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Abstract. Understanding the link between brain function and struc-
ture is of paramount importance in neuroimaging and psychology. In
practice, inaccuracies in recovering brain networks may confound neuro-
physiological factors and reduce the sensitivity in detecting statistically
robust links. Hence, reproducibility and inter-subject variability of trac-
tography approaches is currently under extensive investigation. However,
a reproducible network is not necessarily more accurate. Here, we build
a statistical framework to compare the performance of local and global
tractograpy in predicting functional brain networks. We use a model se-
lection framework based on sparse canonical correlation analysis and an
appropriate metric to evaluate the similarity between the predicted and
the observed functional networks. We demonstrate compelling evidence
that global tractography outperforms local tractography in a cohort of
healthy adults.
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1 Introduction

Investigating the relationship between functional and structural brain connec-
tivity is vital in understanding and interpreting neurophysiological findings. It
is well established that during rest the brain shows spontaneous activity that is
highly correlated between multiple brain regions. This activity can be captured
with resting-state functional magnetic resonance imaging (rs-fMRI) and it results
in reproducible functional networks across subjects. On the other hand, diffu-
sion weighted images (DWI) measure the anisotropic diffusion of water molecules
in the brain and carry valuable information regarding interregional brain con-
nections. However, reconstructing the neuronal pathways relies on tractography
algorithms that generate networks with poor reproducibility across subjects and
studies. Although compelling evidence has emerged that there are strong struc-
tural connections between regions that are functionally linked [1], it is challenging
to quantify the influence of fiber reconstruction errors.
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Tractography algorithms are tested for their reproducibility within and across
subjects. However, reproducibility does not necessarily correlate with accuracy.
For example, deterministic tractrography algorithms provide reproducible re-
sults but they are inaccurate when fibers cross and diverge. Phantom evaluation
is a principled way of examining the performance of tractography algorithms
[2]. Phantoms are made based on simplified assumptions that aim to test the
performance of tractography under certain scenarios. Nevertheless, the increased
fiber complexity of real tissues cannot be captured with the fiber cup phantom,
which is an over-simplified scenario of a few crossing fibers.

In this work, we aim to compare the performance of two well known tractog-
raphy algorithms [3, 4], which are categorised as local and global, respectively.
Tractography techniques are categorised as global or local according to whether
they account for information along the whole tract or not, respectively. The
main advantages of local tracking are the low time complexity and that each
tract is independent of the others. However, a major drawback that limits their
robustness is that errors in propagating can accumulate along the local steps [3].
This can significantly affect the results and also contributes to distance-related
biases. On the other hand, global tracking represents a new approach for identi-
fying brain networks, which involves the simultaneous reconstruction of all the
neuronal fibers by finding a solution that best fits the measured diffusion data.
This approach has a better ability to resolve ambiguous fiber orientations, since
it considers information along the whole neuronal pathway.

A phantom evaluation demonstrated that global tracking is superior to local
tractography approaches [4, 5]. However, further experiments based on trac-
ing results in macaques and a cohort of healthy subjects showed only a small
improvement in the results [5]. Here, we suggest a systematic way to examine
how different tractography approaches affect the observed relationship between
structure and function. To our knowledge, this is the first systematic approach to
examine whether a predictive framework based on resting-state fMRI is sensitive
to differences in tractography.

To this end, we have developed a predictive framework based on sparse canoni-
cal correlation analysis (SCCA) [6]. SCCA is a special case of sparse reduced rank
regression [7]. Firstly, we characterise functional connectivity as the inverse co-
variance matrix based on a shrinkage approach that guarantees well-defined, sym-
metric positive definite (SPD) matrices [8]. Subsequently, we introduce a model
selection framework based on cross-validation to quantify the out-of-sample error
related to each tractography approach.Finally, the distance between the predicted
functional networks and the ’ground truth’ rs-fMRI brain networks is estimated
based on an intrinsic metric suitable to quantify differences in covariance matri-
ces, independently of their parameterisation, ie. covariance versus the inverse of
covariance [9–11].

This work builds upon previous inference approaches to investigate influences
between structural connections and functional links [11, 12]. Deligianni et al.
presented a framework based on principal component analysis (PCA) and canon-
ical correlation analysis (CCA). Whereas this approach achieves dimensionality
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reduction, SCCA is based on a lasso penalty that aims to select the most rele-
vant connections resulting in simultaneous dimensionality reduction and model
selection. Model selection based on an l1 penalty is also presented in [11]. How-
ever, [11] relies on structural networks to regularise the estimation of functional
connectivity based on the assumption that a functional connection between two
regions only exists when there is a direct structural connection. An advantage
of our approach is that it combines a multivariate technique, CCA, with model
selection. Therefore, the predicted functional connectivity is well conditioned
and it does not necessarily requires further regularisation to be constrained into
symmetric positive definite space of matrices.

