Conditional probability
And
Bayes theorem



A. Zaikin 2.1 Conditional probability 1

Conditional probablity
Given events F and F', often we are interested in statements like
if even E has occurred, then the probability of F' is ...

Some examples:
e [oll two dice: what is the probability that the sum of faces is 6 given that the first face is 47

e Gene expressions: What is the probability that gene A is switched off (e.g.

down-regulated) given that gene B is also switched off?



A. Zaikin 2.2 Conditional probability 2

This conditional probability can be derived following a similar construction:
e Repeat the experiment [V times.

e Count the number of times event E' occurs, N (E'), and the number of times both F and
F occurjointly, N(E'N F'). Hence N(E) < N

e The proportion of times that F' occurs in this reduced space is
N(ENF)
N(E)

since F occurs at each one of them.

e Now note that the ratio above can be re-written as the ratio between two (unconditional)

probabilities
N(ENF) B N(ENF)/N
N(E)  N(E)/N
e Then the probability of F’, given that £ has occurred should be defined as
P(ENF)
P(E)



A. Zaikin 2.3 Conditional probability: definition

The definition of Conditional Probability
The conditional probability of an event F', given that an event I has occurred, is defined as

P(ENF)

P(FIB) = —5 &

and is defined only if P(E) > 0.

Note that, if £/ has occurred, then
e F|Eisapointinthe set P(E N F)
e [ is the new sample space

it can be proved that the function P (|) defyning a conditional probability also satisfies the

three probability axioms.

O



A. Zaikin

2.4 Example

Example. Roll a die

Let A = {score an even number} and B = {score a number > 3}.

P(A) =

27

P(B) =,

because the intersection has only two elements, then

P(A/B) = "5t = 33

P(B/A) = 2508 = 153

1
2
2
3

P(A/B) # P(B/A)

P(AHB)zé




A. Zaikin 2.5 Behaviour

Conditional probabilities behave like ordinary probabilities

Standard results for probability extend to the conditional probability, such that conditional
probabilities behave like ordinary probabilities.

For example, for events A and B
P(A|B) =1 — P(A|B)
In order to prove this, first decompose B as
B=(ANB)U(ANB) — P(B)=P(ANB)+ P(ANB)
because they are mutually exclusive. Then
P(ANB)=P(B)— P(AN B)

divide both sides by P(B)

_ P(ANB)
PAIB) =1- =5

— 1 - P(A|B)




2.6 Joint probability

Joint probability

The definition of conditional probability also provides us with a working definition of
joint probability, i.e. the probability that two events occur jointly.

The probablllty that both events E and F' occur is

P(ENF) = P(FIE)P(E)

which helps solve many probability problems.



The chain rule

2.7

The chain rule
- Given two events E and F', a simple way to think about joint and conditional

probability is via a probability tree

/ 7
/ \F p(EnF) Bk P(F|E)

\ _F pEAR=PE)«PFIT)

F  PEnNF=PE)=PF E)

More generally, given events £, ..., F/x., the probability of their intersection is given
by

P(E1N...N Er) = P(El)P(EzlEl)P(EglEl N E3)...
| P(Ex|E1NE2N...N Eg_q)

which is called the chain rule. :



Suppose we have classified 161 individuals according to two criteria: genderand o 8 Contingency
age (below or above 30). A convenient way to present the results is to use a table
contingency table.

- Select one person at random from a group with distribution represented in the
contingency table below

male female total

under 30 54 47 101
over 30 28 32 60
total 82 79 161

- Define the following two events and their probabilities:

E; = {under 30} P(E1) = 101 = 0.627
161
Ey = {female} P(E7) = o 0.490
161
The joint probability of the event £/ N E is given by
P(E,NE,) = -1 0291

161



Suppose we have classified 161 individuals according to two criteria: gender and 29 Contingency
age (below or above 30). A convenient way to present the results is to use a table 2
contingency table.

