CHAPTER 2. DIFFERENTIATION 26
A special case: if g(z) = ¢, constant, then ¢'(z) = 0, so

d d )
T (ef (@) = e (f(@) = ef'(2).

Therefore the sum rule can be generalised as: If fi, fo,..., f, are differentiable and
ai,as,...,a, are constants, then

% la1f1(2) + azfo(x) + -+ + anfu(2)] = a1 fi(2) + a2 fa(x) + - + anfy (@)

Example 2.10. Consider a polynomial of degree n with constant coefficients, i.e.
p(z) = ap + a1x + aza® + azz® + - + apa”,

then
P (z) = a1 + 2a02 + 3asz? - 4+ napx™ !,

a polynomial of degree n — 1, with constant coefficients.

The chain rule:

The chain rule tells us how to differentiate “compositions” of functions. If we have two
functions f and g, the composition, denoted by fog (name of new function), is the function
given by

fog(x)=f(g(x)), (Do g then f). (2.6)

Figure 2.7: The composition f o g first employs g from A to B, then f from B to C.

Example 2.11. If f(w) = w? + 1 and g(u) = \/u, then
fogl@)=[(9(x)) = f(Vr) = (Vo) +1=2+1,

go f(x) = g(f(x)) = g(a® +1) = Va2 + 1.
Here, f:R - R+, g: RT = RT and fog:RT - R, gof: R — R™.

But actually the function h(z) = x + 1 can be defined as h : R — R, so be careful when
generating a function by composition, take note of the difference between h(x) and fog
in this case.
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In general, fog#go f.

Composition can be generalised further for more functions, for example suppose we have
three functions f, g and h, then

fogoh(x) = flg(h(z))).

If f and g are differentiable, then

L (Fg@) = o)) - (@) (27)

Example 2.12. Consider the function y(z) = (z3+2z)'°. Here we will choose f(w) = w!?

and g(z) = 2> + 2z, (so f'(w) = 10w? and ¢'(x) = 322 + 2). Then

L) = 2 (o)

= % ((2* +22)'7)
= f(g9(z))g'(z)
= 10(z® +22)% - (32* + 2).

Essentially, what we have done is to substitute g(x) = 23 + 22 in our function for y(x), to
make the differentiation easier.

Example 2.13. Consider the function y(z) = 1/23. We know how to differentiate 1/z.
So let us choose g(x) = 2% and f(w) = 1/w. Therefore we have f o g(z) = y(x). We know
the derivatives of f and g are f'(w) = —1/w? and ¢'(z) = 322%. So

() = rewe

z3
1 2
= )2 3z
B 3
— I
i.e. we have p
@(x_‘?) = 3274

RECALL: we have seen that if n is a positive integer, then
d n—1

%(a:") =nz"" ",

e.g.
d

S (@%7) = 365274
T
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If n is a negative integer, then m = —n is a positive integer. So

for = (3

m—1

Here we have simply chosen g(z) = 2™ and f(w) = 1/w, where ¢'(z) = mz and

fl(w) = —1/w?.

Therefore we now know that p
%(xn) — nxnfl’

is true for any whole number n € Z.

What about when n = 1/2 ie. f(x) = 22. How can we differentiate this? First let us
think about what we know about 2.

We know that (ac%)2 = !
Let us consider the function g(y) = y? and take the composition of f and g, that is
1
go f(z) = g(f(x)) = (2%)* = z.

In this case f and g are inverse of one another. What does it mean for g to be the inverse
of f or f to be the inverse of g7

Aside (NFE):

If we take a point x = a in the domain of f say, and it takes the value b = f(a) in
the range (or image). Then the inverse function takes the image point b and sends it
back to the point x = a. In other words we return ourselves back to where we started.
There is a well defined rule that goes from a to b and a well defined rule that takes b
to a.

The inverse is usually written as f~', this is just notation.

f:A—B

f~Yf(x)) =2z then {f‘l B A
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Figure 2.8: The composition fo f~1 = f~1 o f takes you back to where you
started!

Definition 2.2. The function f~! is called the inverse function for a well defined
function f then

fofHa)=f"of(x) =2 (2.8)

Not all functions possess inverses. For example the function f(z) = ¢, constant.

==

Figure 2.9: Multi-valued functions do not have inverses (obvious from picture).

A function is called a one-to-one function if it never takes the same value twice, that
is

f(x1) # f(x2) whenever 1 # xo.

Figure 2.10: One-to-one functions have inverses (obvious from picture).

Only for a one-to-one function f, then f~! exists.
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Example 2.14. f(x) = 22, if f : (—00,00) — [0,00) then f~! does not exist since for
each f(z), there are two possible x values corresponding to it.

Y
y=w
P
“ ’ ’ y= 22
f (o)
f(l'o) To o

Figure 2.11: Graph showing the relationship between y = x? and it’s inverse.

(End NFE)

If it was that f : [0,00) — [0,00) i.e. considering the positive z-axis only, then f~!
exists. Which in this case we call f~1(z) = g(z) = /, since

And we also know that

9(f(2)) = g(a*) = Va? =z,

i.e. f and g are inverse of one another.

If you draw a function and its inverse on the same coordinate plane, they must be
symmetrical about the line y = . Why? Rotate the xy-plane 90° anticlockwise and
then flip across the vertical axis. This is because we want the inverse function f~!
who’s range is the domain of f and vice-versa. Also, equivalent to switch x <> y in
y = f(z), rearranging the equation for y to give the inverse.

d d
%[Q(f(l’))] = %(37)

gf@)Nf(x) = L

Now since ¢'(y) = 2y, we have

2. f(o) (@) = 1.
Finally rearranging for f/(z) we see that
1 1 1 _a
f/ xTr) = = = 755757
(@) 2f(z) 222 2
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i.e. the method is the same for integer n (as shown on pg. 23), in words, “bring the power

down, reduce the power by one”.3

3End Lecture 7.



