UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH6103

ASSESSMENT : MATH6103A

PATTERN

MODULE NAME : Differential And Integral Calculus

DATE : **13-May-09**

TIME : 14:30

TIME ALLOWED : 2 Hours 0 Minutes

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Define the derivative of a function f(x).
 - (b) Calculate the derivatives of the following functions from first principles. (That is, find the derivatives directly from the definition.)
 - (i) x^3
 - (ii) $\frac{1}{x}$
 - (c) State the product rule, the chain rule, and the quotient rule. Use the chain rule and one of the results above to find the derivative of $\sqrt[3]{x}$.
- 2. Calculate the following indefinite integrals.
 - (a) $\int xe^{(x^2)}dx$
 - (b) $\int \tan x \sec^7 x \ dx$
 - (c) $\int \frac{3x}{x^2 4x + 4} dx$
 - (d) $\int \frac{1}{\sqrt{1-x^2}} dx$
 - (e) $\int \frac{2x}{\sqrt{1-x^4}} dx$
- 3. Differentiate the following, with respect to x.
 - (a) $3^{(x^2)} (x^2)^3$
 - (b) $\tan(\cos x)$
 - (c) $\ln(\sec x + \tan x)$
 - (d) $\ln(3x) \times \ln(10x)$

4. Approximate the definite integral $\int_1^3 \frac{1}{x} dx$ by using the trapezium rule with four strips.

Sketch the graph of the $y = \frac{1}{x}$ in a suitable range, and illustrate the area covered by your four strips.

Is your answer larger or smaller than ln(3)?

- 5. Two hours after the start of an experiment, the bacterium population in a sample is recorded as 1200, and it is found to be 3600 after a further two hours. Assuming exponential growth, find
 - (a) the number of bacteria when the experiment started,
 - (b) the growth constant of the population, and
 - (c) the time when the population is 20,000.

You may find the following approximations useful:

 $ln(3) \approx 1.099$, $ln(20) \approx 2.996$, $ln(50) \approx 3.912$

- 6. An open water tank of volume 18π cubic metres is to be constructed by joining an open-ended cylinder of radius r and height h to the lower half of a hemisphere of radius r.
 - Find formulae for the volume and surface area of the tank, in terms of r and h.
 - Find the values of r and h that minimise the surface area.

A sphere of radius r has volume $\frac{4}{3}\pi r^3$ and surface area $4\pi r^2$. An open-ended cylinder of radius r and height h has volume $\pi r^2 h$ and surface area $2\pi r h$.

MATH6103

CONTINUED

- 7. For the following differential equations, for y as a function of x,
 - (a) state whether each is separable and/or linear.
 - (b) find the General Solution to each differential equation.
 - $\bullet \sin(x)y' + \cos(x)y = 0$
 - $\bullet \ y'' + 4y' + 4y = 0$
 - $\bullet \ y'' 6y' + 8y = 3e^x$