- Select one person at random from a group with distribution represented in the
contingency table below

male female total

under 30 54 47 101
over 30 28 32 60
total 82 79 161

- Define the following two events and their probabilities:

101

Ey = {under 30} P(E1) = — = 0.627
161
79

Eo = {female} P(E2) = Tl 0.490

Suppose that F/5 has been observed first. The conditional probability that a randomly
picked female has age under 30 is

P(E1NEy)  47/161
P(E;)  179/161

P(E1|Ey) = = 0.594



2.10 Independence

Independence

We can use the definition of joint probability to assess whether two events are
independent, i.e. when the occurrence of one event does not affect the probability of
occurrence of another event.

- Two events F; and F)2 are independent if
P(E1 N E3) = P(E1|E2)P(E2) = P(E1)P(E2)
or, alternatively
P(E1 N E2) = P(E2|E1)P(E1) = P(E2)P(E1)
- This means that the event are independent if

P(E1|B2) = P(E1) o P(Es|Br) = P(Fp)

The definition can be used to verify independence between events.



A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?




A. Zaikin 2.11 Example: checking the independence

Example: Roll a die

Let A = {one, two, three} and B = {two, four}. Are A and B independent?

P(A) = % P(B) = % P(AN B) = é
then
PUIB) = T = = 5 = P

PNnA 1/6 1
P(A) 1/2 3

Thus we conclude that A and B are independent.

P(B|A) =




2.15 Two letter
sequence

e A short pattern contains only two letters from a {G,B} alphabet

e What is the probability that both letters are B given that at least one is B,
regardless of the order?

- Write down the sample space first

S = {GG,GB, BG, BB}

- The question requires to compute P(3 B| one B at least )



A. Zaikin 2.16 Two letter sequence

Assuming equal probabilities, i.e. 1/4, we have

P(BB BUB BB
P(BB|one Batleast) = P(BB|GBUBGUBB) = ( N(GBUBGUUBB))

P(GBUBGU BB)
P(BB) 141

P(GBUBGUBB) 3/4 3

A little variation of this question requires to condition on the fact that the second letter is a B

(now order matters):

P(BBN(GBUBB))

P(BBj|secondletteris B) = P(BB|GBU BB) = P(GBUBB)




- Consider the sequence 518 DNA
ATAGTAGATACGCACCGAGGA sequence

consisting of 21 letters from the alphabet { A, T", G, C'}.

- If we wish to assess the probability of observing this sequence, we might start
assuming that

P(A) =pa P(C)=pc P(G)=pc P(T)=pr
for some suitable probabilities satisfying
0 <pa,pc,pc,pTr <1 pa+pc+pc+pr=1
- Under the independence assumption, the probability
P({ATAGTAGATACGCACCGAGGAY})
can be factorized into the product

PA XPT XPA X ... X PG XPA

which simplifies to
B g
PAPCPGPT
- In cases such as this one, the independence assumption is often unrealistic but
simplifies calculations — we only need 4 probabilities here.



2.19 More on DNA example

- The assumption of independence of events may not be correct — indeed it is
often unrealistic. It is usually adopted to keep computations easy.

- In the sequence example, we may assume that having observed a given letter in
the current position may influence the probability of observing the subsequent
letter

- In this case, the required probability
P(ATAGTAGATACGCACCGAGGA)

can be written as

P(A) x P(T|A) x P(A|AT) x P(G|ATA) x ...
... X P(A|ATAGTAGATACGCACCGAGG)
- Here we need to define and compute 21 conditional probabilities, whereas

under the independence assumption we only needed the 4 unconditional
probabilities (one for each base).



2.20 Building a working
system

In order to build a working system, we need to randomly pick three components out
of 100 available components, some of which are known to be defective. If any of the
selected component does not work, then the system also does now work.

What is the probability of building a working system if we know that there are 10

faulty components?

- Call A; the event that occur when component 2 is among those that are fully

functional, where 1 = 1, 2, 3. Therefore

P( system works) = P(A; N A2 N Az)

- Using the chain rule, this can be written as

P(A1 NAs N A3) = P(Al)P(A2|A1)P(A3|A1 M Az)



2.23 Building a working
system

- Since 10 components are faulty,

—_— 10 90
P(A]) =ﬁ or P(A]) = 166

- If component 1 is among the functional ones, then component 2 will be one of
the remaining 99, 89 of which are working, therefore

89
P(Az |A1) = '9—9'

- Similarly,
88
P(Az|A1 N A2) = 08

and the required probability is 0.726.



