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A special case: if g(x) = c, constant, then g0(x) = 0, so

d

dx
(cf(x)) = c

d

dx
(f(x)) = cf 0(x).

Therefore the sum rule can be generalised as: If f
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, . . . , f
n

are di↵erentiable and
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Example 2.10. Consider a polynomial of degree n with constant coe�cients, i.e.

p(x) = a
0

+ a
1

x+ a
2

x2 + a
3

x3 + · · ·+ a
n

xn,

then
p0(x) = a

1

+ 2a
2

x+ 3a
3

x2 · · ·+ na
n

xn�1,

a polynomial of degree n� 1, with constant coe�cients.

The chain rule:

The chain rule tells us how to di↵erentiate “compositions” of functions. If we have two
functions f and g, the composition, denoted by f �g (name of new function), is the function
given by

f � g(x) = f(g(x)), (Do g then f). (2.6)

Figure 2.7: The composition f � g first employs g from A to B, then f from B to C.

Example 2.11. If f(w) = w2 + 1 and g(u) =
p
u, then

f � g(x) = f(g(x)) = f(
p
x) = (

p
x)2 + 1 = x+ 1,

g � f(x) = g(f(x)) = g(x2 + 1) =
p

x2 + 1.

Here, f : R ! R+, g : R+ ! R+ and f � g : R+ ! R+, g � f : R ! R+.

But actually the function h(x) = x + 1 can be defined as h : R ! R, so be careful when
generating a function by composition, take note of the di↵erence between h(x) and f � g
in this case.
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In general, f � g 6= g � f .

Composition can be generalised further for more functions, for example suppose we have
three functions f , g and h, then

f � g � h(x) = f(g(h(x))).

If f and g are di↵erentiable, then

d

dx
(f(g(x))) = f 0(g(x)) · g0(x). (2.7)

Example 2.12. Consider the function y(x) = (x3+2x)10. Here we will choose f(w) = w10

and g(x) = x3 + 2x, (so f 0(w) = 10w9 and g0(x) = 3x2 + 2). Then

d

dx
(y(x)) =

d

dx
(f(g(x)))

=
d

dx

�

(x3 + 2x)10
�

= f 0(g(x))g0(x)

= 10(x3 + 2x)9 · (3x2 + 2).

Essentially, what we have done is to substitute g(x) = x3 +2x in our function for y(x), to
make the di↵erentiation easier.

Example 2.13. Consider the function y(x) = 1/x3. We know how to di↵erentiate 1/x.
So let us choose g(x) = x3 and f(w) = 1/w. Therefore we have f � g(x) = y(x). We know
the derivatives of f and g are f 0(w) = �1/w2 and g0(x) = 3x2. So

d

dx

✓

1

x3

◆

= f 0(g(x))g0(x)

= � 1

(x3)2
· 3x2

= � 3

x4
,

i.e. we have
d

dx
(x�3) = �3x�4.

RECALL: we have seen that if n is a positive integer, then

d

dx
(xn) = nxn�1,

e.g.
d

dx
(x365) = 365x364.
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If n is a negative integer, then m = �n is a positive integer. So

d

dx
(xn) =

d

dx

✓

1

xm

◆

=
d

dx
(f(g(x)))

= f 0(g(x))g0(x)

= � 1

(xm)2
·mxm�1

= �mxm�1�2n

= (�m)x(�m)�1

= nxn�1.

Here we have simply chosen g(x) = xm and f(w) = 1/w, where g0(x) = mxm�1 and
f 0(w) = �1/w2.

Therefore we now know that
d

dx
(xn) = nxn�1,

is true for any whole number n 2 Z.

What about when n = 1/2 i.e. f(x) = x
1
2 . How can we di↵erentiate this? First let us

think about what we know about x
1
2 .

We know that (x
1
2 )2 = x!

Let us consider the function g(y) = y2 and take the composition of f and g, that is

g � f(x) = g(f(x)) = (x
1
2 )2 = x.

In this case f and g are inverse of one another. What does it mean for g to be the inverse
of f or f to be the inverse of g?

Aside (NFE):

If we take a point x = a in the domain of f say, and it takes the value b = f(a) in
the range (or image). Then the inverse function takes the image point b and sends it
back to the point x = a. In other words we return ourselves back to where we started.
There is a well defined rule that goes from a to b and a well defined rule that takes b
to a.

The inverse is usually written as f�1, this is just notation.

f�1(f(x)) = x then

(

f : A ! B

f�1 : B ! A



CHAPTER 2. DIFFERENTIATION 29

Figure 2.8: The composition f � f�1 = f�1 � f takes you back to where you
started!

Definition 2.2. The function f�1 is called the inverse function for a well defined
function f then

f � f�1(x) = f�1 � f(x) = x. (2.8)

Not all functions possess inverses. For example the function f(x) = c, constant.

Figure 2.9: Multi-valued functions do not have inverses (obvious from picture).

A function is called a one-to-one function if it never takes the same value twice, that
is

f(x
1

) 6= f(x
2

) whenever x
1

6= x
2

.

Figure 2.10: One-to-one functions have inverses (obvious from picture).

Only for a one-to-one function f , then f�1 exists.
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Example 2.14. f(x) = x2, if f : (�1,1) ! [0,1) then f�1 does not exist since for
each f(x), there are two possible x values corresponding to it.

Figure 2.11: Graph showing the relationship between y = x2 and it’s inverse.

(End NFE)

If it was that f : [0,1) ! [0,1) i.e. considering the positive x-axis only, then f�1

exists. Which in this case we call f�1(x) = g(x) =
p
x, since

f(g(x)) = f(
p
x) = (

p
x)2 = x.

And we also know that
g(f(x)) = g(x2) =

p
x2 = x,

i.e. f and g are inverse of one another.

If you draw a function and its inverse on the same coordinate plane, they must be
symmetrical about the line y = x. Why? Rotate the xy-plane 90� anticlockwise and
then flip across the vertical axis. This is because we want the inverse function f�1

who’s range is the domain of f and vice-versa. Also, equivalent to switch x $ y in
y = f(x), rearranging the equation for y to give the inverse.

Now let us return to take the derivative of the function g(f(x)) = (x
1
2 )2 = x, thus

d

dx
[g(f(x))] =

d

dx
(x)

) g0(f(x))f 0(x) = 1.

Now since g0(y) = 2y, we have
2 · f(x)f 0(x) = 1.

Finally rearranging for f 0(x) we see that

f 0(x) =
1

2f(x)
=

1

2x
1
2

=
1

2
x�

1
2 ,
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i.e. the method is the same for integer n (as shown on pg. 23), in words, “bring the power
down, reduce the power by one”.3

3
End Lecture 7.


