relatively intuitive graph-based
measures of network characteristics such as overall con-
struction “cost” (the density of connections present), and
“efficiency” (inversely related to the typical path length
between nodes), has catalysed the application of these
techniques in neuroscience. (Fig. 4 illustrates some of
these concepts using two simple graphs.) For example,
Wen et al. (2011) have presented evidence of a relation-
ship between a global measure of neural network effi-
ciency and several aspects of cognitive performance in
old age. It has also been reported that global efficiency
is lower in Alzheimer’s disease patients, when compared
to controls (Lo et al., 2010), and that path lengths are
longer in frontal and temporal regions in schizophrenia
(Van den Heuvel et al., 2010), amongst other clinical
findings. Similar results have been reported using net-
work analysis based on functional connectivity.

However, while graph-based findings can certainly
be instructive, it is important not to overinterpret the re-
sults of these analyses. The tidy, well-behaved graphical
representation obscures the practical vagaries of the un-
derlying data, but the graph is implicitly subject to all
of the caveats applying individually to each step of the

process used to generate it. Moreover, there is very lit-
tle consensus regarding the details of the pipeline that
should be used, but the choice of nodes, tractography
algorithm and various thresholds can have a very signif-
icant effect on the reconstructed network (Zalesky et al.,
2010; Bastiani et al., 2012). One must therefore not
be fooled into thinking that the connectome obtained is
definitive.

Finally, it is not always clear that the network prop-
erties of the brain as a whole are relevant. Global ef-
ficiency, for example, provides putative information on
the ease by which any two cortical regions may commu-
nicate with each other—but in most cases it is unlikely
that a specific neurological condition would be the re-
sult of an impairment to all-to-all interregional commu-
nication. Decomposing the structural connectome into
coherent subnetworks may well be a valuable alternative
strategy, although once again there are various method-
ological approaches available (Clayden et al., 2013). As
is often the case, prior knowledge from other sources
is likely to be very valuable in focussing attention on
a subnetwork relevant to a particular cognitive ability,
or perhaps connections mediated by a particular neuro-
transmitter.

Cortical thickness

Although tractography provides a well-established and
relatively direct way to obtain structural connectivity in-
formation, it is not the only such method that uses MR
images. A common alternative is to consider correla-
tions in cortical thickness between regions. The pipeline
in this case is to acquire one or more high-resolution
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Figure 4: Two simple graphs with the same number of nodes and connections, but different topologies. Graph A has higher
“efficiency”, because a maximum of three connections need to be traversed to get from any one node to any other, compared to
up to seven for graph B. However, if either of the central “hub” nodes, 5 and 10, were to be destroyed and removed from the
graph, a larger proportion of nodes in graph A would be disconnected. Graph B is therefore, in some senses, less vulnerable to
attacks targeted at these nodes.

structural MR images, parcellate the cortex as before,
and then calculate the average distance from the pial
surface to the white matter boundary within each par-
cellated region (Fischl & Dale, 2000; Kim et al., 2005).
Across a cohort of subjects, the correlations between
each pair of cortical thickness estimates can then be ob-
tained and used as an indirect measure of connectivity
between them. Unlike with dMRI, connectivity cannot
be straightforwardly estimated for a single individual us-
ing this approach.

It is far from obvious that correlation in cortical
thickness should imply the existence of a connection
between two regions, and indeed the anatomical under-
pinnings of this observation remain unclear. Neverthe-
less, Lerch et al. (2006) demonstrated that areas in which
cortical thickness is correlated with that in Broca’s area
corresponded closely to the grey matter surrounding the
arcuate fasciculus, the language pathway to which that
region is connected. A fair degree of agreement with
dMRI-based connectivity information has also been re-
ported at the network level (Gong et al., 2012).

Graph-based studies using cortical thickness correla-
tion as their measure of corticocortical connectivity have
found relationships between network properties and age
during development (Khundrakpam et al., 2013), and
differences in clustering topology between grapheme–
colour synaesthetes and controls (Hänggi et al., 2011),
amongst other findings. Indeed, cortical thickness is
not the only anatomical measure which has been used
in this way: Bassett et al. (2008) built up graphs using
correlations in grey matter volume, for example, show-
ing differences in the locations of network hubs between
schizophrenics and controls.

