

Causation in Medicine: Postulates and Pluralism?

Brendan Clarke

Department of Science and Technology Studies

UCL

L

	1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
- 1													

Epidemiological Causation

	1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
- 1													

Counterfactuals

| SufficientComponent Cause

| DAG / SEM
| Bayesian
| Networks

Epidemiological Causation

1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000

Infectious Disease Causation

Infectious Disease Causation

Koch,
Rivers,
Huebner,
1882, 1890
1937
1957

Koch's Postulates – A Modern Formulation

(Grimes, D.J. 2006. "Koch's Postulates–Then and Now," *Microbe*. 1: 233—8.)

- The same organism must be present in every case of the disease
- The organism must be isolated from the diseased host and grown in pure culture
- The isolate must cause the disease when inoculated into a healthy, susceptible animal
- The organism must be re-isolated from the inoculated, diseased animal

Infectious Disease Causation

Koch,
Rivers,
Huebner,
1882, 1890
1937
1957

Rivers' Scheme

(Rivers, T.M. 1937. "Viruses and Koch's Postulates," *Journal of Bacteriology.* **33**: 1—12.)

- A specific virus must be found associated with a disease with a degree of regularity
- The virus must be shown to occur in the sick individual not as an incidental or accidental finding but as the cause of the disease under investigation.
- If the animals display symptoms or pathological features which are related in a plausible fashion to the clinical manifestations of the pathogen in humans then the researcher should be encouraged

	1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
- 1													

Infectious Disease Causation

Chronic Disease Causation

1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000

Chronic Disease Causation

Cassel, 1976

Wynder, 1966

Hill, 1965

Surgeon General, 1964

Yerushalmy and Palmer, 1959

Hammond, 1955

UCL

Hill Criteria

(Hill, A.B. 1965. "The Environment and Disease: Association or Causation?" *Proceedings of the Royal Society of Medicine.* **58**: 295—300.)

- Strength
- Consistency
- Specificity
- Temporality
- Biological gradient (dose-response)
- Plausibility
- Coherence
- Experiment
- Analogy

1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000

Chronic Disease Causation

Cassel, 1976

Wynder, 1966

Hill, 1965

Surgeon General, 1964

Yerushalmy and Palmer, 1959

Hammond, 1955

1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000

Infectious Disease Causation

Chronic Disease Causation

'Grand Unified' Causation

	1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
- 1													

MacMahon and Pugh, 1967

Evans, 1976

Doll and Peto, 1981

| Elwood, 1988

'Grand Unified' Causation

Susser, 1988, 1991

Evans' Criteria 1

(Evans, A.S. 1976. "Causation and Disease: The Henle-Koch Postulates Revisited," *Yale Journal of Biology and Medicine*. **49**: 175—95.)

- Disease should follow exposure to the putative agent
- Exposure increases disease incidence prospectively
- Exposure increases disease prevalence
- Exposure to the cause more common in those with the disease than those without ceteris paribus
- Dose-response relationship

Evans' Criteria 2

(Evans, A.S. 1976. "Causation and Disease: The Henle-Koch Postulates Revisited," *Yale Journal of Biology and Medicine*. **49**: 175—95.)

- Experimental reproduction of the disease possible
- Measurable host response following exposure to the cause
- Elimination of putative cause reduces incidence
- Prevention of the host's response eliminates the disease
- The whole thing should make biologic and epidemiologic sense.

	1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
- 1													

MacMahon and Pugh, 1967

Evans, 1976

Doll and Peto, 1981

| Elwood, 1988

'Grand Unified' Causation

Susser, 1988, 1991

1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000

Infectious Disease Causation

Chronic Disease Causation

'Grand Unified' Causation

Epidemiological Causation

Conclusions

- These causal schemes may appear convincing, but there are many difficulties with their use...
 - Terminology
 - Specificity versus strength
 - Counterexamples
- But yet they are highly successful...
- How might we regard their relationship to 'philosophical' causation?

Three possible scenarios

- Causal schemes do not refer
 - Schemes used to justify intuition. No relationship between causation and causal evidence
- Causal schemes refer
 - Evidential and causal pluralism
 - Evidential pluralism and causal monism

L

References

- Evans, A.S. 1976. "Causation and Disease: The Henle-Koch Postulates Revisited," Yale Journal of Biology and Medicine. 49: 175—95.
- Grimes, D.J. 2006. "Koch's Postulates—Then and Now," Microbe. 1: 233—8.
- Hill, A.B. 1965. "The Environment and Disease: Association or Causation?" *Proceedings of the Royal Society of Medicine.* **58**: 295—300.
- Rivers, T.M. 1937. "Viruses and Koch's Postulates," *Journal of Bacteriology*. **3**3: 1—12.