2.24 More than two events

Often we need to compute conditional probabilities involving more than just one
event, e.g. the probability and events A and B occur, given that C' has occurred.

Example 2.13.

Show that 2 |
P(AN B|C) = P(A|BN C)P(B|C)

Using the definition of conditional prcbability, we obtain:
P(ANBNC)P(BNCQC)
P(BNOC) - P(C)

P(ANBNC)
ey (<)

P(A|BNC)P(B|C) =

= P(AN B|C)



2.25 Mutual independence

Independence for more than two events

The events E'1, E'2 and E'3 are called mutually independent if they are independent

in pairs, that is : - |
P(E; N E;) = P(E;)P(E;) Yi#j

aﬁd i

' P(El N Es ﬂEa) — P(EI)P(EZ)P(E3_) .

- Note that three events may be independent in pairs but not be independent.

- The independence of 1 events can be defined inductively. Suppose we have
defined independence of k events for every k < n. Then the events
Eh, ..., Eyn areindependent if any k < n of them are independent and

P(E1NEz---NE,) =P(E1)P(E2)---P(E,)



2.26 Law of the total

_ » probabilitv
- Suppose that F' and F' form a partition of the sample space

- Given an event ', we can write

E=(ENF)U(ENF) —

(you may want to draw a Vann diagram to check this result)
- Note that, by construction, (E N F') and (E N F) are mutually exclusive

- Applying the definition of joint probability,
P(E)=P(ENF)+P(ENF)
= P(E|F)P(F) + P(E|F)P(F)
= P(E|F)P(F) + P(E|F)(1 - P(F))

- Note how P( E) has been expressed as a weighted average of conditional
probabilities with weights given by the probabilities of the conditioning event ’




- More generally, assume that events F7, Fb, - - - , F}, form a partition of the 2 28

sample space S, i.e. General
b case: the

o ,91 4 law of total

and F; N F; = Qforalli # j. probability

- Then an event F in S can be expressed as

- Using the fact that events (E N F;) are mutually exclusive,
P(E) = PUHENF))
= Z P(E N F};)
: | .
= Y P(E|F;)P(F)

- Also, if the event G C S is such that P(G) > 0, the conditional probability of
E given G can be written as

P(E|G) =' Z P(E|F; N G)P(F;|G)

2



2.29 High-throughput genotyping
machine

A biotech company uses 3 high-throughput genotyping machines, say X, Y and Z
to process a certain number of arrays.

Suppose that:
1. Machine X processes 50% of the arrays with a genotypying error rate of 3%
2. Machine Y processes 30% of the arrays with a genotypying error rate of 4%
3. Machine Z processes 20% of the arrays with a genotypying error rate of 5%

Compute the probability that a randomly selected array is erroneous

Let D denote the event that an array is erroneous.

By the law of total probability



A biotech company uses 3 high-throughput genotyping machines, say X, Y and Z 2.30 High-

to process a certain number of arrays. througput
genotyping machine

Suppose that:
1. Machine X processes 50% of the arrays with a genotypying error rate of 3%
2. Machine Y processes 30% of the arrays with a genotypying error rate of 4%
3. Machine Z processes 20% of the arrays with a genotypying error rate of 5%

Compute the probability that a randomly selected array is erroneous

Let D denote the event that an array is erroneous.

By the law of total probability

B) = PO B(X) + P(D/Y)P(Y) + P(P/2) P(Z)
“PCDNK) P(DNY) p(Pn2)
= 10 S T ST 1 1 R R S VLR 0.2 = 0.0375



- Given two events E' and F', the joint probabilities can be written as 231 Bayes’

P(EN F) = P(E|F)P(F) Rule

and
P(ENF)=P(F|E)P(E)

- Equating the right hand sides of the equations we have

P(E|F)P(F) = P(F|E)P(E)

- Assuming that P(F') > 0 and solving for P(E|F') we obtain a result known as
the Bayes’ rule:

P(F|E)P(E)
P(F)

This is an very important result because in general

—a

P(E|F) =

P(E|F) # P(F|E)

- Note how the conditional probability P( | F") can be interpreted as a re-scaled
version of P(E). The result for P( F'| E) is similar



- Suppose, like before, that the events F1, . .., iy form a partition of the 2.33 Bayes
sample space S theorem

- Given an event I, using the law of total probability, we can then write its
probability as

P(E) =Y P(E|F;)P(F})

1

which assumes knowledge of the conditional probabilities P( E | F;) and
unconditional probabilities P ( F; )

- Using Bayes' theorem, we have

P(E|F;)P(F;)
P(E)

P(F3|E) =
assuming that P(E) > 0.