Challenges and opportunities

In the decade and a half since diffusion tractography was
first put forward, there have been a number of efforts to
validate it: for example, by comparing the results to ex
vivo dissection or invasive tracing (Dyrby et al., 2007;
Lawes et al., 2008). There have also been major ef-
forts to reconstruct pathways in fixed tissue using tech-
niques such as three-dimensional polarised light imaging
(Axer et al., 2011), to give a very high-resolution “gold
standard” for comparison with in vivo reconstructions.
While the results of validation work have been broadly
encouraging, there have also been some cautionary tales
of the risks of overreliance on the technique in a clinical
context (Kinoshita et al., 2005); and further refinements
to the reliability of tractography are certainly needed.

A key area holding back the possibilities of structural
connectomics is the lack of robust imaging-based mea-
sures of connectivity. Two common choices are the num-
ber of streamlines which connect each pair of grey mat-
ter regions, and the average anisotropy of voxels through
which those streamlines pass. There are also variants of
these measures which try to correct for the size of each
target region, whole brain volume, and so on. The in-
tuition for each of these measures is relatively obvious.
The number of streamlines forming a connection can be
viewed as a proxy for its cross-sectional area, which is
assumed to relate to the bandwidth of the connection—
its capacity for transmitting information. But there are
several practical issues undermining this assumption, ar-
guably the most crucial of which is the well-known ten-
dency for long pathways to be underrepresented due to
the accumulation of small errors during tractography
(Morris et al., 2008; Clayden et al., 2009a). This is-
sue does not directly apply to the anisotropy-based ap-
proach, which is assumed to provide information on the
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integrity of the white matter forming the relevant con-
nection. However, in this case there are other issues due
to the low resolution of the imaging data: how should
one deal with voxels on the periphery of the tract, which
may incorporate irrelevant tissue? Either way, it is not
difficult to imagine falsely positive (or negative) results
emerging due to limitations of the image processing,
rather than any characteristic of neuroscientific interest.
A similar issue exists to some extent in functional con-
nectivity work (Smith et al., 2011), but it is partly miti-
gated by the shorter image processing pipeline which is
required to get from raw data to connectivity estimate in
that case.

Consensus on methodology is unlikely ever to be-
come universal, due to the different requirements of in-
dividual studies, but the researcher should be aware of
the impact of her choices. DTI has the advantage of be-
ing applicable to almost any diffusion data set, and is
relatively robust to noise, but makes tracking small path-
ways that run near to major ones almost impossible. As a
result, a connectome reconstructed using DTI would be
expected to be more sparse than one using a higher-order
model (cf. Bastiani et al., 2012). Likewise, using a large
number of small ROIs as nodes will tend to produce a
much less densely connected graph than one which uses
whole brain lobes (Zalesky et al., 2010). Aspects of the
image acquisition, such as resolution, will also have a
significant influence on the networks obtained; and the
effects of such characteristics can be hard to predict. For
group comparisons in particular, consistency in all of
these matters is key.

Another major challenge is the integration of struc-
tural and functional connectivity information. Several
attempts at this have already been made, and many more
are ongoing, but the unique difficulties of each individual
technique are further compounded when trying to create
a unified picture. Recent work has demonstrated that
there is a certain amount of basic agreement between the
methods, but functional connectivity is generally found
to be more variable than structural connectivity, and not
wholly explained by it (Park et al., 2008; Skudlarski
et al., 2008; Honey et al., 2009). In particular, Honey
et al. reported that consistent functional connectivity can
be observed between regions which are not directly con-
nected anatomically. Resolving these differences is an
important aim for future work, and may prove to be the
cornerstone of a future robust approach to reconstructing
the human connectome.

Parallel to the methodological challenges are unad-
dressed questions of a more neuroscientific nature. What
is the “typical” pattern of structural connectivity in a
healthy adult? What about in a child? How much vari-
ation is there in the connectome from person to person?
How does connectivity change during development or
ageing, due to disease processes, or in response to treat-
ment or training? Can connectivity “fingerprints” help
predict developmental or clinical outcomes? If carefully

and thoughtfully applied, magnetic resonance imaging
will be a key tool in answering some of these questions.

Conclusion
In this review we have given an overview of methods
for studying so-called structural connectivity using mag-
netic resonance imaging. We have also illustrated how
they are used, what can be learned from them, and some
of the difficulties that they face. Graph methods and con-
nectome approaches have gained a great deal of visibil-
ity in the last few years, although they bring their own
pitfalls as well as some inspiring new possibilities. In
the end, MRI methods currently offer the only means to
study structural connectivity in the living brain, and are
therefore very likely to be central to future discoveries in
this area as techniques continue to be refined.
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