MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 6

Date: 25/11/2011

Due Date: 2/12/2011

Answer all questions marked with an asterisk (*).

- 1. Evaluate the following definite integrals
 - (i) * $\int_{0}^{2\pi} \cos^{2}(x)e^{x} dx$ (ii) $\int_{0}^{\sqrt{2\pi}} x \sin(x^{2}+1) dx$ (iii) $\int_{2}^{3} \frac{x^{3}+4x^{2}-7x-10}{x^{3}+2x^{2}-x-2} dx$ (iv) * $\int_{0}^{1/10} \frac{1}{\sqrt{1-3x^{2}}} dx$ (v) * $\int_{1}^{2} \ln(x) dx$
- 2. * A particle's moves in a straight line, whose velocity can be modelled by the following function

 $v(t) = t\sin(t).$

Find the distance s, covered by the particle from time t = 0 to $t = 2\pi$. Sketch the graph for v(t) over the domain $[0, 2\pi]$, and display what the value of s represents on your sketch. Hint: recall $\dot{s}(t) = v(t)$, also think about the sign of the function v(t) for $t > \pi$.

3. * Using the trapezium method with 4 equal lengths, find the approximate value of

$$\int_0^2 \frac{1}{1+x^2} \, dx.$$

By means of a sketch, illustrate the areas that correspond to the above integral and trapezium method and show the approximation gives an under-estimate int his case. Hint: Is the curve convex or concave? 4. The work done W by a force F in moving a body through a distance from x = a to x = b metres is given by

$$W = \int_{a}^{b} F(x) dx$$
 (Newtons).

Suppose we have the following values for F:

x (metres)	0	1	2	3	4	5	6	7	8
F(x) (Newtons)	2	3	7	4	6	3	1	4	8

Use the trapezium method with 8 equal lengths to give an estimate for the work done in moving the body from x = 0 to x = 8.

5. Consider the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx$$

Why can't we use the trapezium method to directly approximate this integral? What is the exact value of this integral?