- The general expression is therefore given by

Lo P(E|R)P(F)
P(F?_IE) i 2t P(ElFi)P(Fz‘) |
- Note that
> P(Fi|E) =1

=]



A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.
What is the probability that it was processed by each one of the three machines?
We seek P(X|D), P(Y|D) and P(Z|D).

Earlier we found P(D) = 0.037




A. Zaikin 2.29 Arrays example contd.

Suppose an errneous array is found among the arrays processed by the company.
What is the probability that it was processed by each one of the three machines?
We seek P(X|D), P(Y|D) and P(Z|D).

Earlier we found P(D) = 0.037

We can compute the required probabilities by applying the Bayes rule:

P(D|X)P(X)  0.03(0.5)

P(X|D) = Py = 003 " 0.4054
P(Y|D) = P(D ]Ll(/l))];(y) - 0'8%0(??%3) — (.3243
P(Z|D) = P(D}L@])D(Z) -~ 0'8.50(;2) — 0.2703

Note that P(X|D) + P(Y|D) + P(Z|D) =1




- A diagnostic test has probability 0.95 of giving correct diagnosis. Incidence of 2.35 Diagnostic
disease in the population is 0.005. What is the probability that a person with a test
positive test result has the disease?

- First, introduce some notation
D = { hasdisease } and R = { positive test }

- We know that P(R | D) = 0.95,P(D) = 0.005
- The required probability is

P(R | D) P(D)
P(R)

P(D | R) =



- A diagnostic test has probability 0.95 of giving correct diagnosis. Incidence of
disease in the population is 0.005. What is the probability that a person with a
positive test result has the disease?

- First, introduce some notation
D = { hasdisease } and R = { positive test }

- We know that P(R | D) = 0.95,P(D) = 0.005
- The required probability is

P(R | D) P(D)
P(R)

P(D | R) =

- A direct application of the total probability theorem gives

P(R)=P(RND)+P(RND) =

— P(R|D)P(D) + P(R|D)P(D)
1
= (0.95 x 0.005) + (0.05 x 0.995) = % = 0.087

- The required probability is

(0.95)(0.005)

5 = (0.0545
0.087

P(D | R) =

using the Bayes'’ rule

2.35 Diagnostic
test



Consider the experiment with the coin, which has the
probability of u for the one side “1” and probability of 1-
M for the other side “0”. Setting the prior distribution
equal to =1, draw a plot of the Bayes estimate for the
parameter [ for the experiment when one got 001.

A={1105p("1") =w p("0") =1-pn

PAIWPW) _
Jy P(Alw)du

P(ulA) =

Example with coin



Example with coin

Consider the experiment with the coin, which has the
probability of u for the one side “1” and probability of 1-
M for the other side “0”. Setting the prior distribution
equal to =1, draw a plot of the Bayes estimate for the
parameter [ for the experiment when one got 110.

A={1,10} p("1") = p; p("0") =1 —u

PAIWP W) _
Jy P(Alw)du

1.5

P(u|A) =

1.0

P(mjulA)

u.u-(l—u)'lzﬂz'(l‘“)z1z-u2-(1—u)
Jorm (A—m (“_3_“—4)1
373

0

0.0 0.2 04 0.6 0.8 1.0

mju



Example of maximum likelihood inference in R: Exponential model

A sample 2., ...x,, is modelled by an exponential distribution with parameter # so that
fla;.0)=0e % itfora; >0,0>0.

