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So we have proven that
d

dx
is true when 7 is any integer and also when n = 1/2.

(z™) = na" !,

It turns out that for all possible powers of p:

d _
%(l‘p) = pa? .

WARNING: If p is a fraction, such as p = 1/2, then we require = > 0. We don’t want to
take the root of negative numbers, i.e. \/-m, where m > 0.

Example 2.15. Consider the functions g(z) = z* — 22, f(u) = w3 and so g (z) =

4a3 — 22, f'(u) = —%u_%. The composition gives f o g(z) = (z* — $2)_%. So
d _4
— @' =a)75] = fle@)d@)
= —%(fl - x2)7%(4x3 — 2x)

Generalisation: Suppose we have three functions f, g and h. Then the composition is

fogeh(z)= flg(h(z))),

and it’s derivative is

Tt b 1] = flothi) ¢ () K@)
= é [(a:‘3 —|—x)% + 1}_3 . %( 34 x)_% . (33!:2 +1).

h(z) = 23+, = R (z) = 32% 4 1,

g(u) =uz +1 — g (u) = %U‘%,
fw)=ws = )=t

The composition works as

ol

Floh@)) = Flo@@® +2)) = [ + )% +1) = [ + )% +1]

1
Example 2.17. Now consider the example where y(z) = [(13 + :c)% + x} °. It is similar

to the above example, however, when replacing “1” by “z” in the square bracket, finding a
nice composition becomes a little harder. Instead of trying to work out what this function
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is as a composition, we simply apply the chain rule using the method “differentiate outer

bracket, work inwards”. When the derivative is performed on y(z) it follows the steps:

711 d
3

-(x3+$)%+x . [(a:?’—kx)%—kaz}

1

3

d
%[(xg—kx)%—i-x =

N

:(:L'?’ + )

1-3 [1 1 d
+ ] ’ [2(w3+m)_2dx(x3+x)+1]

Wl = W= Wl

- 1-27T71
(x3—|—$)% +z| ° [2(1:3—1—93)_;(31:24—93)4—1}

Note that in addition to the chain rule, the sum rule has also been applied.

Finally, there is another way of writing the chain rule (or other derivatives). Let w = g(x),
y = f(w) = f(g(z)). Then we can write

dy d _dy dw

- =2 (f(9(2))) = f'(g(2))g'(x) = == - —.

Machine:

we have gained 3 basic rules of differentiation,

1. sum rule:

d _df | dg
(@) + o) = 5+ 2,
2. product rule:
d df dg

3. chain rule:

Extras:

2.2 Differentiation of trigonometric functions

How do we find the derivative of f(x) = sinx? By definition 2.1 (on pg. 22), the derivative
of f(z) =sinz at the point x = ¢ is

ﬂ(c) _ limf(c+h2_f(c)

dzx h—0

sin(c + h) — sin(c)

sin(c) cos(h) + sin(h) cos(c) — sin(c)

h—0 h
sin(h) } ‘

= lim {sin(c)cos(};}_l + cos(c) Y
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If we know the limits of sin(h)/h and (cos(h) — 1)/h as h — 0, then we will know f/(c),
since c is unrelated to h.

First let us consider sin(h)/h. We draw a circular sector with a very small angle, where
the curved side is of length z (in radians). For small angle z (in radians), sinx and x are

almost equal, i.e.
sinx

~ 1.
T

sin x

1

Figure 2.12: Very small circular sector. Right angled triangle with hypotenuse and
adjacent approrimately equal i.e. two radii from circular sector.

As h — 0, sin(h)/h — 1, if you work in radians. Actually

lim sin(h) ~ lim sin(0 + h) — sin(0)
h—0 h h—0

= %(sin x) »

= cos(0)

= 1,

that is, the derivative of sinx at x = 0 is one, or the tangent line of y =sinx at z = 0 is
Yy ==z

(a) Tangent sinz at z = 0. (b) Tangent cosz at z = 0.

Figure 2.13: Examining the tangents at x = 0 gives an insight of the derivative at this
point.
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Second, we notice that

lim cos(h) — 1 — fim cos(0 4 h) — cos(0)
h—0 h h—0

= %(COS x) .

= sin(0)

- 0,

i.e. the derivative of cosx at x = 0 is zero, since the tangent line of y = cosx at z = 0 is

horizontal (y =1). So
cos(h) —1

li .
hs0 h 0
Therefore
f'(e) = cos(o),
i.e.,
d
o (sinz) = cos .
T
Similarly, we can derive
d—(cos x) = —sinz.
x

NOTE: The change in sign when differentiating cos x!

Exercise 2.1. Now that we know the derivatives of sin and cos, we should be able to
calculate the derivative of tanz. Try it yourself before next lecture!*

4End Lecture 8.



