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Definition 2.1. In general, we define the derivative of a function f at x as

f 0(x) =
d

dx
(f(x)) = lim

h!0

f(x+ h)� f(x)

h
, (2.2)

provided that the limit exists. If the limit exists, we say f is di↵erentiable at x. If we
simply say f is di↵erentiable, we mean f is di↵erentiable at all values of x. In this case,
f 0(x) is also a function of x.

Comments:

1. We interpret the derivative as the instantaneous rate of change, or geometrically as
the slope of the tangent line.

2. Equivalently,

f 0(x) = lim
x0!x

f(x
0

)� f(x)

x
0

� x
, (2.3)

since if you put h = x
0

� x, then h ! 0 () x
o

! x and f(x
0

) = f(x+ h).

Example 2.4. An example of a function which is not di↵erentiable at a certain point:

f(x) = |x| =
(

x x � 0

�x x < 0
.

Figure 2.5: Graph of y = |x|.

At x = 0, f(x) is continuous but not di↵erentiable, since through the point (0, 0), you can
draw many, many tangent lines. We can also show

for h > 0,
f(0 + h)� f(0)

h
=

h� 0

h
= 1,

for h < 0,
f(0 + h)� f(0)

h
=

�h� 0

h
= �1,
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i.e.

lim
h!0

f(0 + h)� f(0)

h

doesn’t exist! Taking the limit from both sides must give the same answer.

Example 2.5. What is the derivative of xn for a positive whole number n? Let f(x) = xn,
then

df

dx
= lim

h!0

f(x+ h)� f(x)

h

= lim
h!0

(x+ h)n � xn

h

= lim
h!0

{xn + nxn�1h+ n(n�1)

2

xn�2h2 + · · ·+ hn}� xn

h

= lim
h!0

{nxn�1 +
n(n� 1)

2
xn�2h2 + · · ·+ hn�1}

= nxn�1.

i.e.
f(x) = xn, then f 0(x) = nxn�1. (2.4)

We could now go on and find derivatives of “all” algebraic functions by definition. But it
is too time consuming and impractical.

Important: If f 0(↵) = 0, then the tangent to the curve f at x = ↵ is parallel to the x-axis.

(a) Local maximum. (b) Point of inflection. (c) Local minimum.

Figure 2.6: Di↵erent options for when f 0(x) = 0.

Often, f will have a local minimum or maximum at some x = ↵.

2.1.2 Rules for di↵erentiation

Some simple functions: xa, ax, sinx, cosx.

Complicated functions can be derived from these simple ones, by addition, multiplication
and composition.
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Example 2.6.

x+ x2, xax, x sinx, x3 � x4 = x3 + (�x4),
sinx

x
=

1

x
· sinx, cos(x2).

So it is too time consuming to di↵erentiate each individual function we can think of by
first principle, i.e. using the definition.

Instead, we want to build a machine to help us di↵erentiate various functions. The machine
should contain three bits:

1. Sum rule,

2. Product rule,

3. Chain rule.

The idea of the machine is to tell us how to di↵erentiate functions which are built from
simpler pieces as long as we know how to di↵erentiate the smaller pieces.

BONUS: you can still relate the derivative of the entire function to those of the smaller
pieces, even if you don’t know what the small pieces are.

The sum rule:

If f and g are di↵erentiable, then

d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x)) = f 0(x) + g0(x)

Example 2.7. Consider the function f(x) =
�

x3 + x4
�

, then using the above we have

d

dx

�

x3 + x4
�

=
d

dx

�

x3
�

+
d

dx

�

x4
�

= 3x2 + 4x3.

If you repeatedly apply the sum rule, you have

d

dx
(f

1

(x) + f
2

(x) + · · ·+ f
n

(x)) =
d

dx
(f

1

(x)) +
d

dx
(f

2

(x)) + · · ·+ d

dx
(f

n

(x)) .

The product rule:

If f and g are di↵erentiable, then

d

dx
(f(x)g(x)) = f 0(x)g(x) + f(x)g0(x). (2.5)

Example 2.8.

d

dx

⇥

(x2 + 1)(x3 � 1)
⇤

= 2x(x3 � 1) + (x2 + 1)3x2

= 2x4 � 2x+ 3x4 + 3x2

= 5x4 + 3x2 � 2x.
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Here we have put
f(x) = x2 + 1 =) f 0(x) = 2x,

and
g(x) = x3 � 1 =) g0(x) = 3x2.

Example 2.9. Consider the derivative of x5, so

d

dx

�

x5
�

=
d

dx

�

x4 · x
�

= 4x3 · x+ x4 · 1
= 5x4,

as expected, since
d

dx
(xn) = nxn�1.

Here we have put
f(x) = x4 =) f 0(x) = 4x3,

and
g(x) = x =) g0(x) = 1.

This shows that di↵erentiation can be approached in di↵erent ways, using what you feel
most confident with.2

2
End Lecture 6.