We apply the proposed approach in a cohort of healthy subjects with multiple
structural and functional scans. We demonstrate that a prediction framework
based on resting-state fMRI data can capture systematic differences between
global and local tractogaphy. We present detailed quantitative results suggesting
that global connectivity outperforms local connectivity in predicting functional
networks from structural brain networks. Our results suggest that a prediction
framework based on functional data could potentially be applied to compare
the performance of tractography algorithms in in-vivo human imaging data and
highlight specific connections that influence prediction.

2 Methods

2.1 Brain Network Construction

Defining Regions of Interest (ROIs). To define corresponding nodes in both
functional and structural networks we used atlas-based regions of interest (ROIs)
derived from Freesurfer cortical parcellation of the T1-weighted images [13].
BOLD fluctuations are profound in gray matter (GM), whereas tractography is
more reliable in delineating white matter (WM) fibers. Hence, we focus on brain
networks defined by cortical GM ROIs that are connected via WM fibers. We
propagate the anatomical labels from T1 space to native space for both fMRI
and DWI using non-rigid registration [14].

Preprocessing. The first five volumes of rs-fMRI data are removed to avoid T1
effects and preprocessing of the functional data involves motion correction, low
pass filtering and spatial smoothing with FSL [15]. To construct corresponding
functional networks the fMRI signal is averaged across voxels within each GM
ROI. The signal in WM and cerebrospinal fluid (CSF) is also averaged and along
with the six motion parameters provided from FSL is linearly regressed out.

We used TractoR for preprocessing of the diffusion weighted images (DWI)
[16]. This involves converting DICOM files into a 4D NIfTI, identifying the
volume with no diffusion weighting to use as an anatomical reference, creating
a mask to identify voxels which are within the brain and correcting the data set
for eddy current induced distortions. The last two stages are performed using
FSL. Furthermore, the gradient vectors are corrected retrospectively to account
for the eddy current correction.
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Functional Brain Networks. Assuming that the brain activity patterns are
described by a Gaussian multidimensional stationary process, the covariance ma-
trix characterizes fully the statistical dependencies among the underlying signals
[17]. Hence, we use the inverse covariance, normalised to unit diagonal to charac-
terise functional connectivity. The inverse covariance is directly related to partial
correlation, which provides a measure of connectivity strength between two re-
gions once the influence of the others has been regressed out. This is particularly
suited to relate functional connectivity with structural brain connectivity, since
the latter describes direct pathways between cortical regions. To produce a well-
conditioned, symmetric positive definite, (Sym+

p ), sample covariance matrix we
use the shrinkage estimator [8]:

Σ̂λ = λT̂ + (1− λ)Σ̂ (1)

where the sample covariance matrix Σ̂λ is estimated as a convex linear com-
bination of the unrestricted sample covariance matrix Σ̂ and the estimator T̂,
which is the identity matrix I. In this case, the optimal regularization parameter
λ ∈ [0, 1] is determined analytically based on the Ledoit-Wolf theorem [18]. This
approach provides a systematic way to regularise the sample covariance matrix
and it has been shown to greatly enhance inference of gene association networks
[19], where the number of variables n is much greater than the number of obser-
vations p. Therefore, it is suited to examine brain networks where the number
of connections grow quadratically with the number of ROIs.

Structural Brain Networks. Two sets of structural networks are derived
based on local and global tractography, respectively. The local tractography is
implemented in TractoR based on the classic ball and stick model [3].

Global tractography is used to produce a second set of brain networks from the
same DWI. Global tractography approaches try to reconstruct neuronal fibers
simultaneously by finding line configurations that describe best the measured
data. This makes them robust to noise, crossing fibers and imaging artefacts.
However, their practical application was hindered by the computational com-
plexity and time requirements. Reisert et al. proposed a time efficient approach
that minimises a sum of two energies with respect to the fiber model, M , and
the observed data, D. These energies control for the length of fibers (internal en-
ergy, Eint) and the difference between the model and the observed data (external
energy, Eext), respectively [4].

E(M) = Eint(M) + Eext(M,D) (2)

The model consists of small line segments. Each segment is described as a spatial
location and orientation. From the arrangement of all segments a predicted MR-
signal is computed based on the ball and stick model. The internal energy is
based on attraction forces between connected segments that encourages them
to stay together and have similar orientation. The external energy is the square
difference between the actual signal and the predicted signal after the local
mean is subtracted from both model and measured data. The optimisation is
done based on the Metropolis-Hasting sampler.
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To produce the corresponding structural connectivity matrices we consider
only fibers that connect cortical regions via white matter and disregard the rest.
We estimate the ’strength’ of connection between two cortical regions as the
number of fibers that connect the regions divided by the average number of
white matter voxels that surround them.