— write down the likehood function L(6)

n

L(@) — H{Oexp—ea‘.i} — 971 eXp_QZi Ti __ 071, eXp—an:

1=1

where we use the fact that ) . = na
— Calculate the log-likehood function log L (#) = nlogf — nfx

— Differentiate log L(#) with respect to # to obtain the score function

dlog L(6) n ~
= — —n¥
do 6

— Solve the score equation with respect to ¢

n B
— —nx =20

6

which gives
n

8.54



> x=rexp(1000,rate=2) 8.55
> hist(x,freq=T,breaks=20,col="red”)

> T=1/mean(x)

>T

[1] 1.957175

> xx=seq(0,3,by=0.1)

> plot(xx, T*exp(-T*xx),type="I",col="red")

> points(h$mids,h$intensities)

Histogram of x
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RANDOM VARIABLES AND THEIR DISTRIBUTIONS



2.40 Discrete and continuous random variables

A random variable is discrete if the set X is of form
X = {z1,22,...,on} or X={z1,72,...}

that is, a finite or at most a countably infinite number of values

- A discrete random variable is used to describe the outcomes of experiments
that involve counting or classification, e.qg.

— number of males and females in this classroom
— number of up-regulated genes
- number of letters in a sequence

- and so on



2.41 Discrete and continuous random variables

C ACW oon.u/\h}o\e )

A random variable is continuous if the set X is of the form

X=U{x:ai§a:§b,—}
7
for real numbers a;, b;, that is, the union of intervals in R.

- A continuous random variable is used to describe the outcomes of experiments
that involve continuous measurements, e.g.

- height of students in this classroom
- peak intensity in a mass spectrum
- pixel intensity in a digital image

- and so on



- Consider the experiment that consists of tossing three fair coins (or, what is the

same, a fair coin three times) and looking at all faces.

- Define the random variable

X = { number of heads observed in all the three tosses }

- The sample space S consists of 8 possible outcomes. All outcomes and

corresponding values of X are given in the table below:

HHH HHT HTH
e 3 2 2

THH HTT THT TTH TTT

2 1 1 1 0

and notice that X = {0, 1, 2, 3}

- Assuming that all eight sample points in .S have equal probability, the
probability distribution of X can be described by the following table

z P(X =2%)
1/8
1 3/8
2 3/8
3 1/8
sum 1

- Forinstance P(X = 1) = P({HTT, THT, TTHY)) = 3/8

- Note that Z?:o P(X =1)=1

2.42 Probability
distributions



2.44 Discrete probability distributions

Probability mass function

- The probability distribution of a discrete random variable X is described by the
function

px(z)=P(X =z)=P({s: X(s) =z}) z€X
called probability mass function or p.m.f.

- The p.m.i. is a function that exhibits the following two properties:
i.px(zi) > 0 forall x;

.y px(z:) =1
i

PyHKUMA BEPOATHOCTU - DYHKUMA pacnpeneneHna
Probability mass function - Cumulative distribution function
[1TNOTHOCTb BEPOATHOCTU - DYHKUMA pacrpeneneHna
Probability density function - Cumulative distribution function



2.45 Example. Three coins

Each outcome has an associated probability mass which can be visualized-the plot
represents the probability distribution.

E-
5-
z | Px(X =1zx) g -
1
0 /8 g
1 3/8 .
s
2 3/8 .
=3
3 18 !
g_




2.46 Cumulative distribution function

Cumulative distribution function

The cumulative distribution function or c.d.f. or simply distribution function F'(-)
of the random variable X is defined by

Fx(z) = P(X < a) =P({s: X(s) < o))

and is defined for all valueé of' T ..

Any probabilistic aspects concerning a random variable X can be studied using its
cdf. Fx(x).



2.47 Example with three coins

- In the previous experiment we had three tosses of a fair coin and the random

variable X counted the number of observed heads.

- Remember that
px(z)=P(X =2z) and Fx(z)=P(X <z)

- In simple experiments such as this one, the cumulative distribution can also

be represented in a table

z || px(z) | Fx(=)
0 1/8 1/8

1 3/8 1/2

2 3/8 7/8

3 18 1

- What is the value and meaning of F'x (2)?



