CHAPTER 1. FUNCTIONS 7
1.3.2 Polynomials

A polynomial is a function P with a general form
P(z) = ap + a1z + azz® + - - + apz™, (1.4)

where the coefficients a; (i = 0,1,...,n) are numbers and n is a non-negative whole num-
ber. The highest power whose coefficient is not zero is called the degree of the polynomial
P.

Example 1.5.
P(z) 2 |32 +4x+2 H% VT | 1-3z+m2d | 2t +4
Polynomial? | Yes Yes No No Yes Yes
Order 0 2 N/A | N/A 3 1

Importance of polynomials: analytical & computational points of view

Degree 0: P(z) = ag = apz", say P(x) = 2. This polynomial is simply a constant.

)
2
A=R B = {2}
x
(a) y = P(x) = 2. (b) Entire domain mapped to one point.
Figure 1.5: A straight line parallel to the x-axis.

Degre 1: P(x) = ax + b, a # 0. These are called linear, since the graph of y = ax + b is a
straight line. The linear equation ax + b = 0 has solution z = —b/a.
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av +b

au+b

Figure 1.6: Linear graph given by y = ax + b.

The slope or gradient of y = ax + b is a. It can be worked out as follows:

change in height

slope =
P change in distance

change in y

change in x

(av + b) — (au + b)
v—u

a(v —u)

- ———=-u (1.5)

Degree 2: P(x) = ax? + bx + ¢, a # 0. This is known as a quadratic polynomial. The
quadratic equation az? + bz + ¢ = 0 has solutions

B —b+vVb? — 4dac

2 (1.6)

X

Proof. Start by re-arranging the equation and dividing through by a so that

next we add b?/(2a)? to both sides, hence

2ylp B e ¥
a (2a)2 a  (2a)%

Now we can search for a common denominator on the right hand side (RHS) and
complete the square or factorise on the left hand side (LHS), i.e.

b 22q¢ b2

<x i 2) T 20 " 2a?
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Taking the square root of both sides we have

b \/ 22qc b2 +v—22ac + b2
T+ =34/

% 202 " (20 %a
and finally re-arranging the above equation (or minus b/2a from both sides of the

equation) we get?
—b+ Vb — 4dac
r = .

2a
O
Example 1.6. Consider the quadratic polynomial
P(x) = 2* — 3z + 2. (1.7)
We can represent P(x) in a different way by factorising it, i.e.
P(x)=(z —2)(x—1). (1.8)

Again, we can represent P(x) in a different way, this time by completing the square. When
completing the square, we do this based on the value of b as follows. We add and subtract

(%)2 to P(z) such that P(z) = z* — 3z + (%)2 — (%)2 + 2 (i.e. we don’t really change

the equation). Now it is easy to see 2% — 3z + (%)2 is the same as (z — %)2 i.e. it can be

factorised. Thus we can finally write

P(z) = <x—2>2—1. (1.9)

Now, (1.7), (1.8) and (1.9) are all equivalent and they are each able to give an insight on
what the graph of the quadratic function P(z) looks like. That is

(i) Equation (1.7) tells us the graph of P(x) is a “cup” rather than a “cap” since the
coefficient of 22 is positive. Also we can easily see P(0) = 2.
(ii) Equation (1.8) tellsus P(z) =0at z =1 and x = 2

(iii) Equation (1.9) tells us P(z) is minimal at = 3 and P (3) = —

321>1
T3 1= 1

since anything squared is always positive!

. Note,

Now that we have some suitable information regarding P(z), we are able to produce an
informed sketch:

3Aside: O = Q.E.D, where Q.E.D = “quod erat demonstratum” which means “which was to be demon-
strated” in Latin.
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Figure 1.7: Quadratic graph given by y = 2% — 3z + 2.

Degree > 3: Things get a bit more complicated!

In general, we have the algebraic equation
ap+ a1z + asx? + -+ apz” =0, (1.10)

which has n roots, including real and complex (imaginary numbers, z = o + i) roots.

n =2 we have formulae for roots (quadratics)

(
n =3 we have formulae for roots (cubic)
n =4 we have formulae for roots (quartics)

n >4 No general formulae exist  (proven by Evariste Galois)

But in any case, we may try factorisation to find the roots. If you factorise a polynomial,
say
P(2) = (z — 1)(x + 3)(x +4),
then you can easily solve P(x) = 0, in this case 1 = 1, 9 = —3, z3 = —4.
NOTE: this depends on the property of 0 on the RHS. You can’t easily solve
(x—=1)(x+3)(x+4) =1
Conversely, if you know that P(«) = 0, then you may factorise P(x) as
P(z) = (z — a)q(z),
where ¢(x) is some polynomial of one degree less than that of P(z).

Example 1.7. Consider P(x) = 23 — 822 + 192 — 12. We know that z = 1 is a solution
to P(x) = 0, then it can be shown that

P(z) = (z — 1)q(z) = (z — 1)(2* — Tz + 12).

Here P(x) is a cubic and thus ¢(z) is a quadratic.
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Example 1.8. Consider P(z) = 23 — 22 — 3z — 1. By observation, we know

So 1 = —1 is a root. Let us write
P(x) = (x + 1)(z* + az + b),
then multiplying the brackets we have
P(z) =2 4+ (1 +a)z® + (a + b)x + b,

which should be equivalent to 2 — 22> — 3z — 1. Thus, comparing the corresponding
coefficients we have

l1+a = -1,
a+b = =3,
b = -1

So we can write
P(x) = (x +1)(z% — 22 — 1)

To find the other two solutions of P(z) = 0, we must set (22 — 2z — 1) = 0 which has

solution xo 3 = %\/g =1+ \/5, together with 1 = —1 we have a complete set of solutions
for P(x) = 0.

Example 1.9. Consider P(z) = 2% + 322 — 2z — 2. An obvious solution to P(z) = 0 is
x1 = 1. So we put
P(z) = (z—1)(z®+az+D)
= 22+ (a—1)2*+ (b—a)r —b.

Comparing corresponding coefficients with our original form of P(x) we gain the following
simultaneous equations:

a—1 = 3,
b—a = -2
-b = -2

These have solution b = 2, a = 4 and so we have
234322 — 20— 2= (z — 1)(2* + 42 + 2).

The solutions to (z? + 4z + 2) = 0 are 23 = —2 + /2, completing the set solutions to
P(z)=0.

NOTE: In the above examples, the leading coefficient of P(z) i.e. the coefficient of 22 is
equal to one!

As with many areas of mathematics, there are many ways to tackle a problem. Another
way to find ¢(x) given you know some factor of P(z), is called polynomial devision.
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Example 1.10. Consider P(z) = 2% — 22 — 3z — 1, we know P(—1) = 0. The idea is that
we “divide” P(x) by the factor (x + 1), like so:

22 —2x—1
:L'+1) x> —22 -3z -1
—x3 —2?
— 222 — 32
222 + 2z
—x—1
r+1
0

Hence, multiplying the quotient by the divisor we have (z+1)(z?—2x—1) = 23 —22—32—1.

Summary:
The highest power of the polynomial is known as the order of the polynomial.

The roots of a quadratic equation az? 4+ bz + ¢, can be found using the formula

. —b+vVb? — 4dac
- 2a '

No general formula for n > 4. However roots can be found of higher order polyno-
mials by factorising first. This can be done by observation, the method of comparing
coefficients or by long polynomial devision.

Later we will see that polynomials are functions which are easy to differentiate and
integrate.

We can approximate most “nice” functions by polynomials, at least locally i.e. using

power series.*

4End Lecture 3.