2.2 A Predictive Framework Based on Sparse Canonical Correlation

Sparse Canonical Correlation. Canonical correlation analysis (CCA) is gen-
erally applied when one set of predictor variables X is to be related to another
set of predicted variables Y and observations are available for both groups. Note
that CCA is designed to deal with situations where the underlying variables are
not statistically independent and, hence, they are inherently inter-correlated.
The ultimate goal of CCA is to find two basis vectors (canonical vectors) u,
v, one for each variable, so that the projections of X, Y onto these vectors,
respectively are maximally linearly correlated.

In CCA all variables from both sets are included in the fitted canonical vectors.
However, for the purpose of studying brain connectivity, we are interested in
sparse sets of associated variables, that would allow interpretable links between
function and structure to emerge. Hence, we adapt sparse canonical correlation
analysis (SCCA) to optimise the CCA criterion, subject to certain constrains
[6]:

maximiseu,vu
TXTYv

subject to :‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2
(3)

‖u‖1 ≤ c1 and ‖v‖1 ≤ c2 represent the L1 (or lasso) penalty and they result
in sparse canonical vectors u, v when the penalties c1 and c2, respectively, are
chosen appropriately. Note that with u fixed, the criterion in eq. 3 is convex in
v , and with v fixed, it is convex in u . Therefore, the objective function of this
biconvex criterion increases in each step of an iterative algorithm [6]:

u← argmaxuu
TXTYv subject to : ‖u‖2 ≤ 1, ‖u‖1 ≤ c1

v ← argmaxvu
TXTYv subject to : ‖v‖2 ≤ 1, ‖v‖1 ≤ c1

(4)

A Metric to Compare Covariance Matrices. Correlation and covariance
matrices lie on the space of symmetric definite positive matrices F = Sym+

p . The
standard Euclidean distance on matrices, the Frobenius norm, does not account
for the geometry of this space. Thus, this norm is ill-suited to quantify prediction
errors. However, Sym+

p can be parameterized as a Riemannian manifold using
an intrinsic metric [9]:

dAI(P,G)2 = tr
(
logG− 1

2PG− 1
2

)2
(5)

This metric has beed used successfully to build statistical frameworks of precision
matrices Sym+

p [11]. dAI is a distance metric, invariant to affine transformations
and inversion, appropriate to quantify the distance between covariance matrices
from biological data successfully [10].
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Fig. 1. This plot shows how global tractography compares with local tractography
for each subject and structural scan. a) Demonstrates that the distance dAI between
the predicted and the observed functional connectivity is lower for global tractography
than for local tractography. b) Shows the dAI metric for each difference in performance
between global tractography and local tractography, per subject and structural scan,
according to equation 7.

Model Selection. To evaluate the performance of local and global tractogra-
phy, we use model selection, which is based on cross-validation. For each subject
s = 1, . . . , S, the SCCA model is trained based on the remaining S− 1 datasets.
The number of components is estimated as the min of the ranks of the predic-
tor and predicted variables in CCA. The penalty values c1, c2 are optimised in
each cross-validation loop using an approach, which permutes the rows of both
the predictor and predicted variables of the SCCA [6]. Subsequently, we use the
left-out structural connectivity matrix A to predict the functional connectivity
F̂:

F̂ = (uA)−1Dv−1 (6)

D is a diagonal matrix of the canonical correlation scores. Finally, the difference
between the predicted, F̂, and ’ground truth’ functional connectivity matrix F
is estimated as: dAI(F̂,F).

3 Results

Imaging data was acquired from 13 healthy adults using a Siemens Avanto 1.5 T
clinical scanner using a self-shielded gradient set with maximum gradient am-
plitude of 40 mT m−1 and standard 12 channel head coil. Echo-planar DWI
were acquired along 60 non-collinear gradient directions at b=1000 s mm−2,
with three b=0 images for normalization. A voxel matrix of 96×96 was used
and 45 contiguous axial slices acquired, each 2.5mm thick, with a 240 mm FOV,
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(a) Local Tractography (b) Global Tractography

(c) Local Tractography (d) Global Tractography

Fig. 2. The top row shows the z-scores along all structural scans for (a) local and (b)
global tractography. The bottom row depicts the bootstrap results from (a) local and
(b) global tractography.

voxel size of 2.5×2.5×2.5 mm and TR/TE=7300/81 ms. T2*-weighted gradient-
echo EPI sequence of 125 volumes was also acquired with TR/TE=3320/50 ms,
36 slices with thickness 3.0 mm, voxel size 3.0×3.0×3.0 mm, flip angle 90o ,
FOV 192×192×108 mm, voxel matrix 64×64×36. High resolution T1-weighted
whole-brain structural images were also obtained in all subjects.