More precisely, fhe relationship between p x and F'x is obtained by noting that, if
1 <22 <..< Zn..
then
P(X <) =P(X =21) + ... + P(X = z;)
and therefore

Fx(z) = Z Px (:c,)

i

If we know the distribution function, we can derive the probability mass function by
noting that

px(z1) = Fx(wl)
Px(mz) = Fx(a:z) — Fx(a:,,_l) fors > 2

Notice how
- We calculate F'x from px by summation
- We calculate p x from F'x by differencing.

We can then use the distribution function to compute specific probabilities, for
instance

Pla< X <b)=Fx(b) — Fx(a) forany a<b

2.48 Relationship
between probability
mass and distribution
functions



Remember that
Pla < X <b) = Fx(b) — Fx(a)

We can compute other probabilities by noticing that
Pla< X <b)=P({X =a}U{a <X <b})

=p(X=a,)+P(a<XSb)
=P(X = a) + Fx(b) — Fz(a)

and

Pa< X <b)=Pla< X <b)—P(X =)
= Fx(b) — Fx(a) —P(X =)

2.49 Answering
other probability
questions using
the distribution
function



The distribution function for discrete random variables looks like a step-function. For
\

instance, with reference to the previous example (three coins) where
X=10,1,2,3}

1.0

08
-

Fnix)
06

0.4

02

Notice here:

- F'x can be computed for all values of x. For instance

Fx(2.5) =P(X <2.5)=P(X =0,1, or2) = 7/8

- F'x has jumps at the values of z; € X and the size of the jump at z; is equal

to P(X = :Z:-,;)
- F'x is constant between jumps

- Fx =0forz < 0and Fx = 1forz > 3 (in this example)

2.50 Visualization



2.51 Summary of properties

The cumulative distribution function of a discrete random variable is a step-function

with the following general properties

-0< Fx(z) <1

- limg oo F(z) = F(—0c0) =P(0) =0
- limg 00 F'(z) = F(o0) =P(S) =1

- F'x is discontinuous, with jumps at some =

- The size of the jump at z is equal to P(X = z).

- Right-continuity: at the jump points, F'x takes the value at the top of the jump
(i.e. the function is continuous when a point is approaching from the right)

lim Fx(z+ h) = Fx(z)
h—0+

- It is non-decreasing, i.e.

Fx(z1) < Fx(z2)ifzy < z2



- We have established that a probability distribution is a function that assigns
probabilities to the possible values of a random variable.

- So far we have looked at examples where the the p.m.f. and c.d.f. were derived
by direct inspection of the entire sample space.
- When specifying a probability distribution, two aspects need to be considered:

(a) The range of the random variable (that is, the values of the random variable
which have positive probability)

(b) The method via which the probabilities are assigned to different values in the
range — typically this is achieved by means of a function or formula. We
need to find a function or formula via which probabilities of form

P(X =z)=P({s: X(s) = s})
can be calculated for each z in a suitable range X.

- The functions used to specify these probabilities are just real-valued functions of
a single real argument, similar to polynomial, exponential, logarithmic, etc. — for
instance

flz)=€e®* o flz)=6z>+32°+22z-5

However, functions specifying probability distributions must exhibit certain
properties.

2.53 How to
specify a
probability
distribution?



2.54 Example.
Suppose we are given A = {2": s 3=0.1,23,"- }

Consider the function p(1) = 2 and p(2*) = 1 >0
4

Does this function define a probability mass function?

- We need to verify the two main properties, that p(:c) is positive for every x, and
that ) S . 4 p(z) =1

- The first property is easily verified, so let us check the second one. First, write

> s+ e =5+3 (5) = 1452 (5)

rEA
Given that P _
2 (1)’ 1 5
- - —3 —
2 O 0 1 5 4
We verify that



Let X be a discrete random variable with probability mass function
pxie)—kn @ X4 BE

that is, X takes values 1, 2, ..., 5 with probabilities k, 2k, ..., 5k.
What value of k& makes this function a probability mass function?