Each of the 13 subjects’ acquisition includes three structural scans that re-
sults in three structural connectivity matrices per subject and two rs-fMRI scans,
which produce two functional connectivity matrices. These results in six com-
binations of structural-functional data per subject: (Si : Fj). From each leave-
one-out cross-validation, we use data only from 12 subjects (a total of 72 samples
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(a) Global: 0.85 (b) Global: 0.9 (c) Global: 0.95

(d) Local: 0.85 (e) Local: 0.9 (f) Local: 0.95

Fig. 3. Binary matrices derived by thresholding the bootstrap results shown in figure
2c-2d. The top and bottom rows show the structural connections that they are selected
in more than 85%, 90% and 95% bootstrap iterations with structural networks derived
based on global and local tractography, respectively.

across all connections) and we test the prediction performance of each structural
scan of the left-out subject (F̂{Si}) according to equation 5.

Figure 1 shows how global tractography compares with local tractography
for each subject and structural scan. Figure 1a demonstrates that the distance
dAI between the predicted and the observed functional connectivity is lower for
global tractography than for local tractography. dAI is a distance metric, with
smaller values representing better performance. The inter-subject variability is a
magnitude of order higher than the difference between the two algorithms. The
prediction performance varies considerably across functional scans.

We also plot the difference in dAI between global and local tractography per
scan, figure 1b:

dAI(F̂{Si
G}, Fj)− dAI(F̂{Si

L}, Fj) (7)

Si
G and Si

L corresponds to the structural brain networks derived from global
and local tractography, respectively, for the same structural scan Si. Note that
in equation 7 the effect of variability across functional scans is cancelled.
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(a) Global: 0.85 (b) Global: 0.9 (c) Global: 0.95

(d) Global: 0.85 (e) Global: 0.9 (f) Global: 0.95

(g) Local: 0.85 (h) Local: 0.9 (i) Local: 0.95

(j) Local: 0.85 (k) Local: 0.9 (l) Local: 0.95

Frontal Temporal Occipital Parietal Limbic Insula

Fig. 4. Thresholded matrices in figure 3 are mapped in brain space. Brain regions are
represented with spheres and their radius reflect the relative size of the region.
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To further investigate which structural connections are more consistently se-
lected in each tractography method, we use bootstrap and examine the recovered
u vector. We resample with replacement all the available datasets and run SCCA
1000 times. The probability of a connection is estimated as the number of times
the connection is selected divided by the number of bootstrap repetitions. Fig-
ure 2 summarises the results. The top row of the figure 2a-2b, demonstrates the
z-scores across the original structural connectivity matrices for local and global
tractography, respectively. Global tractography results in structural networks
with stronger inter-hemispheric connections. The second row, figure 2c-2d shows
the results of the bootstrap. Results indicate that global tractograpy leads to
a higher number of connections more consistently selected across the bootstrap
iterations. This is apparent when we threshold the bootstrapped connectivity
matrices in figure 3.

Figure 3 shows the binary matrices derived by thresholding the bootstrap
results shown in figure 2c-2d. These matrices are also mapped in brain space in
figure 4. Brain regions are represented with spheres. Their centres are the center
of masses of each underlying region and their radius reflect the relative size of
each region. The color coding corresponds to different brain lobes: Temporal
lobe (dark magenta), frontal lobe (yellow green), parietal lobe (golden road),
occipital lobe (dark salmon), insula (cadet blue) and limbic (medium purple).

4 Conclusions

To fully understand how the brain works as a network, the physical connections
through the white matter, that mediate information exchange must be accurately
characterised. Global tracking may be more stable than local tractography in the
presence of noise and imaging artifacts in the data. However, due to the lack of
ground truth in-vivo tracing data direct evaluation is difficult. Here, we present a
robust model selection framework to compare local and global tractography ap-
proaches in predicting functional brain networks from structural brain networks
and show compelling results that global tractography outperforms local trac-
tography. Structural connectivity only restrains functional connectivity, which
is influenced from several other physiological factors. In fact, functional con-
nectivity varies considerably across scans and it does not represent an absolute
’ground truth’ for tractography. Nevertheless, we demonstrate evidence that the
relationship between structure and function can capture systematic differences
in tractography. Future work should aim to compare several tractography al-
gorithms and investigate which brain connections play an important role in the
prediction performance. This work is of paramount importance in understanding
links between function and structure.
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