- We know that all probabilities must sum up to 1, therefore

N< Zﬁ(x) = deade. St :'/[/H—... 5)

e 8
= %ﬁ-_—,»@f ‘371’/\)“

- When k is known, we can draw the complete probability distribution for this
random variable

2.55 More
examples



- For instance, what is the probability that X is greater than 3? 2 56 Previous

?()(73)&'—/(—’\'()(5-]) example contnd.
e A A—[4+241-J0=3-{

- What is the probability that X is greater than 1 and less or equal 2

P(rex £2) = F2) - F )

e (ﬁ,«g&)_é;—z-;

A5

- What is the cumulative distribution function?

z || px(z) | Fx(x)
1 0.067 0.067
2 0.134 0.200
3 0.200 0.400
4 0.267 0.667
4 0.334 1

which allows the compute the probabilities above by reading off F'x () directly
from the table.



2.57 Continuous probability distributions

The probability distribution of a continuous random variable X is defined by the
cumulative distribution function specified by

Fx(z)=P(X <z) foralz€ ﬁﬂ\
That is, an identical definition to the discrete case.

The continuous c.d.f. F'x- must exhibit the same properties as for the discrete c.d.f.,
except the right-continuity which is now replaced by continuity:

-0< Fx(z) <1
- limg__ oo F(z) = F(—00) =P(0) =0
- limgz o0 F(z) = F(oo) =P(S) =1
- F'x (z) is continuous, i.e.
’lznoFx (z + h) = Fx(z)
- Itis non-decreasing, i.e.

Fx(z1) < Fx(z2)iftzy < z2



2.58 Probability density function

- Associated with a continuous random variable X and its c.d.f. F'y there is
another function called the probability density function or p.d.f. fx ().

- The densty function is a function defined as

d

E x{(z) = fx(z)

and

Fx(:z:)=/—:Jc fx(t)dt forallx &2k

Notice the analogy with the discrete case, but here
- We calculate F'yx from fx by integration

- We caleulate fx from F'y by differentiation

A density function fx (x) must exhibit the following properties:

- fx(x)>20 forzeX
- [0 f(x)dz =1



2.59 Important remark

- Note that, for continuous random variables,
Pla< X <b)=Fx(b)— Fx(a) -0 asb—a
- Hence for each o we must have
P(X=2)=0
if X is continuous

- Therefore, for a continuous random variable,
Ix(z) #P(X =1zx)
- We must use F'x to specify the probability distribution initially

- In some cases it is often easier to think of the shape of a continuous
distribution, which is described by the density function fx.

- For instance, when we think of the normal distribution as a bell-shaped
distribution, we are referring to its density



We are given a function f(z) = k(1 — z2) on [—1, 1] 2.60 Example
What is the value of k that makes f(x) a probability density function?

We procede as before,
1 371 4
1=k/ (l—xz)dx=k[a:—m—] :
-] 3 ==y

We can then sketch the probability density

mydensiy (1}

- And compute specific probabilities, for instance:

1 1
P(non-negative outcome) = P(X > 0) = / k(1 —z2)dx = 3
0

1/2 11
P(-1/2< X < 1/2)=/ k(1 — z2) doe = —
-1/2 16



Derive the distributon function using the density function provided in the previous .
2.61 Previous

example. _
example continued

- By direct application of the definition
X
F@)= [ fx(s)ds
— OO

= /_xl k(1 — s)ds

€T
ey
- S

-F(z)=0 forx < —1
-Fz)=1 forz>1
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Let X be a continuous r.v. with pdf

fx(x) = kz on[0,1]

- To determine the value of k, we compute

1 2
1=k/ xdxzk[m—] . 400 T
3 i et

- The c.d.f. is given by

r0 g e}

Fx(z)=14 [f2zdz=2* 0<z<1
([ oxdz=1 z>1

- And we may want to compute

2.62 More
examples

p(i<xs2)=Fx(2)-Fx(i)=l_(i)2=i_z



2.63 Some

Discrete random variables

- A discrete random variable X takes on at most a countable number of possible
values.

- The probability mass function p x (:1:) gives the probability of observing all
values of X, namely P(X = z) for all possible z.

- The probability distribution of X is specified by the cumulative distribution
function F'x (z) = P(X < z)

- Alternatively, we say that a random variable X is discrete if F'y (x) is a step
function of .

Continuous random variables
- A continuous random variable X takes values over an interval

- The probability distribution of X is specified by the cumulative distribution
function F'x (z) = P(X < z)

- Alternatively, we say that a random variable X is continuous if F'x (:z:) is a
continuous function of T



